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ABSTRACT
The efficient optimization of integrated spiral inductors re-
mains a fundamental barrier to the realization of effective
analog and mixed-signal design automation. In this pa-
per, we develop a scalable multi-level optimization method-
ology for spiral inductors that integrates the flexibility of
constrained global optimization using Mesh-Adaptive Direct
Search (MADS) algorithms with the rapid convergence of lo-
cal nonlinear convex optimization techniques. Experimental
results indicate that our methodology locates optimal spiral
inductor geometries with significantly fewer function evalu-
ations than current techniques.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms
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1. INTRODUCTION
Increasing levels of integration and complexity in mixed-

signal and system-on-chip (SoC) designs have spurred the
need for innovative design automation techniques to improve
reliability and time-to-market. Within the analog realm,
accurate optimization and synthesis of spiral inductors con-
tinues to be a major roadblock on the path to design au-
tomation. Analog circuits such as Low Noise Amplifiers,
Voltage Controlled Oscillators and bandpass filters depend
on inductors with optimized inductance values and quality
factors. Consequently, accurate design and optimization of
spiral inductors is critical to a successful and cost-effective
realization of analog systems in mixed-signal SoC.

Spiral inductor optimization continues to be primarily a
manual process using either pre-characterized inductor de-
signs or ad hoc optimization techniques. The most com-
mon programmatic approach for inductor optimization is
exhaustive enumeration where each combination of design
parameters over a discretized range of values is simulated,
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which is intractable for computationally-intensive spiral in-
ductor models based on field solvers [5]. Other proposed op-
timization techniques based on geometric programming [2]
or analytical formulas [6] require specific model formulations
that can potentially limit their usefulness as modeling tech-
niques are improved. Recently, Zhan and Sapatnekar de-
veloped a spiral inductor optimization technique based on
Sequential Quadratic Programming (SQP) [11]. Their tech-
nique yielded two orders of magnitude speedup over exhaus-
tive enumeration. However, substrate effects were neglected.
Furthermore, since the objective functions and constraints
were never proven to be convex, SQP may not approach a
globally optimal solution.

In this paper, we develop a scalable multi-level optimiza-
tion methodology for integrated spiral inductors that sup-
ports any generalized modeling technique. We first demon-
strate that the spiral inductor optimization problem po-
tentially employs non-convex objective and constraint func-
tions. We then develop a multi-level optimization approach
that first utilizes a Mesh-Adaptive Direct Search (MADS)
algorithm to locate an approximate global solution in the
non-convex design space [1]. We then refine the approximate
solution obtained by MADS using gradient-based nonlinear
constrained convex optimization [8]. Our results indicate
that our methodology provides a reliable means for find-
ing optimal spiral inductor designs with significantly fewer
function evaluations than current techniques.

2. DESIGN SPACE CHARACTERIZATION
2.1 Integrated Spiral Inductor Modeling

In order to characterize the inductor’s design space and
test our proposed optimization methodology, we utilize ac-
cepted analytical spiral inductor modeling techniques based
on a frequency dependent pi-model. Previous spiral induc-
tor optimization studies have considered number of inductor
turns (n) to be a discrete parameter with quarter turn multi-
ples [5, 2, 11]. In contrast, we consider n to be a continuous
variable in the optimization problem and therefore avoid
resorting to mixed-integer optimization techniques that are
typically less efficient than their continuous counterparts [8].
Furthermore, by not restricting n to discrete values, we have
the flexibility to generate designs with higher quality factors.

To model the inductor’s free-space resistance, we com-
bine the formulation for proximity effect losses presented
in [7] with a fitted formula for the effective thickness used in
the spiral inductor resistance calculations, teff = δeff (1 −

e−t/δeff )(1+1.715t/w), where δeff = 1.195δ and t, w and δ
are the conductor’s thickness, width and skin depth, respec-
tively. The formula is valid for copper conductors with typ-
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Figure 1: Non-convex quality factor and physical

inductance functions

ical dimensions. The model’s series inductance is calculated
using the Greenhouse method [3]. To capture the impact of
single layer substrate eddy currents, which were not mod-
eled in [6, 11], we utilize the method based on complex im-
age theory presented in [4]. The model’s series capacitance
due to the inductor’s conductors sidewall capacitance is cal-
culated using the distributed capacitance model presented
in [9]. We use the techniques presented in [10] to model the
oxide capacitance, substrate capacitance and conductance
elements in the pi-model of the spiral inductor.

2.2 Optimization Problem Formulation
A typical goal for spiral inductor optimization is to pro-

vide the inductor design with the highest quality factor for
a given inductance value for common circuits such as VCOs,
LNAs and bandpass filters. The optimization problem can
be formalized using the following expressions:

Maximize Q(n, s, w, d)

Subject to L(n, s, w, d) ≤ Lwanted(1 + tol)

L(n, s, w, d) ≥ Lwanted(1 − tol)

... other constraints ...

[nmin, smin, wmin, dmin] ≤ [n, s, w, d]

[nmax, smax, wmax, dmax] ≥ [n, s, w, d]

where Lwanted is the inductor’s desired inductance value,
tol is the tolerance on the allowed inductance values, and
Q(n, s, w, d) and L(n, s, w, d) define the inductor’s quality
factor and inductance as a function of the spiral inductor’s
number of turns (n), conductor spacing (s), conductor width
(w) and outer diameter (d). In this work we define the
quality factor as Im(Zin)/Re(Zin) where Zin is the induc-
tor’s input impedance. In addition, other inequality con-
straints such as limits on the inductor’s area and minimum
self-resonant frequency (SRF) can be imposed to optimize
inductor designs for specific applications.

2.3 Inductor Design Space Characterization
In order to develop efficient optimization techniques, the

spiral inductor design space must be analyzed to determine

Figure 2: Non-convex effective inductance con-

straint function

what properties can be exploited. Many popular gradient-
based nonlinear constrained optimization techniques such as
SQP rely upon the convexity of the objective and constraint
functions in order to find the optimal solution. A function
is said to be convex if it satisfies the following property:
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[f(−→x1) + f(−→x2)] , ∀ [−→x1,

−→x2]. (1)

Therefore, a convex function always satisfies the property,

f
′′

(−→x ) ≥ 0, which implies that a convex function has a sin-
gle global minimum. Gradient-based nonlinear optimization
techniques require the objective and constraint functions to
be convex since they search in directions with negative gradi-
ents [8]. Consequently, if the function contains multiple local
minima or maxima, gradient based optimization techniques
will not always converge to the function’s global minimum
value or locate feasible solutions.

To explore the convexity of Q(n, s, w, d), we examined the
quality factor as a function of inductor diameter and con-
ductor width for a typical inductor geometry. As displayed
in Figure 1, Q(n, s, w, d) has a local minimum value along
a given physical inductance contour. Therefore, gradient-
based optimization methods will converge to two different
function values depending on the algorithm’s initial start
point. Standard gradient-based constrained optimization
techniques also require the constraint functions to be con-
vex. Figure 2 displays the inductor’s effective inductance,
Leff = Im(Zin)/ω, as a function of a spiral inductor’s di-
ameter and number of turns. Leff clearly lacks convexity,
which may potentially cause gradient-based constrained op-
timization techniques to breakdown when the optimization
algorithm starts at certain locations in the design space.
Consequently, gradient-based optimization techniques alone
may fail to provide optimal solutions.

3. MULTI-LEVEL SPIRAL INDUCTOR
OPTIMIZATION METHODOLOGY

3.1 Optimization Methodology
In order to optimize the spiral inductor’s non-convex qual-

ity factor function with non-convex constraint functions, ro-
bust optimization strategies must be utilized. Multi-level
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Figure 3: Multi-level inductor optimization flow

optimization strategies typically employ several different op-
timization techniques in tandem that compensate for the
weaknesses of each technique individually. Multi-level op-
timization provides the speed and flexibility necessary to
optimize the complex spiral inductor design space.

Our multi-level spiral inductor optimization methodology,
which is depicted in Figure 3, consists of two distinct phases:
the global optimization phase and the local optimization
phase. Initially, objective and constraint functions are de-
fined for the spiral inductor optimization problem based on
application requirements. We utilize a Mesh-Adaptive Di-
rect Search (MADS) algorithm to globally search the spiral
inductor’s design space. Other popular global optimization
techniques such as Simulated Annealing and Genetic Algo-
rithms typically employ penalty functions for constrained
optimization problems that may require tens of thousands
of function evaluations to converge [8]. In contrast, MADS
is specifically designed for rapid convergence on nonlinear
constrained global optimization problems [1].

Since MADS is a pattern search algorithm, the conver-
gence rate depends on the optimizer’s initial start point in
the design space. In order to improve convergence, we de-
terministically sample the design space in order to identify
possible start points for the global optimizer. We then run
MADS for a certain number of function evaluations to ap-
proach a local minimum. If the optimizer finds a feasible
solution with a quality factor that meets certain criteria,
the output of the MADS optimizer is used as the start point
for the local optimization phase. During the local optimiza-
tion phase, we employ gradient-based non-linear constrained
optimization to exploit the design space’s local convexity in
order to quickly converge to the optimal inductor geome-
try. Once optimization is complete, spiral inductor layout
can be synthesized based on the optimization results. For
patterned ground shield optimization, two successive runs
of the algorithm for inductors both with and without the
ground shield can be implemented with the second iteration

Lwanted F t σsub

(nH) (GHz) (µm) (1/(Ω · m))
Example 1 16 4 2 0.1
Example 2 4 1 1 0.1
Example 3 10 2.4 1 7000
Example 4 6 0.9 0.5 7000

Table 1: Design examples for optimization

using the result of the first as a start point in order to ac-
celerate convergence. Our methodology exploits both the
robustness of global optimization and the rapid convergence
of the local optimization to locate optimal designs in the
inductor’s non-convex design space.

3.2 Results
In order to demonstrate our spiral inductor optimization

methodology’s improvement over current techniques, we ap-
plied several different methodologies to maximize the quality
factors for the four typical design problems listed in Table
1 where Lwanted, F , t and σsub are the inductor’ effective
inductance, operating frequency, conductor thickness and
substrate conductivity, respectively. The parameters have
the following bounds: 2 ≤ n ≤ 10, 1 µm ≤ w ≤ 30 µm,
0.5 µm ≤ s ≤ 3 µm and 60 µm ≤ d ≤ 800 µm. Each in-
ductor is assumed to have copper conductors that are 6 µm
above a 500 µm thick single layer substrate. The four design
problems represent a broad range of typical design problems
with varying levels of difficulty for the optimization routines.
Design examples 1 and 2 stress the optimization of different
inductance values while design problems 3 and 4 highlight
the impact of substrate eddy currents on optimization.

The maximum quality factors and the number of function
evaluations required for several optimization methods are
listed in Table 2. For the enumeration methods, we iterate
over each of the four inductor design parameters (n, w, s, d)
for the total number of function evaluations listed in Table
2. For the ”SQP - Random Start Point” method, we opti-
mized the inductor using SQP with 200 random start points
that correspond to feasible inductor geometries with posi-
tive quality factors. To determine the average number of
function evaluations to obtain an optimal result using SQP,
we divide the total number of function evaluations for the
200 SQP runs by the number of runs that produce a qual-
ity factor value within 5 percent of the inductor’s optimal
quality factor. Similarly, the quality factors listed in Table
3.2 for SQP are the average of the quality factors that are
within 5 percent of the optimal value.

In order to demonstrate our optimization methodology’s
performance improvement over other potential multi-level
approaches, we optimized spiral inductors using a multi-level
combination of global enumeration with local SQP optimiza-
tion. Furthermore, we applied MADS alone to the optimiza-
tion problem. Finally, we optimized the inductors’ quality
factors with MADS coupled with SQP using our proposed
methodology. We utilized the NOMADm optimization pro-
gram to implement the MADS algorithm [1]. For our local
optimization engine, we utilized a standard version of the
SQP algorithm, one of the best nonlinear constrained convex
optimization techniques available [8]. For both multi-level
approaches, enumeration with SQP and MADS with SQP,
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Example 1 Example 2 Example 3 Example 4
Optimization Max. Func. Max. Func. Max. Func. Max. Func.

Method QF Eval. QF Eval. QF Eval. QF Eval.
Enumeration - Large 7.05 15323481 7.26 15323481 6.37 15323481 3.64 15323481

Enumeration - Medium 6.59 179315 7.26 179315 6.27 179315 3.64 179315
Enumeration - Small 6.59 13548 7.01 13548 6.01 13548 3.62 13548
SQP - Random SP 7.11 12207 7.06 691 6.25 4662 3.54 9120

Enumeration (5) + SQP N/A N/A 6.88 213 4.01 643 3.39 498
Enumeration (10) + SQP 5.81 866 7.13 1028 6.19 1382 3.55 1136
Enumeration (15) + SQP 6.40 3440 7.19 2710 5.73 2788 3.61 3225
Enumeration (20) + SQP 6.76 6359 7.19 9362 6.37 6268 3.62 8936

MADS 7.08 225 6.91 687 5.84 200 3.55 699
MADS + SQP 7.16 478 7.10 495 6.39 380 3.55 473

Table 2: Comparison of function evaluations required to obtain maximum quality factor

we only optimized with respect to three design variables (n,
w, d) in the global optimization phase since the inductor’s
quality factor is less sensitive to conductor spacing.

In design example 1, enumeration required 15 million func-
tion evaluations to achieve optimal results, which is unac-
ceptable even using analytical modeling techniques. SQP
performed well on design example 2, where eddy current ef-
fects were minimal and a low inductance value was desired.
On the other more difficult design problems that either ex-
perienced eddy current effects or required large inductance
values, the SQP algorithm often either failed to find a fea-
sible solution due to the non-convexity of the effective in-
ductance constraint function or converged to a sub-optimal
quality factor due to the non-convexity of the quality fac-
tor function. Multi-level optimization based on enumeration
coupled with SQP achieved near optimal results when the
enumeration technique discretized the design space into a
20x20x20 grid. However, this required on average over 6000
function evaluations. For lesser discretization during the
enumeration step, the design problems either did not obtain
a feasible value or achieved sub-optimal results for at least
one of the design examples. Since the optimal quality factor
values for a particular inductor design problem are typically
not known a priori, 20x20x20 enumeration is the minimum
discretization necessary to achieve consistent results. The
inductors optimized with MADS alone only required several
hundred function evaluations, but failed to reach an optimal
value in design example 3.

In contrast, our methodology yielded near-optimal quality
factors for each of the four design examples with an aver-
age of 457 function evaluations, resulting in up to a 40000x
speedup over enumeration and up to a 25x speedup over
SQP to locate optimal designs. Our multi-level approach
provides a tractable spiral inductor optimization solution
even when expensive field-solver based modeling techniques
are employed. By coupling the global optimization capa-
bilities of MADS with the local optimization strength of
SQP, the proposed multi-level spiral inductor optimization
methodology provides an efficient means to construct opti-
mal spiral inductor designs.

4. CONCLUSION
Our multi-level optimization methodology couples the global

optimization capabilities of MADS with the rapid local con-
vergence of standard nonlinear convex optimization tech-

niques to provide an efficient, model-independent spiral in-
ductor optimization methodology. We have shown that the
spiral inductors’ quality factor and effective inductance func-
tions can be non-convex, which may lead to the non-convergence
of standard convex optimization techniques. Our method-
ology overcomes this difficulty and locates optimal spiral
inductor designs with with significantly fewer function eval-
uations than current techniques.
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