
39.3

 644

Template-Driven Parasitic-Aware Optimization of Analog
Integrated Circuit Layouts*

Sambuddha Bhattacharya, Nuttorn Jangkrajarng and C-J. Richard Shi
Department of Electrical Engineering, University of Washington

Seattle, WA, 98195-2500
{sbb, njangkra, cjshi}@ee.washington.edu

ABSTRACT
Layout parasitics have great impact on analog circuit performance.
This paper presents an algorithm for explicit parasitic control during
layout retargeting of analog integrated circuits. In order to ensure
desired circuit performance, bounds on layout parasitics’ magnitudes
are determined first. Then, graph techniques are coupled with
mathematical programming to constrain layout geometry based on
these parasitic bounds. The algorithm has been demonstrated to
ensure desired circuit performance during technology migration and
performance specification changes.

Categories and Subject Descriptors
J.6 [Computer Applications] Computer-Aided Engineering –
computer-aided design.

General Terms: Algorithms, Performance, Design.
Keywords: Analog Layout Automation, Parasitics, Sensitivity,
Optimization.
1. INTRODUCTION

Layout symmetry, device floorplans, relative placement and
layout parasitics are of immense importance in ensuring desired
analog circuit performance [1]. Layout parasitics arise from the
transistor source/drain capacitances, interconnect resistances, and
line and coupling capacitances. These parasitics can have significant
impact on circuit performances such as gain, bandwidth, and phase
margin. However, they cannot be accurately estimated before a
layout is actually completed. This presents a major challenge to
analog layout automation [2].

Recently, automatic template-based layout generation is
emerging as an effective solution to analog layout automation. In the
template-based analog layout automation tool IPRAIL (Intellectual
Property Reuse-based Analog IC Layout) [3], an optimized layout is
automatically generated from a symbolic structural template that
contains device floorplan, symmetry, matching, and wiring
alignment information. The templates can be extracted automatically
from a coarse-grained layout generated by macro-cell based
methods [2] or from an existing fine-tuned silicon-proven layout
manually crafted by designers [3]. By automatically extracting and
reusing the designers’ knowledge embedded in an existing layout,
IPRAIL has demonstrated its efficacy for technology migration and
electrical performance specification changes.

∗ This research has been supported in part by the U.S. DARPA’s NeoCAD
program and in part by the NSF’s ITR program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

In this paper, we present how template-based techniques can be
explored for parasitic-aware optimization of analog circuit layout. A
key observation is that the structural templates define the layout
geometry in terms of constrained layout variables, therefore permit
the accurate modeling of layout parasitics parametrically in terms of
these layout variables. Then constraints on layout parasitics can be
enforced during layout generation.

With this, parasitic-aware analog layout generation is solved in
three steps: (i) Identification of limits on parasitic values that
guarantees desired performance, using the sensitivity of circuit
performance to parasitics. (ii) Determination of constraints on layout
geometric variables due to the parasitic bounds. (iii) Generation of
target layout in presence of geometric constraints due to parasitics,
symmetry, relative placement and design rules by combining
graph-based methods and linear programming (LP).

2. PROBLEM DEFINITION
2.1 Layout Retargeting

Layout retargeting refers to the generation of a target layout from
an existing layout [3]. In this method, a set of constraints
corresponding to technology design rules, layout symmetry etc. is
first extracted from the input layout. These constraints force the
target layout to retain floorplan, symmetry and other properties of
the existing layout. The objective of retargeting is to generate the
target layout with minimum area while obeying these constraints.

Layout retargeting can be formulated as a one-dimensional
compaction problem [3]. If xR and xL are the right and left ends of a
layout, the problem in horizontal direction is given as:

min (xR – xL) (1.1)
subject to xi – xj ≥ const , xi – xj = const (1.2)

 xi – xj = xk – xl (1.3)
where all variables correspond to the left and right edges of the

layout rectangles. The constraints in Eqs. (1.2) and (1.3) correspond
to design rules, fixed device widths and symmetry.
2.2. Parasitic Aware Layout Retargeting

Parasitic aware layout retargeting refers to the generation of a
target layout from an existing layout such that the layout parasitics
in the target layout are maintained within acceptable limits. These
restrictions on parasitic values impose geometric constraints. The
interconnect parasitics can be estimated with simple expressions for
resistance and capacitance given as r = (l/w).rSH and c = 2.l.CSW +
l.w.CA where rSH is the sheet resistance, CSW and CA are the
sidewall and area capacitances and l and w are the length and width
of the wire. The coupling capacitances are given as a linear function
of 1/d where d is the distance between two wires.

Parasitic aware layout retargeting refers to the problem defined in
Eq. (1) with additional geometric constraints due to parasitics.
Clearly, the parasitic models are nonlinear in terms of geometry and
depend on both the horizontal and vertical dimensions of the wires.
However, for superior computational speed, the geometric

 645

constraints due to parasitics need to be linearized in both horizontal
and vertical dimensions to the form in Eq. (2).

xi – xj ≥ const , xi – xj ≤ const (2.1)
xi – xj = xk – xl (2.2)

Eq. (2.1) refers to geometric lower and upper bounds due to
parasitics. Eq. (2.2) arises for matched interconnects.
2.3 Methodology
 We incorporated our algorithm into IPRAIL. The steps in
constraint generation are shown in Fig. 1(a). First, all transistors,
passive devices and nets are extracted from the input layout. The
design rule, connectivity, coupling and symmetry constraints are
extracted next. Determination of bounds on parasitic values and
generation of geometric constraints are described in Section 3.

Transistor, Net and Pass ive
Device Extraction

Design Ru le and Connectiv ity
Constra int G eneration

Device Layout Sym m etry
Constra int G eneration

Parasitic Constra int G eneration
Vertical com paction w ith Poss ib le

Constra int Relaxation

Horizontal com paction w ith
Possib le Constra int Relaxation

Input Layout

Constra int Set

Constra int Set

Target Layout

Transform ation of
Sym m etry Constra ints

Fig. 1: (a) Steps in constraint generation for retargeting. (b) Steps in
target layout generation from the imposed constraints.

Layout generation, shown in Fig. 1(b), is a generalized
compaction problem. Due to superior running time of graph-based
solution for the compaction problem compared to LP, the constraint
equations are converted into a graph form. The constraints in Eq.
(1.2) and (2.1) are directly convertible into the graph form where the
variables represent the nodes of the graph and the constant on the
right hand side denotes the weight of the arc connecting two nodes.
The symmetry constraints in Eq. (1.3) and matching constraints in
Eq. (2.2) cannot be directly imposed into the graph as no “right-hand
constant” is known a-priori. These constraints are transformed into a
graph imposable form by a combination of graph-based longest path
algorithm and LP [4].

3. PARASITIC CONSTRAINT GENERATION
The steps for computing geometric constraints due to parasitics

are shown in Fig. 2. First, parasitics are extracted from the input
layout. The sensitivity of the circuit performance parameters to the
parasitics is computed next. Circuit sensitivities, parasitics, and the
performance parameters are related by a set of linear constraints. We
formulate a geometric programming (GP) problem with these
constraints to maximize the bounds on the values of parasitics.
These bounds are then mapped to the layout geometric constraints.

Input Layout Circuit
Performance

Constraints
due to

Parasitic

Parasitic Extraction

Parasitic Bounds

Map Parasitic Bounds to
Geometric Constraints

Sensitivity Computation

Optimization

Parasitic Constraint
Generation Engine

Fig. 2: Flow of parasitic dictated geometric constraints generation.

3.1. Extraction of Input Layout Parasitics
The interconnect parasitics in the input layout offer guidelines for

constraining the parasitics in the target layout. The resistive and
capacitive parasitics are expressed in terms of length, widths and

spacings of the wires. These geometries are in turn stated in terms of
the variables associated with the edges of the layout rectangles. Our
parasitic extractor expresses resistances, capacitances and coupling
capacitances in terms of these variables.
3.2. Sensitivity-Based Bounds for Parasitics
 Numeric bounds on the parasitics are computed such that the
parasitic values below these bounds would guarantee desired circuit
performance [5]. Consider a set of circuit performances { Fi }, where
i=1..M, and a set of parasitics { Pj } where j=1..NP. Let { Fi-nom }
be the set of nominal values of the performance parameters defined
in absence of layout parasitics. Our objective is to generate bounds
on the set of parasitics { Pj } of the form.

PK = PL (3)
 PK ≤ PK-Bound (4)

Eq. (3) corresponds to matched parasitics and Eq. (4) represents
maximum bound on a parasitic. The parasitic values are bounded
such that a change ∆Fi in the performance from the nominal value
lies within an acceptable range. This is mathematically defined as

max nomi i i iF F F F+
− −∆ ≤ ∆ ∀ ≥ (5)

max nomi i i iF F F F−
− −∆ ≥ −∆ ∀ ≤ (6)

The generation of constraints on parasitic values is based on the
sensitivity of the performance parameters with respect to the
parasitics in the circuit. The sensitivity of a performance parameter
Fi with respect to a parasitic element Pj at Fi-nom is defined as

0j
ij i j P

S F P
=

 = ∂ ∂ / (7)

From the maximum allowable deviations of the performance
parameters and the sensitivity of the performance parameters to the
parasitics, a set of linear constraints are generated as follows.

max nom
1

P

ij j i i i
j

N
S P F F F+ +

− −
=

≤ ∆ ∀ ≥∑ (8)

max nom
1

P

ij j i i i
j

N
S P F F F− −

− −
=

≤ ∆ ∀ ≤∑ (9)

where ij ijS S+ = if 0ijS ≥ and 0ijS+ = if 0ijS < , ij ijS S− =− if

0ijS ≤ and 0ijS− = if 0ijS > .

 Larger parasitic bounds result in geometric constraints that are
easier to be satisfied during layout generation. This computation of
bounds on the parasitics is modeled as a GP problem of the form

1 2
1 2

N
Nmin P P P αα α −− − ... (10)

subject to the linear constraints in Eq. (8) and (9). Here, the α i are
positive constant weights given according to the relative magnitude
of the corresponding parasitics in the input layout.
3.3. Linearized Geometric Constraints Generation
 Once the bounds on each individual parasitic values are obtained,
they need to be translated to geometric constraints on each section of
the wires. Consider the interconnect wire shown in Fig. 3(a). Let R1B
and C1B be the maximum resistance and capacitance of its leftmost
section. Then the following equations relate the width and lengths of
the section to the parasitic bounds.

 x2 – x1 ≤ (R1B / rSH) .(y4 – y3) (11)
 x2 – x1 ≤ C1B / (2CSW + CA . (y4 – y3)) (12)

The width and length of the section and the bounds on the
sections resistance and capacitance define a parasitically feasible
region shown shaded in Fig. 3(b). In addition, there is a range of
length and width of the wire that would allow the target layout to be
constructed. This geometrically feasible region is illustrated with the

 646

dotted area. Our objective is to define the geometric upper bounds
due to parasitics so as to maximize the overlap between
geometrically feasible and parasitic feasible regions.

(a) (b)

Min length

Min width

Res bound

Cap bound

X2 – X1

Y4
 –

 Y
3

X4

X1

X2 X3

Y1

Y2

Y3

Y4

Fig. 3: (a) Sections of a wire with current directions. (b) The feasible
region defined by the resistive and capacitive bounds for the leftmost
horizontal section of the wire is shaded. The dotted region represents the
corresponding geometrically feasible region.
 Initial geometric feasible region for each wire section in the
horizontal direction is obtained by two runs of longest path
algorithm on the constraint graph, from the left to the right and from
the right to the left. At this stage, the constraint graph does not
include the parasitic constraints. The minimum widths are estimated
based on the locations of the layout rectangles.

The generation of constraints on dimensions of wires requires
fitting the largest rectangle in the overlap regions of geometric and
parasitic feasibility. Let Li and Wi be the lengths and widths of the ith
wire section. Let RB and CB be the bounds on the resistance and
capacitance of the corresponding net and Li_min and Wi_min be the
geometrically feasible minimum sizes. Then the maximum overlap
between geometric and parasitic feasible regions can be formulated
as the following GP problem and solved with the optimization
library of [6].

min ∑∑∑∑ (Li .Wi)-1 (13.1)
subject to: ∑∑∑∑ rSH . Li/Wi < RB (13.2)

∑∑∑∑ (CA . Li . Wi + 2 cSW . Li) < CB (13.3)
Li > Li_min , Wi > Wi_min (13.4)

4. LAYOUT GENERATION
After the generation of the geometric upper and lower bound

constraints due to parasitics, a horizontal and a vertical constraint
graph are constructed with constraints due to design rules,
connectivity, symmetry and parasitics. Here, we explain our
algorithm with the horizontal constraint graph. If all the horizontal
constraints are feasible, then the longest path algorithm can be
employed directly to solve the compaction problem [3]. Upon its
completion, the longest path algorithm finds the x-positions of the
left and right edges of all layout rectangles. However, some
constraints due to the parasitics may be infeasible because of two
reasons. First, the geometric feasible region for a wire section may
change due to parasitics in other layout rectangles. Second, the
bounds on the parasitics may be too tight to be accomplished.

Geometric upper bounds due to parasitics of the form of Eq. (2.1)
show up as negative weight arcs from the node for the right
rectangle edge to the node for the left rectangle edge. These arcs,
along with design rule left-to-right arcs can produce cycles. Positive
cycles occur for small negative arc weights that render the sum of all
arc weights of the cycle greater than zero. The longest path
algorithm fails to terminate in presence of positive cycles as the
layout dimension increases to infinity.

The resolution of positive cycles from the constraint graph is
essential for the modified compaction problem. Resolution refers to
reassignment of the constraint weights such that the sum of all arc
weights is zero or less. We employ a combination of longest path
and LP based constraint refinement to solve this problem. First, the

algorithm identifies the positive cycles during a longest path run and
then extracts the constraints due to parasitics in the positive cycle. It
then resolves the positive cycle by refining the constraints due to
those parasitics. The algorithm is shown in Fig. 4. Here, care needs
to be taken so that resolution of one positive cycle does not
introduce other positive cycles in the graph. This is based on the
following observation.
Obs.: Increasing the magnitude of a negative arc weight does not
introduce a positive cycle in other parts of the constraint graph.

We increase the magnitude of the negative arc weights
corresponding to parasitics in order to resolve the positive cycles.
This amounts to increasing the geometric upper bound due to
parasitics. We proceed by resolving one positive cycle at a time by
reassigning parasitic-dictated geometric constraints. This is
accomplished by formulating an LP problem.

Converged

YesYesYesYes

NoNoNoNo

Update Parasitic Constraints

Collect Parasitic Constraints
Causing Positive Cycles

Target Layout

Solve LP

Longest Path Algorithm
for One Dimension

Converged Both
Directions

Repeat

NoNoNoNo

YesYesYesYes

Constraint Set

Switch
Direction

Fig. 4: Algorithm for layout generation with parasitic constraints.

Consider a positive cycle in the horizontal constraint graph with
N negative weight arcs due to parasitics. Let Ti represent the variable
corresponding to the ith negative weight arc. Let Ri and Ci be the
resistance and capacitance of the corresponding wire section. The
reassignment of arc weights can be formulated as the following LP
problem.

min ∑∑∑∑ αiRi + βiCi (14.1)
subject to: ∑∑∑∑ Ti > Positive_cycle_weight (14.2)

 Ti < KiRi (14.3)
Ti < LiCi (14.4)

where Ti, Ri and Ci are the decision variables while αi, βi,

i Width SHK y r= / and 1 2i SW A WidthL (c c y)= +/ . are constants.

The constraint graph is updated with the new weights obtained
upon optimization and the algorithm is applied iteratively until all
positive cycles are resolved. After the resolution of all positive
cycles, the longest path algorithm settles to find the exact positions
and sizes of all layout rectangles in the horizontal direction. The
algorithm is then applied on the vertical constraint graph.
 After the longest path algorithm settles in both directions, the
parasitic values in some wire sections may still be above the bounds.
This can be refined by relaxing these parasitic bounds by allocating
some ‘unused’ parasitics from other wire sections.

5. RESULTS
The algorithm has been incorporated into IPRAIL. We present

the results of parasitic-driven retargeting on a two-stage Miller-
compensated operational amplifier (opamp) shown in Fig. 5 and a
single-ended folded cascode opamp shown in Fig. 6. The opamps
were designed initially in TSMC 0.25um CMOS technology and
retargeted to TSMC 0.18um with new specifications.

The parasitics that affect circuit performances are indicated in Fig.
5 and Fig. 6. The bounds on the parasitic resistance and capacitance

 647

were obtained from sensitivity-based optimization and are listed in
the 2nd

 columns of Table 1. With these bounding values for the
parasitics, the target layouts for the two-stage and folded-cascode
opamps were obtained through parasitic-aware retargeting (PAR).
The layouts were also retargeted without parasitic considerations
(RWOP) for comparison. Parasitic values extracted from the target
layouts for the respective cases are shown in Table 1. Here, the
resistance values include metal, contact and gate-poly resistance.
For multi-terminal nets, we report the sum of the parasitics of the
component two-terminal nets. PAR achieves parasitic bounds for
both designs.

M4 M5

M1 M2

M3 M6

M7

M8

cur1

gnd

Vdd

in1 in2 Cc
out

Rc n10

n2

n3

Fig. 5: Two-stage opamp: Nets n2, n3 and n10 are parasitic-sensitive.

cur2

cur1

M13 M3

M12

M2
M7M6

M9

M11

M8

M10

M4

M1

M5

M14
in1 in2

Vbias cur3
out

gnd

Vdd

n5 n7

n8

Fig. 6: Folded-cascode opamp: Nets n5, n7, n8 are parasitic- sensitive.
Table 1: Parasitic bounds obtained from sensitivity analysis, and
parasitic values measured from layouts obtained by PAR and RWOP.

Two-stage Opamp Cascode Opamp
 Bounds PAR RWOP Bounds PAR RWOP

R2 (Ω) 142.0 135.04 230.52 R5 (Ω) 53.3 36.25 36.39
R3 (Ω) 40.0 33.65 36.58 R7 (Ω) 57.6 38.38 38.57
R10(Ω) 51.4 49.08 286.9 R8 (Ω) 114.0 85.65 130.81
C2 (fF) 40.0 6.42 7.83 C5 (fF) 8.0 4.12 4.39
C3 (fF) 98.2 4.32 5.01 C7 (fF) 9.4 5.09 5.14
C10 (fF) 143.0 6.01 7.32 C8 (fF) 19.6 6.43 11.98

Table 2: Performances of layouts obtained by PAR and RWOP. The
two-stage opamp layout obtained by RWOP has poor performance.

Layout Gain
(dB)

BW
(MHz)

PM
(°°°°)

GM
(dB)

Power
(mW)

Area
(um2)

Perf. Thresh 62 100 90 10 - -
PAR 64.14 101.24 94.93 11.17 3.446 2684

Two-stage
Opamp

 RWOP 64.02 361.34 69.32 6.08 3.445 2621
Perf. Thresh 60 60 60 10 - -
PAR 62.61 63.48 60.06 10.29 0.877 2313 Cascode

Opamp
RWOP 62.60 63.41 60.05 10.40 0.87 2313

Fig. 7: Gain-bandwidth plot for two-stage opamp. The dotted curve is
obtained for the layout generated by RWOP. The compensation zero is
pushed inside the unity-gain frequency and leads to stability issues.

The simulation results for the two designs obtained with netlists
extracted from the layouts are shown in Table 2. PAR achieves the
desired specifications for both designs. Retargeting of the cascade
opamp starts with a good template resulting in minor effects due to
parasitics. The two-stage design shows significant differences in the

stability measures for the layouts obtained by PAR and RWOP. For
the two-stage layout obtained by RWOP, a zero is pushed within the
unity-gain bandwidth leading to a comparatively unstable design as
shown in Fig. 7.
Table 3: PAR and RWOP statistics for two-stage and cascode opamps.

Two-stage Opamp Cascode Opamp PAR RWOP PAR RWOP
Nodes in Constraint-Graph 954 1020
Design Rule, Sym Constraints 7398 9914
Parasitic Constraints Arcs 176 0 116 0
Pos. Cycles Resolved - hor /ver 2 / 10 - 0 / 4 -
Template Extraction Runtime 4.9 s 5.9 s
Layout Generation Runtime 10.1 s 4.6 s 9.0 s 4.5 s

The two-stage opamp layout obtained by PAR is shown in Fig. 8.
Table 3 reports the statistics on the number of constraint graph nodes,
number of design rule, symmetry and parasitic arcs for the two-stage
and cascode opamps for PAR and RWOP. The two-stage opamp
requires 12 positive cycle resolutions after generation of initial
geometric constraints due to parasitics. The cascode opamp requires
4 positive cycle resolutions in PAR. For both designs, the target
layout is generated within15 seconds of CPU time.

Fig. 8: Two-stage opamp layout generated by PAR.

6. CONCLUSIONS
In this paper, we presented an algorithm that enables explicit

parasitic control in template-based retargeting of analog layouts.
Bounds on layout parasitic values are obtained based on sensitivity
analysis of circuit performance. Geometric programming is then
employed to map the bounds on parasitic values to constraints on
layout geometry. The target layout is then generated by an iterative
longest path method with potential refinement of the parasitic
dictated geometric constraint through linear programming. The
algorithm has been incorporated into a computer-aided design tool
called IPRAIL. This has been employed to retarget several analog
layouts across technologies in a few seconds of CPU time.

REFERENCES
[1] B. Razavi, Design of Analog CMOS Integrated Circuits,
McGraw Hill, 2001.
[2] K. Lampaert, G. Gielen and W. Sansen, “A performance- driven
placement tool for analog integrated circuits”, IEEE Jour. Solid State
Circuits, vol. 30, pp. 773-780, Jul. 1995.
[3] S. Bhattacharya, N. Jangkrajarng, R. Hartono and C.-J. R. Shi,
“Correct-by-construction layout-centric retargeting of large analog
designs”, Proc. IEEE/ACM Design Automation Conference, Jun.
2004, pp. 139-144.
[4] R. Okuda, T. Sato, H. Onodera and K. Tamaru, “An efficient
algorithm for layout compaction problem with symmetry
constraints”, Proc. IEEE/ACM Int. Conference on Computer-
Aided-Design, Nov. 1989, pp. 148-151.
[5] U. Choudhury and A. Sangiovanni-Vincentelli, “Use of
performance sensitivities in routing analog circuits”, Proc. IEEE Int.
Symp. Circuits and Systems, vol.4, May 1990, pp. 348-351.
[6] Mosek manual, http://www.mosek.com/documentation.html.

