
Faster and Better Global Placement
by a New Transportation Algorithm

Ulrich Brenner
Research Institute for Discrete Mathematics

University of Bonn
Lennéstr. 2, 53111 Bonn, Germany

brenner@or.uni-bonn.de

Markus Struzyna
Research Institute for Discrete Mathematics

University of Bonn
Lennéstr. 2, 53111 Bonn, Germany

struzyna@or.uni-bonn.de

ABSTRACT
We present BonnPlace, a new VLSI placement algorithm that
combines the advantages of analytical and partitioning-based
placers. Based on (non-disjoint) placements minimizing the to-
tal quadratic netlength, we partition the chip area into regions
and assign the circuits to them (meeting capacity constraints)
such that the placement is changed as little as possible. The
core routine of our placer is a new algorithm for the Trans-
portation Problem that allows to compute efficiently the cir-
cuit assignments to the regions. We test our algorithm on a set
of industrial designs with up to 3.6 millions of movable objects
and two sets of artificial benchmarks showing that it produces
excellent results. In terms of wirelength, we can improve the
results of leading-edge placement tools by about 5 %.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Placement and Routing

General Terms
Algorithms, Design

Keywords
VLSI-Placement, Global Placement, Transportation Problem

1. INTRODUCTION
Placement is a crucial step in the physical design of VLSI

chips. State-of-the-art VLSI chips consist of several millions
of movable objects (circuits) that have to be placed disjointly
in a given area. These circuits are connected by nets, and
it is important for the complete design process to compute
efficiently a placement that minimizes the total interconnect
length and makes routing and timing optimization possible.

Often the placement task is divided into two parts: global
placement where the circuits are spread over the chip area
(without meeting the disjointness constraints exactly) and le-
galization (or detailed placement) where the circuits are moved
to their final positions. Here, we consider global placement.

Many global placement algorithms apply a partitioning
strategy. The main idea is to divide recursively the chip area
into smaller parts and assign the circuits to them. Finally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

when the regions are small enough, a legalization algorithm
can be run. A widely used optimization goal for partitioning
of the circuit sets is the minimization of the total cut size,
i.e. the number of nets with pins in different parts (see, for
example, [1], [6], [8], [9], [14]).

Other approaches ([17], [26]) combine partitioning-based
placement with quadratic optimization. The algorithm pre-
sented in [26] computes a placement of the circuits that mini-
mizes total quadratic netlength (ignoring disjointness) by solv-
ing a quadratic program (QP), and then asks for an assignment
of the circuits to the subregions such that the total movement
is minimized if we move each circuit to its region.

A placement approach without any partitioning steps is the
so-called force directed placement ([13], [24]): Starting with
the solution of a QP, repulsing forces between the circuits are
computed and the QP formulation is modified according to
these forces. This method is iterated until the overlaps are
small enough.

Our Contribution
BonnPlace combines quadratic optimization and top-down

recursive partitioning. It applies ideas presented in [26] but
contains a number of new contributions that improve both run-
ning time and quality of result:

• We describe a partitioning routine that can handle any
number of subregions in each partitioning step. In addi-
tion, the subregions may have any arbitrary shape, and
also the costs for moving a circuit to a subregion can be
chosen arbitrarily. By introducing a new algorithm for
the Transportation Problem, we will show how such
a partitioning with minimum cost can be computed effi-
ciently. So, the partitioning routine is much more flexible
than the one described in [26] that can handle only four
quadrands and has to use the L1-distance to measure the
movement of a circuit.

• We will show how the new Transportation Algorithm
can be used as a core routine for a partitioning based
placement algorithm. Exploiting the flexibility of the ap-
proach, accurate models of the cost for moving a circuit
to a region can be used. Even movements that would be
necessary in further partitioning steps can be taken into
consideration in advance.

• In addition, we will use the Transportation Algo-
rithm for local optimization steps that help improving
the quality of result.

• We introduce a new hybrid net model which accelerates
the QP computation significantly.

• We describe how time-consuming parts of our algorithm
can be divided into subproblems that can be solved by
parallel computation. This enables us to handle even the
largest designs efficiently.

591

35.3

The remainder of the paper is organized as follows: Section
2 contains an overview of the entire algorithm. In Section 3,
our new hybrid net model and an efficient implementation are
explained. In Section 4, we describe the Transportation
Problem and our new algorithm for unbalanced instances of
this problem. Finally, Section 5 contains our experiments.

2. OVERALL ALGORITHM
We partition both the chip area and the set of circuits re-

cursively by horizontal and vertical cut lines. Before each as-
signment of the circuits to subregions, we compute locations
of the circuits in their regions such that quadratic netlength is
minimized.

Let C denote the set of all circuits to be placed, and for a
region r let C(r) denote the subset of C assigned to region r.
The general scheme of our placer is similar to other partition-
based algorithms [17], [26]) and can be described as follows:

Partitioning-Based Placement

©1 Initialization:
window set := {chip area}.
C(chip area) := C.

©2 WHILE (window size is big enough) {
Solve a QP to place circuits with minimum
quadratic netlength inside their windows.
Partition the windows into subwindows by
adding cut lines
FOR (each window r in window set) {

Multisection(r, C(r)).
}

Repartitioning.
}

©3 Legalization.

Multisection(r,C(r)):

©1 Let {r1, . . . , rk} be the set of subwindows of r.
©2 window set := window set\{r} ∪ {r1, . . . , rk}.
©3 Apply the Transportation Algorithm to partition

C(r) into k subsets C(r1), . . . , C(rk) meeting the
capacity constraints of the regions and minimizing
the total movement cost.
Move circuits into the corresponding windows.

The core routine of our placer, the Transportation Al-
gorithm that computes the assignment of a set of circuits to
a set of regions (meeting capacity constraints and minimizing
movement cost) will be explained in Section 4.

Multi-terminal nets are represented by net models. Almost
all quadratic placers (e.g. [26], [5]) replace each multi-terminal
net by a clique or a star. It is easy to see that clique and
star are equivalent by adjusting net-weights if there are no
additional constraints. This fact has also been exploited in [26]
and [23]. It is reasonable to use star instead of clique (at least
for bigger nets) because using the star model leads to sparse
matrices in the equation system, while clique may contribute
1
2
|N |(|N |−1) non-zero entries for a net N . Additional problems

occur, if we introduce linear constraints on circuit positions
given by the partitioning. In a partitioning step, we assign
each circuit to a certain rectangular window. We force each
circuit to stay in its window in the QP solution by splitting the
nets at the borders of the windows. In the computation of the
x-coordinates, we split all nets at the vertical cut lines (while
the horizontal cut lines are only considered in the computation
of the y-coordinates). For example, in Figure 2 (a), the edge

movable nodeartificial node

v

w

1xx0

Steiner node ������������

�������� �������� ������������	�		�	

������������

�����������
�����������
�����������
�����������
���

�����������
�����������
�����������
�����������
���

������������������������
�� ���

���
������������������������������
��
�� �� � � !�!�!

movable nodeartificial nodeSteinernode

6 2 12 6 7

"�""�"#�##�#
$�$$�$%%&�&&�&'�''�' (�((�()�))�)

*�**�**�*+�++�++�+
,�,�,,�,�,,�,�,-�-�--�-�--�-�-

(a) (b)

Figure 1: The star model and the new hybrid model

between pin w and the Steiner node is divided into two edges:
one edge between the Steiner node and a fixed node at the
coordinate x0, and one edge between node w and a fixed node
at the position x1. This way, the QP solution will place each
circuit between the boundaries of the window it is assigned to.
However, if we split edges at cutlines, the star model and the
clique model are not equivalent any more. Applying the star
net model to such constrained problems can even be misleading
as Figure 2 (a) shows: the position of v in a QP solution would
not change if we removed w from the net. This inaccuracy of
modeling leads to bad results when using the star net model
instead of clique for a large number of nets, as experiments
have shown. In Section 3, we will describe how to avoid such
problems without loss of performance.

During global placement, the placement of the circuits is im-
proved by a Repartitioning strategy that allows circuits to
leave their windows. In a Repartitioning step, we consider
a 2 × 2- or 3 × 3-window (i.e. sets of 4 or 9 regions that form
a square), and compute new locations for the circuits in the
window by minimizing quadratic netlength. Then, we run the
partitioning method on the set of regions in the window (us-
ing the new locations). We replace the old placement in that
area by this new placement if the netlength has improved. We
run such a repartitioning step on each window and repeat the
whole loop if it leads to a significant improvement. The repar-
titioning on 2 × 2-windows is faster while the repartitioning
on 3 × 3-windows generally produces better results because of
the slightly more global view. Experiments have shown that
regarding larger windows than 3 × 3 increases drastically the
running time but does not produce better improvements. Fig-
ure 2 shows an example for repartitioning on a 3 × 3-window.
The circuits in this part of a chip are placed according to a
QP solution, and their colors indicate the window they are as-
signed to; e.g., the darkest circuits are assigned to the window
in the center.

Figure 2: A multisection example on 9 regions

We call each iteration of the main loop of the algorithm a
level. The main loop of our algorithm stops when the windows
are “small enough”. For row based designs, it is reasonable to
stop the global placement loop when each window is a part of
a circuit row that does not exceed a predefined length. Ob-
viously, the number of levels depends on the number of hori-
zontal and vertical cut lines that are inserted in each level. In
our standard implementation we add one new cutline between

592

two old cutlines in each of the early levels (so each window
is partitioned into 2 × 2-subwindows). The Transportation
Algorithm would allow to add more horizontal or vertical
cutlines in one level which could drastically reduce the number
of levels, but then the running time for Multisection would
increase and, as experiments show, the result would get worse.
However, in the last levels, when we have already a quite good
spreading of the circuits, we can partition each window by two
horizontal and one vertical cutlines without losing anything in
terms of wirelength. For row-based designs, this helps reducing
the number of levels.

To estimate the cost d(c, r) for moving circuit c to region r,
it is reasonable to take the distance between the position of c
and the closest position in r circuit c could be placed at. Due
to blockages in the chip area this distance can be significantly
different from the distance between c and r. If many circuits
are assigned to a region r, not all of them can be placed at the
closest position in r. Therefore, we may have a look forward
into the next level: We first partition each subwindow r into
smaller regions that will occur in the next level and assign
the circuits to these smaller regions. Then, we will assign a
circuit to r if it was assigned to a subregion of r. This trick
can improve the result especially in the first levels because we
see in advance if a large movement inside a region r will be
necessary in the next level.

After global placement, a legalization algorithm that re-
moves the remaining overlaps has to be called. For our experi-
ments, we apply the flow-based legalization approach described
in [7] in order to obtain legal placements.

3. ACCELERATING THE ALGORITHM
The main part of BonnPlace runtime is spent solving the

QP and computing Repartitioning. We will describe in this
section how these steps can be done efficiently.

3.1 Hybrid Net Model
We present a new net model, equivalent to clique, even in the

presence of linear constraints, but leading to sparse matrices.
The introduction of this new net model has a remarkable im-
pact on runtime improvement and it is more memory-efficient
than clique.

The hybrid net model consits of a vertical and a horizon-
tal component, which can be computed independently. Thus,
we restrict our description to the horizontal part, the vertical
component works analogously.

Assume we are given a set P of intervals defined by the verti-
cal cut lines. For each net N and each interval P = [lP , uP] ∈ P
let NP denote the set of pins in N whose x-coordinates have
to be placed within P . Let λ(P,N) be the number of pins of N
left to lP and ρ(P,N) right hand to uP . We define:

Hx(N,P) :=
1

|N | − 1

.
P∈P

/
2 · |NP | · STAR(NP)

+
.

q∈NP 0 λ(P,N)(xq − lP)2 + ρP (xq − u(P,N))
2 132

,

where STAR(NP) is the quadratic star net model applied to
pins in NP , and for a pin q, xq is its x-coordinate. An example
for the hybrid net model with the factors λ(P,N), ρ(P,N) for each
(horizontal) part is shown in Figure 2 (b).

Using the above net model preserves all desirable matrix
properties as positive definiteness, diagonal dominance and
symmetry, but leads to same results as clique and maintains
convexity [21]. Moreover, the QP matrix becomes sparse and
can be decomposed along boundaries into smaller parts. Each
of the resulting sub-QPs can be computed separately.

This decomposition of the matrices has an important impact
on QP-computation runtime. We are able to shorten the run-

time of the entire placement algorithm by a factor of 2 due to
this net model changes.

3.2 Parallelization
As each partial QP in an interval can be computed without

any external information, we evidently can do it in parallel. A
thread-pool of jobs performs the calculation and achieves re-
markable speed-ups, which already on (8×8) windows exceeds
3.9 when using 4 CPUs and becomes even better in later QP.

repart_part1

1 2

4 3

Figure 3: Parallelization of Repartitioning

For another part of the algorithm, the Repartitioning, we
propose a geometric parallelization. Due to independent ver-
tical and horizontal splits we cannot simply perform the par-
allelization on two disjoint windows for each pair. Hence, we
divide the entire chip into quarters and perform the compu-
tation on the diagonally opposite parts simultaneously. For
example, repartitionings in the upper right quadrant 3 in Fig-
ure 3 can be calculated in parallel with any window in the lower
left area 1. Applying this strategy, we can gain about 40% of
wall clock time for this part compared to simple parallelization
of the QPs only.

4. TRANSPORTATION PROBLEMS
In this section, we will describe how the partitioning step

that assigns circuits to subregions can be computed efficiently.
For each circuit c and each region r we are given costs d(c, r)
for moving c to r, and we ask for an assignment of the circuits
to the regions with minimum total costs such that no region
contains more circuits than fit into it.

Even for two regions it is NP -complete to decide if a solution
exists, since this problem contains the NP -complete Parti-
tioning Problem. Therefore, we relax the assignment prob-
lem by allowing to assign circuits fractionally to the regions.
Let C be a set of circuits with sizes size(c) for each c ∈ C and
R be a set of regions with capacities cap(r) for each r ∈ R, and
let d(c, r) be the cost for moving circuit c to region r.

Then, we compute a fractional assignment of the circuits to
the regions by solving the Transportation Problem. This
can be formulated as a minimum-cost flow problem:

Transportation Problem

Instance: • A directed graph G with vertex set V (G) =
C∪̇R∪̇{s, t} and edge set E(G) = (C ×R)∪
({s} × C) ∪ (R × {t}).

• Supply and demand values b : V (G) →4
with b(s) = 5

c∈C
size(c) = −b(t) and

b(c) = b(r) = 0 for c ∈ C and r ∈ R.

• Edge capacities u : V (G) →
4

+ with
u((s, c)) := size(c), u((r, t)) := cap(r), and
u((c, r)) = ∞ for c ∈ C and r ∈ R.

• Edge costs u : V (G) →
4

+ with cost(s, c) =
0, cost(r, t) = 0 and cost((c, r)) = d(c, r) for
c ∈ C and r ∈ R.

Task Find a minimum-cost flow f : E(Gi) →
4

+ .

593

Of course, a positive flow f((c, r)) > 0 on edge (c, r) means
that a fraction of size f((c, r)) of circuit c is assigned to region r.
We may assume that 5

c∈C

size(c) ≤ 5
r∈R

cap(r) since otherwise

no solution could exist. From now on, let k := |R| and n := |C|.
For a solution f of the Transportation Problem, let Sf

be the set of circuits which are not completely assigned to one
region. Given an optimum solution f of the Transportation
Problem and the set Sf we can easily converted f in time
O(k · |Sf |) into an optimum solution f ′ such that |Sf ′ | < k (see
[25]). Such an “almost integral” solution is good enough for
our aims because the remaining at most k − 1 circuits can be
assigned by any greedy strategy without changing the result
too much.

Note that we have capacities only on edges incident to the
artificial nodes s and t, so our instances can be regarded as
uncapacitated. With the algorithm described in [19], unca-
pacitated Minimum Cost Flow Problems can be solved
in time O(|V (G)|(log |V (G)|)(|E(G)| + |V (G)| log(|V (G)|))) =
O((n2k + nk2 + (n + k)2 log(n + k)) log(n + k)) which is
O(n2 log2 n) if k is fixed. However, for VLSI instances with
several millions of circuits, the algorithm is much too slow,
since its running time grows more than quadratically with n.
There are other algorithms that exploit the special structure
of the Transportation Problem. In [22] an algorithm is
presented that solves the Transportation Problem in time
O(nk2 log2 n) which is O(n log2 n) for constant k. So far, this
was the best known algorithm for such unbalanced Trans-
portation Problems. For constant k, we will improve this
result by a factor of log n, as our algorithm will solve the
Transportation Problem in time O(nk2(log n + k2 log2 k)).

The idea of the algorithm is based on the well-known Suc-
cessive Shortest Path Algorithm (see standard textbooks,
e.g. [18], for an analysis and a proof of correctness). For our
instances, the Successive Shortest Path Algorithm can
be described as follows:

Successive Shortest Path Algorithm

Input: An instance (G, b, u, cost) of the Transporta-
tion Problem as constructed above.

Output: A minimum cost flow f in (G, b, u, cost).

©1 f(e) := 0 for all e ∈ E(G).

©2 Let C = {c1, . . . , cn}.

©3 FOR(i = 1 ; i ≤ n ; i + +)
WHILE(f((s, ci)) < u((s, ci)))

Find a shortest ci-t-path P in Gf .
γ := min{mine∈E(P) uf (e), u((s, ci))}.
Augment f along P ∪ (s, ci) by γ.

Here, Gf is the residual graph of G for the fow f and uf (e)
denotes the resisual capacity of an edge e ∈ E(Gf) (the nota-
tion follows [18]).

We call an iteration of the main loop in step ©3 a phase
of the algorithm. In order to bound the running time of the
algorithm, we have to bound the running time of a phase. How-
ever, even in the case of integer edge capacities, the number
of augmentations for a single vertex c ∈ C can be as big as
u((s, c)) (if γ = 1 in each augmentation), so a single phase can
have a running time that is exponential in the input size. Let
f0(e) := 0 for e ∈ E(G), and let fi be the flow at the end of
phase i. In order to get a polynomial running time, we can
replace a complete phase of the algorithm by computing a ci-t
flow of value u((s, ci)) and minimum cost in the residual graph
Gfi−1

. This method yields a polynomial running time, but

Gfi−1
will be as big as G. Fortunately, if we sort the nodes in

C such that u((s, c1)) ≥ u((s, c2)) ≥ · · · ≥ u((s, cn)), we do not
have to consider the complete residual graph Gfi−1

but a small
subgraph Gi whose size does not depend on n. The vertex set
V (Gi) contains R, ci, t and:

• For each vertex ci′ ∈ C with i′ < i, such that there is
a vertex rj ∈ R with 0 < fi((ci′ , rj)) < size(ci′): ci′ ∈
V (Gi).

• For a vertex r ∈ R let M i
r be the set of all vertices c ∈ C

with fi((c, r)) = u((s, c)). For each pair of vertices r, r′ ∈
R with M i

r 6= ∅, V (Gi) contains an arbitrary c ∈ M i
r with

cost((c, r′)) − cost((c, r)) =

min{cost((c′, r′)) − cost((c′, r)) : c
′ ∈ M

i
r}.

(i.e. c is a cheapest element of M i
r, if we have to move a

circuit from r to r′).

The edge set E(Gi) contains the following edges:

• ((R × {t}) ∪ ({t} × R)) ∩ E(Gfi−1
) ⊂ E(Gi).

• (({ci} × R) ∪ (R × {ci})) ∩ E(Gfi−1
) ⊂ E(Gi).

• For each ci′ ∈ C with i′ < i such that there is a rj ∈ R
with 0 < fi((c

′
i, rj)) < u((s, ci)): (({ci′} × R) ∪ (R ×

{ci′})) ∩ E(Gfi−1
) ⊂ E(Gi).

• Let r, r′ ∈ R be two vertices with M i
r 6= ∅, and let c ∈

M i
r ∩V (Gi) be the corresponding vertex in V (Gi). Then

{(c, r), (r, c), (c, r′), (r′, c)} ∩ E(Gfi−1
) ⊂ E(Gi).

The size of Gi depends on the number of vertices ci′ ∈ C for
which there is a vertex r ∈ R with 0 < fi((ci′ , w)) < u((s, ci′)).
However, as mentioned above, if there are more than k − 1
vertices of that type then it is easy to find a flow f ′

i of the
same cost with at most k − 1 vertices of this type. After each
phase of the algorithm we will call a subroutine Adjust(fi)
that makes sure that there are at most k − 1 vertices of that
type.

Therefore, we have |V (Gi)| ≤ k+1+1+(k−1)+k ·(k−1) =
k2+k+1 and |E(Gi)| ≤ 2(k+k+(k−1) ·k+2k ·(k−1)) = 6k2.
Note that the size of Gi does not depend on n but only on k.

Transportation Algorithm

Input: An instance (G, b, u, cost) of the Bipartite
Minimum Cost Flow Problem

Output: A minimum cost flow f in (G, b, u, cost).

©1 f(e) := 0 for all e ∈ E(G).

©2 Sort the set of nodes in C such that C = {c1, . . . , cn}
with u((s, c1)) ≥ u((s, c2)) ≥ · · · ≥ u((s, cn)).

©3 FOR(i = 1 ; i ≤ n ; i + +)
Construct Gi.
Compute a minimum cost flow g in
(Gi \ {s}, b′, uf |E(Gi), costf |E(Gi)) where
b′(ci) = u((s, ci)), b′(t) = −b′(ci) and
b′(v) = 0 for v ∈ (C ∪ R) ∩ V (Gi).
Augment f by g.
Set f((s, ci)) = u((s, ci)).
Adjust(f).

594

Chip Circuits Opt Result Gap Time

Peko01 12 506 0.82 0.97 18.3 % 0:01
Peko02 19 342 1.27 1.48 16.7 % 0:02
Peko03 22 853 1.51 1.78 17.8 % 0:02
Peko04 27 220 1.76 2.05 16.5 % 0:02
Peko05 28 146 1.95 2.27 16.2 % 0:02
Peko06 32 332 2.07 2.43 17.5 % 0:02
Peko07 45 639 2.89 3.37 16.7 % 0:03
Peko08 51 023 3.15 3.71 17.5 % 0:04
Peko09 53 110 3.65 4.24 16.2 % 0:04
Peko10 68 685 4.75 5.50 15.7 % 0:07
Peko11 70 152 4.72 5.49 16.2 % 0:06
Peko12 70 439 5.02 5.84 16.3 % 0:06
Peko13 83 709 5.89 6.85 16.3 % 0:07
Peko14 147 088 9.03 10.56 16.9 % 0:10
Peko15 161 187 11.60 13.46 16.0 % 0:13
Peko16 182 980 12.50 14.63 17.0 % 0:17
Peko17 184 752 13.50 15.72 16.4 % 0:17
Peko18 210 341 13.20 15.39 16.6 % 0:18

Table 1: The results for PEKO test suite 3.

Theorem 1. The Transportation Algorithm solves the
Transportation Problem in time O(nk2(log n+k2 log2 k)).

Proof: (Sketch) Correctness: The algorithm replaces all
augmenting steps of one phase of the Successive Shortest
Path Algorithm by one min-cost flow computation. The
only issue that remains to show for the correctness is that the
augmentation steps of a phase in the Successive Shortest
Path Algorithm can always be computed in Gi and therefore
the min-cost flow computation in a phase of the Transporta-
tion Algorithm can also be restricted to Gi. However, by
the construction of Gi and since we sorted the circuits in non-
increasing order, it is easy to see that there is, during each
phase i of the Successive Shortest Path Algorithm, al-
ways a shortest ci-t-path in the residual graph that uses only
edges in Gi.

Running time: Obviously, step ©1 can be done in time
O(nk) and step ©2 takes time O(n log n). The construction of
Gi can be done in time O(k2 log n) for each iteration if one
stores each set M i

w in k − 1 heaps: For each pair r, r′ ∈ R
with r 6= r′, we use a heap to store the elements v of M i

r

with keyr,r′(v) = cost(c, r′) − cost(c, r). Each flow can be

computed in time O 6 |E(Gi)| · log |E(Gi)| · 0 |E(Gi)|+ |V (Gi)| ·

log |V (Gi)|
187 = O(k4 log2 k), and the flow can be adjusted in

time O(k|V (Gi)|) = O(k3). To update the heaps after a flow
augmentation, there are O(k2) remove-operations (at most one
per heap) necessary. The number of insert-operations after a
flow augmentation is also O(k2): only the elements of V (Gi)
can be inserted to a heap, and for each heap that stores a set
M i

w, at most one element c′ ∈ V (Gi) for which there is a ver-
tex r′ ∈ R \ M i

r with fi−1((c
′, r′)) = u((s, c′)) can be inserted

to M i
r. Since there are at most k − 1 elements c′ ∈ V (Gi)

for which there is no r′ ∈ R with fi−1((c
′, r′)) = u((s, c′))

and each vertex can be added to at most k − 1 heaps, we
need at most O(k2) insert-operations. Since no heap contains
more than n elements, each operation can be done in time
O(log n). Therefore, the k(k − 1) heaps can be updated in
time O(|V (Gi)|k log n) = O(k2 log n). 2

The algorithm is efficient not only from a theoretical point
of view but also in practice: A run on 3.6 millions circuits and
9 regions take less than 90 seconds (on an IBM P650 with 1.45
GHz).

5. EXPERIMENTAL RESULTS
We tested BonnPlace on two sets of artificial benchmarks

and large industrial instances.

Chip Circuits Opt Result Gap Time

Peko01 125 060 8.2 9.6 17.2 % 0:08
Peko02 193 420 12.7 14.9 17.0 % 0:19
Peko03 228 530 15.1 17.7 17.2 % 0:19
Peko04 272 200 17.6 20.6 17.1 % 0:32
Peko05 281 460 19.5 22.6 15.9 % 0:30
Peko06 323 320 20.7 24.1 16.6 % 0:34
Peko07 456 390 28.9 33.6 16.1 % 0:45
Peko08 510 230 31.5 37.0 17.4 % 0:56
Peko09 531 100 36.5 42.5 16.5 % 0:58
Peko10 686 850 47.5 55.6 17.1 % 1:21
Peko11 701 520 47.2 54.8 16.2 % 1:11
Peko12 704 390 50.2 58.8 17.1 % 1:24
Peko13 837 090 58.9 68.4 16.1 % 1:44
Peko14 1 470 880 90.3 105.4 16.7 % 3:14
Peko15 1 611 870 116.0 133.6 15.1 % 3:46
Peko16 1 829 800 125.0 146.6 17.3 % 4:50
Peko17 1 847 520 135.0 156.9 16.2 % 5:06
Peko18 2 103 410 132.0 153.5 16.3 % 5:03

Table 2: The results for PEKO test suite 4.

Chip Circuits
Feng Shui 2.4 BonnPlace

BB Time BB Diff Time

IBM01 12 506 2.41 0:03 2.26 - 6.2 % 0:06
IBM02 19 342 5.34 0:05 4.93 - 7.7 % 0:10
IBM03 22 853 7.51 0:06 7.01 - 6.7 % 0:11
IBM04 27 220 7.96 0:07 8.23 + 3.4 % 0:13
IBM05 28 146 10.10 0:08 10.02 - 0.8 % 0:13
IBM06 32 332 6.82 0:10 6.55 - 4.0 % 0:13
IBM07 45 639 11.71 0:13 10.41 -11.1 % 0:20
IBM08 51 023 13.60 0:16 12.68 - 6.8 % 0:30
IBM09 53 110 13.83 0:15 13.27 - 4.0 % 0:35
IBM10 68 685 37.48 0:22 32.92 -12.2 % 0:32
IBM11 70 152 19.96 0:21 19.15 - 4.1 % 0:37
IBM12 80 439 35.57 0:23 31.90 -10.3 % 0:48
IBM13 83 708 24.95 0:16 24.31 - 2.6 % 0:48
IBM14 147 088 38.48 0:52 37.82 - 1.7 % 1:00
IBM15 161 187 52.14 1:27 49.31 - 5.4 % 1:25
IBM16 182 980 61.33 1:16 57.88 - 5.6 % 1:50
IBM17 184 752 70.60 1:44 66.65 - 5.6 % 3:19
IBM18 210 341 45.05 1:54 45.74 + 1.5 % 1:29

Average - 5.1 %

Table 3: The results for ISPD ’02 test suite.

As artificial benchmarks we used the PEKO test suites, a set
of placement instances that are generated in such a way that
an optimum placement is known (see [11]). Since our placer
needs (like any other analytic placer) at least one pre-placed
circuit or IO-pin, we used for our experiments the test suites
PEKO3 and PEKO4 which contain boundary IO-pins.

The results of our experiments are denoted in Table 1 and
Table 2. As the instances are not too big and we want to know
how close we can come to the optimum, we ran the program
with 3×3-Repartitionings on the PEKO chips. The running
times shown in the table are wall-clock times for complete runs
(including legalization) on four processors. All experiments
presented in this section were made on an IBM P650 with 1.45
GHz, and all running times are given in hours and minutes.
The numbers in Table 1 and Table 2 show that on these in-
stances our netlength differs from the optimum by about 17%.
So far, the best published results on the testsuites PEKO3 and
PEKO4 presented in [10] were approximately 20 % away from
the optimum.

The second set of artificial test cases we used for our experi-
ments are the ISPD ’02 benchmarks (see [1], [3] and [15]). They
were derived from the ISPD ’98 benchmarks (see [4]) which
were the basis for the PEKO benchmarks, too. Therefore each
chip in the ISPD ’02 benchmarks has the same number of cir-
cuits as the corresponding chip in the PEKO03 benchmarks.

595

BonnPlace

Chip Circuits Nets [26] 1 processor 4 processors 4 processors
2× 2 repart 2× 2 repart 3× 3 repart

BB Time BB Time BB Time BB Time

Jens 72 496 73 273 6.92 m 0:10 6.77 m 0:07 6.76 m 0:03 6.53 m 0:09
Christian 289 509 299 692 166.44 m 1:01 166.14 m 0:30 166.04 m 0:16 156.45 m 0:33
James 412 505 426 689 108.34 m 1:32 109.57 m 0:48 109.80 m 0:21 100.88 m 0:51
Sven 825 737 836 549 253.07 m 3:14 254.23 m 1:59 252.85 m 0:53 246.16 m 1:35
Alex 983 173 1 040 431 207.98 m 4:26 201.53 m 2:47 200.99 m 1:09 197.59 m 2:09
Sandra 1 336 370 1 390 333 340.55 m 6:54 328.65 m 3:20 328.42 m 1:24 318.36 m 3:20
Reinhardt 1 513 864 1 560 123 366.59 m 6:07 360.65 m 3:12 360.96 m 1:28 355.23 m 2:57
Nadine 1 654 756 1 704 507 375.73 m 9:33 379.40 m 4:23 382.42 m 1:58 364.05 m 3:59
Hardy 2 057 814 2 076 540 353.50 m 9:22 365.71 m 4:33 363.24 m 2:03 341.05 m 4:23
Ulrich 2 602 006 2 663 760 505.06 m 14:47 504.38 m 7:31 506.77 m 3:26 490.20 m 6:26
Fermi 3 649 013 3 663 964 378.52 m 22:11 368.98 m 11:39 368.00 m 6:14 355.51 m 8:34

Table 4: The results for the IBM instances.

For the ISPD ’02 instances, no optimal solution or nontrivial
lower bound is known, but compared to the PEKO bench-
marks, the ISPD ’02 chips are much more realistic, since they
contain macros and the connectivities reflect the net structure
of real-world chips in contrast to the PEKO benchmarks where
all nets are local nets in an optimum solution. Table 3 sum-
marizes our results for the ISPD ’02 benchmarks. For a com-
parison, we show the results of the placer “Feng Shui 2.4” as
reported in [16]. We cite the bounding box netlength (“BB”)
and the running time on an 2.5 GHz Pentium 4 workstation
(“Time”). We do not cite the results for the different Capo
versions ([1], [2]) and mPG [12] which were reported in [16] be
cause they were all outperformed by Feng Shui 2.4. For our
algorithm, the table shows the corresponding numbers for a
four-processor run with 3 × 3-Repartitioning. In addition,
we report the difference to the Feng Shui results (“Diff”). The
numbers demonstrate that we can improve the Feng Shui re-
sults on 16 of the 18 benchmarks. The average improvement
(computed via the geometric mean of the ratios) is 5.1 %. So
far, the Feng Shui-results were by far the best published place-
ments on the ISPD ’02 benchmarks.

In addition, we tested BonnPlace on a set of recent ASICs
from IBM Microelectronics. We compared to the global place-
ment approach described by [26]. Table 4 gives an overview on
our experiments on the IBM chips. The instance sizes range
from 72 000 to 3.6 millions. We ran our program with the stan-
dard parameter settings sequentially and on four processors
in parallel. We also tested our algorithm with Repartition-
ing on 3 × 3-windows (only in the parallel version). After the
global placements, we used the algorithm described in [7] for
a legalization. We report for each run the netlength after the
complete placement (“BB”) and the wall clock running time
(“Time”) for global placement. The experiments prove that
even the sequential version of our program is much faster than
the method presented in [26] (with very similar netlengths).
With the parallelized version, we can even place instances with
3.6 millions of movable objects in 6:14 hours. Moreover, ap-
plying the 3× 3-partitioning, we can improve the netlength by
4.7 % compared to [26].

6. ACKNOWLEGMENT
We would like to thank Prof. Jens Vygen for helpful remarks

and comments.

7. REFERENCES
[1] S.N. Adya, I.L. Markov: Consistent Placement of

Macro-Blocks using floorplanning and standard-cell
placement. ISPD (2002) 12–17.

[2] S.N. Adya, I.L. Markov, P.G. Villarubia: On whitespace in
mixed-size placement and physical synthesis. ICCAD (2003),
311-318.

[3] S.N. Adya, I.L. Markov: Combinatorial techniques for
mixed-size placement. to appear in: ACM Transactions on
Design Automation of Electronic Systems (2004).

[4] C.J. Alpert: The ISPD98 circuit benchmark suite. ISPD
(1998) 85–90.

[5] C.J. Alpert, T. Chan., D. J.-H. Huang, I.L. Markov, K. Yan:
Quadratic placement Revisited, Design Automation
Conference (1997) 752–757.

[6] C.J. Alpert, A.B. Kahng: Recent directions in netlist
partitioning: a survey. Integration, the VLSI Journal 19
(1995), 1–81.

[7] U. Brenner, A. Pauli, J. Vygen: Almost optimum placement
legalization by minimum cost flow and dynamic programming.
ISPD (2004) 2–9.

[8] M.A. Breuer: Min-cut placement. Journal of Design,
Automation and Fault-Tolerant Computing 1, 4 (1977)
343–382.

[9] A.E. Caldwell, A.B. Kahng, I.L. Markov: Can recursive
bisection alone produce routable placements? DAC (2000)
477–482.

[10] T. Chan, J. Cong, K. Sze, K: Multilevel generalized
force-directed method for circuit placement. ISPD (2005).

[11] C.C. Chang, J. Cong, M. Xie: Optimality and scalability of
existing placement algorithms. ASP-DAC (2003), 621–627.

[12] C.C. Chang, J. Cong, X. Yuan: Multi-level placement for
large-scale mixed-size ic designs. ASP-DAC (2003), 325–330.

[13] H. Eisenmann, F.M. Johannes: Generic global placement and
floorplanning. DAC (1998), 269–274.

[14] D.J. Huang, A.B. Kahng: Partitioning-based standard cell
global placement with an exact objectice. ISPD (1997), 18–25.

[15] ISPD02 benchmarks:
http://vlsicad.eecs.umich.edu/BK/ISPD02bench/

[16] A. Khatkate, C. Li, A.R. Angihotri, M.C. Yildiz, S. Ono,
C.-K. Koh, P. Madden.: Recursive bisection based mixed
block placement, ISPD (2004), 84–89.

[17] J. Kleinhans, G. Sigl, F. Johannes, K. Antreich: GORDIAN:
VLSI Placement by Quadratic Programming and Slicing
Optimization, IEEE Trans. on Computer-Aided Design 10 (3),
356–365 (1991).

[18] B. Korte, J. Vygen: Combinatorial Optimization: Theory and
Algorithms. Springer, Berlin 2002, second edition 2002.

[19] J.B. Orlin: A faster strongly polynomial minimum cost flow
algorithm. Operations Research 41 (1993), 338–350.

[20] PEKO benchmarks:
http://ballade.cs.ucla.edu/ pubbench/placement

[21] M. Struzyna: Analytisches Placement im VLSI-Design,
Diploma thesis, University of Bonn (2004) (in German)

[22] T. Tokuyama, J. Nakano: Efficient algorithms for the
Hitchcock transportation problem. SIAM Journal on
Computing 24 (1995), 563–578.

[23] N. Viswanathan, C. Chu: FastPlace: efficient analytical
placement using cell shifting, iterative local refinement and a
hybrid net model, ISPD(2004), 26 – 33.

[24] K. Vorwerk, A. Kennings, A. Vannelli: Engineering Details of
a Stable Force-Directed Placer, ICCAD (2004), 7–11.

[25] J. Vygen: Plazierung im VLSI-Design und ein
zweidimensionales Zerlegungsproblem. Ph.D thesis. University
of Bonn (1997) (in German).

[26] J. Vygen: Algorithms for large-scale flat placement. Design
Automation Conference (1997) 746–751.

596

