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Abstract
Grid-warping is a recent placement strategy based on a novel physical
analogy: rather than move the gates to optimize their location, it elas-
tically deforms a model of the 2-D chip surface on which the gates
have been coarsely placed via a standard quadratic solve. In this pa-
per, we introduce a timing-driven grid-warping formulation that in-
corporates slack-sensitivity-based net weighting. Given inevitable
concerns about wirelength and runtime degradation in any timing-
driven scheme, we also incorporate a more efficient net model and an
integrated local improvement (“rewarping”) step. An implementation
of these ideas, WARP2, can improve worst-case negative slack by 37%
on average, with very modest increases in wirelength and runtime.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids-placement and routing.
G.4 [Mathematical Software]: Algorithm Design and Analysis

General Terms
Algorithms, Design
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1.  Introduction
Placement remains a critical step in the overall IC design process.
Much of the final performance of a modern chip implementation --
its size, cost and speed -- is determined by its placement. There are
four basic objectives for circuit placement. First, we must minimize
the total wirelength to have any hope of routing the design. Second,
we must achieve specified clock speed(s), to meet overall chip tim-
ing constraints. Third, we must manage congestion so that a com-
plete routing is likely. Finally, we should meet all these objective as
quickly as possible, even for extremely large designs. The interplay
among these often incompatible constraints and objectives inside
different placement strategies has shaped the last two decades of
evolution for practical placement implementations.

For example, simulated annealing methods [1], which are flexible at
handling complex constraints and produce very good wirelength,
have largely disappeared because of their poor scalability for large
designs. Quadratic/analytical methods [2]-[6], mincut methods [7]
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and multilevel/clustering methods [8,9] now dominate. Many effi-
cient algorithms ([5,6,10,11]) have been proposed, emphasizing var-
ious improvements in wirelength, timing, or scalability. There
remains some controversy about the “gap” between what we achieve
in today’s placers, and what we might achieve in the ideal case [12],
but as a practical matter, these methods work well, are thus the sub-
ject of ongoing research to improve and extend their capabilities.

Recent work on legalization schemes for analytical placers has been
particularly interesting. For example, Viswanathan and Chu’s Fast-
Place [13] introduced an elegant set of engineering improvements to
a force-directed scheme, with surprising speedups. Our own work fo-
cuses on the grid-warping strategy introduced in [14], which formu-
lates placement as a recursive sequence of rough quadratic initial
placements and nonlinear “elastic warping” steps in which the curva-
ture of the underlying “fabric” of the placement is directly and non-
linearly optimized to relocate the gates to our liking.

Most new placement schemes target wirelengh as their first optimi-
zation target, and grid-warping is no exception. Our goal here is to
show how to add a practical timing-driven component to the formu-
lation of [14]. Existing timing-driven algorithms can be placed into
two categories: path-based and net-based. Path-based algorithms
generally have untenable complexity, given large designs with mil-
lions of cells. Net-based approaches adaptively assign higher
weights to the more timing critical nets and use several iterations to
improve timing. To minimize the number of these expensive itera-
tions, an effective net weight assignment is critical. 

The ability of analytical placers to respond globally to such weight
changes is one of their most attractive features; the approach works
well in practice [15]. However, the critical question for any analyt-
ical placer is how to use net weighting information outside of the
core quadratic placement step. Grid-warping relies less on repeated
large linear solves and min-cut partition improvement than most
analytical placers: the nonlinear warping optimization is vital to the
quality of its final results. How should we use net weights in this
unique optimization step? 

In this paper, we show how to formulate a timing-driven grid-warp-
ing placer using a recently introduced, accurate slack sensitivity
analysis method for net weighting [20]. Given concerns about wire-
length and runtime degradation in the timing driven case, we also
describe more efficient net model and local improvement strategy
that offer useful wirelength and runtime improvements. The rest of
the paper is organized as follows: Section 2 describes background
information on grid warping. In Section 3, we show how to reduce
the wirelength and runtime by using a hybrid net model and a re-
warping stage. Section 4 presents a timing-driven grid-warping al-
gorithm using net weighting, along with experimental results from
an implementation of these ideals called WARP2. Finally, Section 5
contains some concluding remarks.



2.  Background: Placement by Grid Warping
The underlying idea of grid-warping is simple: rather than move the
gates to optimize their location, we elastically deform a model of the
2-D chip surface on which the gates have been quickly and coarsely
placed. Put simply: warping moves the grid, not the gates. Rather
than move each point individually, we “stretch” the underlying sheet
until the points arrange themselves in a more optimal way.

Grid warping starts with a conventional quadratic analytical place-
ment, in which each gate to be placed is represented as a dimension-
less point connected to a set of appropriately weighted 2-point wires.
Overall squared Euclidean wirelength is the objective we minimize.
This quadratic placement serves as the initial placement of the “spots
on the sheet” for the subsequent warping improvement step. Grid
warping is distinguished by how it formulates the legalization prob-
lem; it is the space on which the gates have been initially placed
which is the focus of optimization. 

Conceptually, we put a uniform nxn grid above the placement sur-
face, with each grid intersection defining a control point. Warping
elastically moves these control points to approximate some continu-
um deformation of the grid. As the grid deforms, the elastic place-
ment sheet deforms, and gates move. A nonlinear optimizer drives
this deformation process. (In practice, we also use a somewhat more
subtle formulation of the control grid, based on set of slicing style
cuts.) The nonlinear optimization is low-dimensional because we
need relatively few features to control the deformation. We optimize
a cost function that is a weighted linear combination of wirelength
and capacity penalty. And for the solver itself, we use a derivative-
free local optimizer, since we lack derivatives and guarantees of con-
tinuity of any objective function. 

Grid-warping still relies on recursive decomposition, since to keep
the nonlinear optimization quick, we only use a or a

control grid for warping. To confine the cells inside each de-
composed region, we run a global quadratic solve at the beginning of
each recursive layer, following the style of [6], but also enforce a cen-
ter of gravity constraint in each subregion. This placement serves as
another starting point for warping in each subregion. We also use
ideas from mincut partitioning to disambiguate gates placed very
close to the cutlines. 

Two final pieces to mention are steps at the beginning and end of
warping. A “pre-warping” step, which geometrically “conditions”
the problem for an easier solution, spreads the gates more uniformly
before each warping commences. And, like all analytical placers,
warping requires a separate final legalization step. The implementa-
tion in [14] used DOMINO [4]. Figure 1 shows key steps in a grid-
warp placement for the ibm06 benchmark from [14].

3.  Reducing Wirelength in Grid Warping
Because the addition of a timing-driven component usually de-
grades both wirelength and runtime, we look first at two basic im-
provements to the core wirelength-only formulation of grid
warping, which offer useful improvements.

3.1 Improved QP
Recall that in the standard quadratic analytical placement formulation,
a circuit netlist is represented as a weighted hyper-graph, with

 vertices corresponding to gates and  hyper-edges
corresponding to signal nets. Initial placement seeks to assign all m
movable gates of the design onto legal locations in a fixed-size two-
dimensional layout region. Pad constraints fix the locations of certain
vertices, while all others remain movable. Each net n is a set of pins
and has a weight wn. For each gate i, two variables (xi, yi) represent
the x- and y-coordinates, respectively, of the center of the cell. As is
most common, a net connecting k gates yields a clique in the graph,
with O(k2) connections. A weight factor 1/(k-1) is used to prevent
large nets from dominating the objective function.

We place to minimize squared Euclidean wirelength, so the distance
between two connected gates i and j is . The
two-dimensional problem is decomposed into independent horizontal
and vertical placements, each minimizes the classical quadratic form:

(1)

where A is a symmetric and positive definite m × m matrix representing
weighted connectivity, b is an m-dimensional vector representing fixed
pad locations, and x (or y) is an m-dimensional vector representing the
coordinates to be solved for. This has the familiar optimal solution

, obtainable via pre-conditioned Conjugate Gradients.

The clique model is the traditional model used in analytical placement
algorithms. However, a superior alternative has recently been suggest-
ed. Viswanatha and Chu [13] prove the equivalence of a hybrid net
model, which uses cliques for small nets, and stars--which decompose
into just a linear number of 2-terminal connections--just for large nets.
This is illustrated in Figure 2. In other words, for a k-pin net of weight
W, if we set the weight of the two-pin nets intruded, to rW in the clique
model and krW in the star model for any r, the clique model is equiva-
lent to the star model. In their algorithm, they set r to 1/(k-1), use the
star model for nets with four or more pins and use the clique model for
nets with two or three pins. In the star model, for each net with more
than four pins, an additional variable is introduced. Though this leads
to more variables in the connectivity matrix A, the total number of non-
zero entries in the matrix is greatly decreased. They demonstrated that
over the ISPD-02 benchmarks, the Hybrid model leads to 2.95X fewer
non-zero entries in matrix A as compared to the clique model, and on
average, the total runtime of the placer is 1.5X lesser.

2 2×
4 4×

FIGURE 1. Progress through grid-warping flow for the ibm06 benchmark, using an 8x8 pre-warp grid, and a 4x4 unit slicing grid for warping.
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Following this idea, we replaced the clique net model by the hybrid net
model in our grid-warping algorithm. As expected, the quadratic solve
step achieved a speedup of approximately 2. But for the global quadrat-
ic solve in the second recursive layer and after, since we use center of
gravity constraints to confine the movement of cells inside each subre-
gion, the corresponding formulation is changed and the connectivity
matrix is not sparse any longer [3, 6]. We found using the hybrid net
model did not improve the runtime. However, in the new re-warping
stage (described next) which locally improves the wirelength, many lo-
cal quadratic solves are exploited. In each of these solves, the hybrid
model is used to gain the speedup without sacrifice of performance.

3.2 Adding a Re-Warping Stage
Since grid-warping keeps the size of the warping grid small enough
for quick nonlinear optimization, it still relies on recursive decom-
position. This necessarily involves some loss of optimality for the
global solution. To compensate, we introduce a new stage after each
recursive layer, inspired by the local improvement step in Vygen’s
[6]. In our implementation, we call this re-warping. The idea is: at
the end of each recursion layer (after the quadratic placement, the
subsequent warping process and the partitioning improvement in
this layer is done), we apply the following procedure to each

-subgrid of the current grid. (An -grid contains
-subgrids.) All the cells belonging to the four re-

spective subgrids need to be re-placed together again. A quadratic
placement of just these cells is performed, with all the other cells
outside the four respective subgrids propagated to the boundary of
the four subgrids and without the center-of-gravity constraints. The
cells inside may move freely within the union of the four subgrids.
Then--in contrast to [6]--a warping step is applied to just this

window follows, yielding a new assignment of the cells to
the four regions. Finally, mincut partitioning is used to reassign the
cells near the cutlines. If the new assignments of cells produces a
placement better than the original one in terms of weighted wire-
length, it will be accepted. Otherwise the old placement is restored.
Figure 3. illustrates the idea; Algorithms 1, 2 give details.

_____________________________________________________
Algorithm 1: Grid-Warping with an added re-warping stage
_____________________________________________________
1: Run the quadratic placement algorithm
2: Pre-warping stage
3: Run the nonlinear grid-warping loop
4: Partition improvement
5: If using a grid, run re-warping
6: Repeat

6.1: The global quadratic placement following the style of [6],
with center-of-gravity constraints
6.2: In each sub-region, repeat step 2, 3 and 4, with cells outside
this sub-region propagated to the boundary of this sub-region
6.3: If it is not the final layer, run re-warping: loop over all

windows twice from left to right and from top to bottom
Until each grid cell has no more than 30 gates
____________________________________________________
Algorithm 2: Re-Warping stage
_____________________________________________________

1: In the current subregion, cells are considered movable,
cells outside the sub-region are propagated to the nearest boundary
2: Run quadratic placement algorithm for this sub-region
3: Run pre-warping and grid-warping on this sub-region
4: Run partitioning improvement
5: Accept the new placement if the wirelength is better, otherwise
restore the original placement
_____________________________________________________

This stage loops over all possible windows, and we try this
stage twice with the same order: from left to right, from top to bot-
tom. There are, however, two exceptions: (1) For the first recursive
layer in a grid-warping formulation, since all the gates are
divided and placed into just four subgrid cells, re-warping is not
needed until we decompose further. (2) After the final recursive
layer of grid warping is completed, we do no re-warping, and rely
instead on the fact that this placement will be fed directly into a fi-
nal legalization engine to yield a legal row-structured placement. 

Since the re-warping stage has the ability to fix some of the inferior
decisions in grid-warping stage, we can terminate each higher level
grid-warping optimization once we get a relatively good solution
i.e., we loosen the convergence tolerance on this optimization,
shorten the runtime, and enter the re-warping stage. As we shall see
in the next section, the complexity of re-warping for each

sub-region is low compared with the overall placement, and
allows to spend less time in each top-level warping optimization.

3.3 Experimental Results
WARP2 is an implementation of these two ideas, and extends the
WARP1 placer from [14]. Table 1 compares results from WARP1 and
WARP2. To be compatible with previous results, we use the ISPD98
benchmarks with the same modifications, and run on the same
1.6Ghz LINUX machine as in [14, 16]. We still use DOMINO for final
legalization. On average, a re-warping stage gives 2% less wire-
length than WARP1 and runs only 4% slower. But after the hybrid
net model is also incorporated, the wirelength of WARP2 is the same
as the wirelength of WARP1 with re-warping and WARP2 is 10%
faster. So WARP2 averages 10% less runtime than WARP1 with 2%
less wirelength.

We also run WARP2 on the ISPD98 benchmarks with some small
differences (e.g., pad locations and channel spacings [8, 9, 16]) and 
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FIGURE 2. Clique model & star model. (a) Clique model produces 16 non-
zero entries; (b) Star model produces 13 non-zero entries.
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FIGURE 3. Re-warping: (a) Loop over all 2x2 windows (b) Quadratic
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compare it with several state-of-the-art published placers. We per-
form these experiments on a 2.0Ghz LINUX machine. Table 2 shows
the results on this suite of benchmarks, now all normalized to the
WARP2 results.

From the results showed in Table 2 we can see, WARP2 outperforms
Gordian-L/DOMINO [3,4] in both wirelength and runtime. And we
are 11% better than CAPO [11] in wirelength, though we are 2.44
times slower. We do only 3% less well than the DRAGON placer
[17], but 3.53 times faster. And compared to mPL4 [8,9], we are 2%
behind in wirelength with 19% better runtime. Note that we still use
DOMINO as the final legalizer. 

4.  Timing-Driven Grid Warping
Existing approaches to minimize timing in placement can be gener-
ally divided into two classes: path-based and net-based. A typical
path-based algorithm usually considers complete paths directly dur-
ing the problem solution, so this class of algorithms usually main-
tain accurate timing information during optimization. But the
complexity of such approaches are untenable for today’s very large
ASIC designs. Compared to path-based algorithms, net-based algo-
rithms assign wire length bounds to critical nets or assign higher net

weights to the nets on the timing-critical paths. As placement algo-
rithms are often not suited to enforce bounds, the latter approach --
net weighting -- is the technique most commonly used [5,6,18,19].
The net weights are iteratively updated after each of (potentially)
multiple placement runs. Of course, in a large chip with millions of
cells, we strongly prefer not to have to run the complete placement
engine more than a few times to find the right timing-based solu-
tion. Therefore, an effective net weighting method is critical to the
success of timing driven placement algorithms.

We implement a timing-driven version of grid-warping by adopting
a recently proposed slack sensitivity model for net weight calcula-
tion [20]. A popular way to assign net weight is based on the slack
of the net; our ultimate goal is to minimize the worst negative slack
(WNS) for the entire circuit. (Another figure of merit (FOM), de-
fined as the total slack difference compared to a certain slack
threshold for all timing end points, is considered to have equivalent
importance in [20]; however, we only employ the WNS metric.)

4.1 Basic Formulation

A timing-driven grid warping placer uses sensitivity-based net weight-
ing to update the weight of each net. The most important questions to
answer are exactly where in the warping formulation these net weights
appear, and whether they need to be transformed in some way across
the various internal steps of our placer. As it turns out, it is very easy to
incorporate net weighting all steps of the warping process:

Initial quadratic placement steps: it is trivial to simply adjust
the values in the A matrix to reflect the weights.

Nonlinear warping (and re-warping) steps: although the
geometric distortion that warping accomplishes is somewhat
subtle, the cost function that warping optimizes is rather
straightforward. We minimize a weighted combination of wire-
length and capacity penalty (which ensures gates spread out
uniformly). Since we adjust weight for complete k-terminal
nets, we simply incorporate these weights in the overall wire-
length term. Note, however, that in the warping step, we mini-
mize a weighted bounding box wirelength, i.e., a more
accurate linear model of wirelength, not a quadratic model.

Partition improvement: net weights are similarly easy to
incorporate in the partition improvement step, which helps dis-
ambiguate gates placed close to any of the cut lines. We use
hMetis, which easily handles such weighting [7].

Algorithm 3 shows the overall flow. For efficiency, we run our warp-
ing algorithm twice and generate new net weights once. Specifically,
we run our wirelength driven WARP2 placer with uniform weights for
all nets. Then we run a static timing analysis on the near legal place-

Bench-
mark

Warp1/Domino Warp1 with re-
warping/Domino

Warp2/
Domino

Wire-
length

CPU 
Time (s)

Wire-
length

CPU 
Time (s)

CPU 
Time (s)

IBM01 1.35e6 159.69 1.32e6 151.56 139.98
IBM02 3.18e6 298.97 3.13e6 322.52 265.47
IBM03 4.10e6 348.41 3.91e6 305.66 259.31
IBM04 4.80e6 499.37 4.73e6 401.02 361.70
IBM05 8.31e6 363.15 8.02e6 395.88 352.75
IBM06 4.75e6 521.68 4.59e6 613.38 457.55
IBM07 7.61e6 918.01 7.31e6 945.82 845.38
IBM08 8.64e6 1397.28 8.14e6 1301.91 1086.91
IBM09 8.51e6 1211.07 8.03e6 1249.68 1086.88
IBM10 1.36e7 2198.24 1.39e7 1863.28 1624.95
IBM11 1.25e7 1632.94 1.21e7 1669.37 1536.35
IBM12 1.72e7 2184.38 1.70e7 1942.79 1703.78
IBM13 1.53e7 2299.86 1.53e7 2351.02 2068.75
IBM14 2.87e7 5507.48 2.79e7 5985.22 5493.95
IBM15 3.62e7 7500.91 3.62e7 8152.68 7115.20
IBM16 3.72e7 7698.99 3.78e7 9318.45 8331.71
IBM17 4.96e7 7739.09 4.83e7 9975.80 8728.28
IBM18 3.73e7 8570.13 3.61e7 11454.33 10157.54

Ratio 1.00 1.00 0.98 1.04 0.90
TABLE 1. Placement results comparing WARP1 and WARP2

 Benchmark
Warp2/Domino Gordian-L/Domino Capo 8.8 mPL 4 Dragon 3.01

Wire-
length

CPU 
Time (s)

Wire-
length

CPU 
Time (s)

Wire-
length

CPU 
Time (s)

Wire-
length

CPU 
Time (s)

Wire-
length

CPU 
Time (s)

IBM04-b 1.00 1.00 1.00 1.69 1.12 0.61 0.98 1.67 0.95 4.63
IBM07-b 1.00 1.00 1.03 1.16 1.12 0.47 1.02 1.16 0.98 2.84
IBM10-b 1.00 1.00 1.01 1.45 1.06 0.41 0.96 1.26 0.95 3.88
IBM17-b 1.00 1.00 1.00 1.21 1.13 0.28 0.98 0.97 1.00 3.48
IBM18-b 1.00 1.00 1.05 1.62 1.11 0.26 0.98 0.87 0.99 2.81

Ratio 1.00 1.00 1.02 1.43 1.11 0.41 0.98 1.19 0.97 3.53
TABLE 2. Placement results comparing Warp2 with Gordian, Capo, mPL and Dragon, all values are normalized with respect to Warp2/Domino
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ment (before final legalization) to obtain the slack and wirelength for
each net. For each multiple-pin net, the bounding box model is used for
both the wirelength in placement and the net delay computation in the
timer. Finally, after the new weights of all nets are updated, we run our
warping placer again, to minimize the total weighted wirelength.
_____________________________________________________
Algorithm 3: Timing-driven Warp
_____________________________________________________

1: Run WARP2 with uniform net weight
2: Run static timing analysis tool to obtain timing information
3: Compute new weight for each net
4: Run timing-driven placement (WARP2) with new weights
_____________________________________________________

4.2 Using Slack Sensitivity for Net Weights

For completeness, we review here briefly the formulation from [20]
used in our placer. The slack sensitivity to net weight is defined as:

(2)

where  and  are the slack and weight of net i respec-
tively. Since only net i is changed, the slack change of net i comes
from the delay change of et i. So,

(3)

where  is the nominal delay change of net i. Naturally, we can
decompose Eqn. (3) into the following two terms.

(4)

where  is the net delay sensitivity to wire length, and  is
the wire length sensitivity to net weight:

(5)

(6)

where  is the wire length for net i. For bounding box model,
we have:

(7)

where r and c are the unit length wire resistance and capacitance re-
spectively. So we can obtain for net i the delay sensitivity to its wire
length change as follows:

(8)

Following [20], we can obtain for net i the wire length sensitivity to
its net weight change as below:

(9)

where W(i) is the initial weight of net i,  is the total initial
weight on the driver cell of net i (the summation of net weights of
those nets that intersect with the driver), and  is the total
initial weight on the receiver cell of net i.

To use the sensitivity results guide net weight assignment, first of
all we need to set a target clock period. Then for those nets with
negative slacks, we have:

(10)

And we propose that the new weights should be:

(11)

In the real assignment process, we linearly scale W(i) to keep it in
the range of [10, 60] for every circuit.

4.3  Timing Model and Static Timer
Unfortunately, simple wirelength, and not timing constraints, domi-
nate the literature when placers are compared. The reason is the lack
of an accessible, widely shared infrastructure for the many founda-
tional components -- cell libraries, timing views, static timing engine
-- necessary for careful comparison. To make our own results easier
to compare against, we have adopted the infrastructure introduced by
the OpenAccess Gear project [21,22,23]. OpenAccess (“OA”) is an
open source database system for EDA applications. The OA Gear
project provides an open source, industrial-strength static timing en-
gine (OA Gear Timer) and a set of open, hypothetical technology
files complete with timing views.

Of central interest to us is the OA Gear Timer [22,23], an open source
timer built on top of the OpenAccess database. OA Gear Timer uses
standard techniques for static timing analysis. Both batch-mode (i.e.,
full, flat) timing analysis, and fast incremental timing analysis are
available. Arrival and required arrival times and signal slew rates are
maintained for all nodes in the circuit. Separate timing figures are
kept for rising and falling signals. Internal gate delays utilize the stan-
dard interpolated two-dimensional lookup table based on output load
and input signal slew rate. Industry standard file formats for timing
libraries are supported, as are useful subsets of standard timing con-
straints, e.g., we can set the clock period, external delays on primary
inputs and outputs, set the driving cell for inputs and set load capaci-
tance on outputs.

We use the full OA Gear infrastructure since it provides a rich set of
essential analysis tools and models, and should help others to make
more comparisons with this work in future.

4.4  Experimental Results
We added timing-driven grid-warping to the improved WARP2 en-
gine already described in Section 3. The high-level flow is as in Al-
gorithm 3. We first run WARP2 with all net weights equal to 10. Then
we run the OA Gear Timer to perform static timing analysis. Then we
use the method described in section 4.2 to generate new net weights.

For the benchmarks, we use the new netlists provided by OA Gear in
native OA format [22,23]. This suite includes a standard cell library
along with the ISCAS89 sequential logic benchmarks. The cell li-
brary is hypothetical, but the timing and electrical parameters have
been chosen to resemble a typical 250nm process. Table 3 shows the
characteristics of some selected larger benchmarks in this suite. Table
4 compares the results from the wirelength-only version of WARP2
with the final timing-driven version of WARP2.
.
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W i( )∆ Slk i( )SW
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Design Cells Nets PIs POs Registers
S13207 2680 2753 32 121 466
S15850 4565 4600 15 87 540
S35932 11587 11910 36 320 1728
S38417 14762 14838 29 106 1463
S38584 12221 12290 13 278 1292

TABLE 3. Benchmark Sizes and Characteristics
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Since we cannot yet compare against other timing-driven placement
algorithms on these benchmarks, we only compare the WNS and total
wirelength of wirelength-only WARP2 with timing-driven WARP2.
We can see that our algorithm performs well on this relatively small
suite of benchmarks. On average, the timing-driven version of the
placer improves the WNS by about 36.5% (given the clock period tar-
gets specified in the table), with only a very small percentage of wire-
length increase--about 1% on average. The cost in increased runtime
is also quite acceptable, and averages 47%. Of course, we can im-
prove the timing further if we use additional placement/weighting it-
erations, at the cost of more runtime.

One final point is worth mention. Currently we still use DOMINO as
the backend legalizer--even for this timing-driven version of WARP2.
This is expedient, but clearly suboptimal. One reason the total wire-
length does not increase much seems to be the fact that we are still
minimizing the total unweighted wirelength in this stage. This sug-
gests we may well be improving the overall wirelength, at some as
yet unknown cost in achieving timing optimization. Replacing DOM-
INO with a more suitable legalizer is clearly a topic for future work of
us.

5.  Conclusions
Rather than move the gates to optimize their location, a grid-warping
placer elastically deforms a model of the 2-D chip surface on which
the gates have been quickly and coarsely placed. In this paper, we in-
troduced the first timing-driven grid-warping formulation, based on
slack-sensitivity net weighting. Given inevitable concerns about wire-
length and runtime degradation in any timing-driven scheme, we also
incorporated a more efficient net model and an integrated local im-
provement (“rewarping”) step. An implementation of these ideas,
WARP2, can improve worst-case negative slack by 37% on average,
with very modest increases in wirelength and runtime. Ongoing work
is examining the potential in a backend placer customized to the
warping process, and options for incorporating net-based congestion
estimators and fixed pre-placement of macroblocks.
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Design
Wirelength-only Warp2/Domino Timing-driven Warp2/Domino WNS Improvement & Wirelength Increase

Wirelength WNS CPU Time (s) Wirelength WNS CPU Time (s) Target (ns) WNS Wirelength
S1423 22266.6 -0.18088 3.43 22896.9 -0.14390 5.75 4.33 20.4% 2.83%
S1488 23262.1 -0.07757 2.98 22979.2 -0.07080 3.78 1.75 8.7% -1.22%
S1494 24142.8 -0.15442 1.99 25593.2 -0.14538 3.82 1.75 5.9% 6.01%
S5378 68706.5 -0.09576 7.72 70355.6 -0.04948 10.35 2.42 48.3% 2.40%
S9234 49630.7 -0.12586 9.47 50624.1 -0.10411 10.84 2.85 17.3% 2.00%

S13207 115918 -0.11002 39.95 112419 -0.07510 54.17 3.66 31.7% -3.02%
S15850 194839 -0.24589 52.40 186849 -0.20061 83.87 4.75 18.4% -4.10%
S35932 566025 -0.09083 590.84 570007 -0.00270 870.72 2.42 97.0% 0.70%
S38417 697415 -0.19155 422.72 748544 -0.15832 601.29 3.75 17.3% 7.33%
S38584 619260 -0.05733 315.59 606929 0.02596 467.7 3.75 100.0% -1.99%
Ratio 1.00 1.000 1.00 1.01 0.635 1.47 36.5% 1.09%

TABLE 4. Placement results comparing Wirelength-only Warp2 against Timing-driven Warp2
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