
Traffic Shaping for an FPGA based SDRAM Controller with
Complex QoS Requirements ∗

Institute of Computer and Communication Network Engineering
Technical University of Braunschweig

Dipl.-Ing. Sven Heithecker
heithecker@ida.ing.tu-bs.de

Prof. Dr.-Ing. Rolf Ernst
ernst@ida.ing.tu-bs.de

ABSTRACT
Today high-end video and multimedia processing applications re-
quire huge amounts of memory. For cost reasons, the usage of
conventional dynamic RAM (SDRAM) is preferred. However,
SDRAM access optimization is a complex task, especially if multi-
stream access with different QoS requirements is involved. In [8],
a multi-stream DDR-SDRAM controller IP covering combinations
of low latency requirements for processor cache access, hard real-
time constraints for periodic video signals and hard real-time bursty
accesses for video coprocessors was described. To handle these
contradictory QoS requirements at high system performance, a
combination of a 2-stage scheduling algorithm and static priorities
were used. This paper describes an additional flow control which
enhances the overall performance. Experiments with an FPGA
based high-end video platform demonstrate the superiority of this
architecture.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Sys-
tems; B.8.3 [Hardware]: Performance and Reliability—Perfor-
mance Analysis and Design Aids; C.3 [Computer Systems Or-
ganization]: Special-Purpose and Application-Based Systems

General Terms
performance, design

Keywords
SDRAM, memory access, QoS, traffic shaping, priorities, flow con-
trol, FPGA

∗This work was partly founded by German BMBF and Thomson -
Grass Valley

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

1. INTRODUCTION
Dynamic RAM memories are important embedded system com-

ponents that cannot easily be integrated with other parts of a system
due to different technologies. The resulting SDRAM1 interface is
a performance bottleneck in many applications ranging from net-
work processors to multimedia systems. The main problem of all
DRAM architectures is a long access latency. Current advanced
DRAM architectures, such as DDR-SDRAM or DirectRamBus
DRAM (RDRAM), reduce the latency overhead by using burst ac-
cess to several consecutive data words in a memory row. The effect
of access latency can be further reduced by exploiting the internal
bank structure of a DRAM serving accesses to another bank while
one bank is busy accessing. This technique, called interleaving, in-
creases memory bandwidth. It has already been used in early vector
processors and has been introduced to digital signal processing and
even SoC architectures, e.g. in the SonicsMicroNetwork [15].

While improving DRAM memory throughput, however, burst
and interleaving increase memory latency. This is due to access
buffering needed to enable these techniques. In a mixed plat-
form containing stream processing elements and processors with
caches, increased latency is typically acceptable for streaming data,
but it deteriorates cache processor performance. With even higher
throughputs and more complex access patterns, memory latency
grows due to larger buffers and higher scheduler complexity that
leads to further processor cache stall problems.

Considering our FlexFilm flexible digital film processing plat-
form [3] as an example, our contribution to an improved SDRAM
performance will be explained and quantified. Digital film process-
ing applications require 2K image resolution2 with a data-rate of
2.1 GBit per second and channel [5], [2], while higher resolutions
of 4K and even 8K are on the way [6]. Real-time processing at this
data rate is beyond the scope of today’s workstations and single
DSP processors, and ASICS are not economically viable due to the
small market volume. Therefore, an FPGA-based system approach
as shown in figure 1 was followed. The core component of this
architecture is a large FPGA3 containing the reconfigurable main
image stream processing data path. The FPGA-embedded CPU is
used for control and less computation intensive tasks like parameter
calculation. Since FPGAs do not provide enough internal memo-
ries to hold even a single image, external SDRAM memories are
provided, which also contain the code and data for the CPU. This
leads to conflicts between processor accesses to code, to internal
data, and to shared image data on the one hand and memory ac-
1This term shall include both SDR- and DDR-SDRAM
22048x1536 pixels per frame at 30 bit/pixel and 24 pictures/s
3e.g. Xilinx Virtex-II Pro with embedded PowerPC

34.5

575

Figure 1: FlexFilm - flexible image processing platform

cesses of the data path on the other hand. In principle, there can
be more than one external memory, but the required address busses
and 32-64 bit data busses make extensions costly and very limited.
Multiple independent memories also do not simplify access pat-
terns since there are still shared data between data path and CPU.
Therefore a single external memory is assumed in this paper.

To solve the access problem, previously [8] a 2 stage mem-
ory controller architecture with short access latency at high band-
width utilization was proposed. In this paper we add a flow control
mechanism that improves the real-time behavior allowing both high
throughput real-time access and reduced cache stalling.

Chapter 2 elaborates the requirements and outlines related work.
Chapter 3 explains the architecture and flow control. Experiments
are described in Chapter 4 while the last chapter draws a conclu-
sion.

2. REQUIREMENTS, RELATED WORK

2.1 QoS Requirements
A closer look at the FlexFilm architecture reveals that the fol-

lowing distinct types of accesses have to be served by the SDRAM
controller:

• Hard real-time periodic access sequences and fixed address
access patterns with optimized fixed scheduling [13] gener-
ated by the I/O system and data path. These sequences re-
quire a minimum memory throughput and can be buffered to
increase the maximum allowed memory access time without
performance loss. By adapting the buffer size, arbitrary ac-
cess times are acceptable, but the maximum access time must
be bounded to avoid buffer over- or underflows.

• Random address patterns generated by CPU cache misses,
either soft- or hard real-time. Because the processor stalls on
a cache miss and since prefetch is of limited use due to the
less predictable access patterns, memory access time is the
crucial parameter determining performance. On the other
hand, (average) memory throughput is less significant. To
improve performance, memory access time has to be min-
imized (soft real-time) or bounded (hard real-time). Such
requirements are typically neglected but they are important
for the overall system performance, as will be seen in the
experiments.

This results in two types of QoS: guaranteed minimum through-
put at guaranteed maximum latency and smallest possible latency.

2.2 Related Work
The Imagine processor [7] uses a configurable memory sched-

uler [9][14], optimized for the application algorithms that run on
the processor. The scheduler is adapted to a specific application
and does not distinguish different stream types. The Prophid archi-
tecture[11] [17] by Meerbergen et al. describes a dynamic RAM
scheduler for the Prophid DSP platform that is focused on streams
using large FIFO buffers and round-robin scheduling. Prabhat
Mishra et al. [12] provide optimization heuristics for known mem-
ory access patterns of a single processor. None of these schedulers
support vastly different access types at close to peak SDRAM band-
width.

Closest to our work is a memory scheduler IP offered by Sonics
[18] that also handles different access patterns and service levels
at high average memory bandwidth. The bandwidth is similar to
that of the scheduler presented here and is close to the maximum
possible bandwidth. While high bandwidth can always be reached
by a sufficiently long pipeline, latency is the key problem to reduce
cache stalling. The Sonics IP is a complex, 7 stage architecture
that has an inherently longer latency than the lean 2-stage architec-
ture of similar clock frequency used in [8] and in this paper. Even
though the authors of [18] highlight the importance of low latency
access to avoid cache delays, they do not elaborate on the latency
effect of the relatively long pipeline (In [18] only memory band-
width and no latencies are published).

3. ARCHITECTURE
Figure 2 shows the block diagram. A more detailed description

of the general architecture can be found in [8], this chapter focuses
on the QoS implementation.

Requests to the SDRAM are always served at full SDRAM burst
lengths in autoprecharge mode. The core part of the controller is
the 2-stage buffered memory access controller where streams from
various inputs are merged and sorted by bank (request scheduler)
and finally scheduled for execution (bank scheduler). To increase
throughput and to hide the SDRAM latencies, the scheduler ex-
ploits bank parallelism by applying bank interleaving and mini-
mizes data bus direction switches by bundling read/write requests.

As explained in the introduction, two types of QoS require-
ments have to be handled: guaranteed minimum throughput at
guaranteed maximum latency and smallest possible latency. To
handle this requirement, priorities are assigned to memory access
requests and requests with a higher priority (smallest possible la-
tency) are always executed before lower priorized requests. In this
paper, two priority levels are used: standard priority and high pri-
ority.

The key QoS handling extensions are distinct paths, including
separate request- and bank buffers, for high- and standard priority
requests and a modified bank scheduler. In [8] it was demonstrated
that cache memory access times can be reduced significantly by
giving cache accesses a higher priority than data path accesses.

As long as the average cache miss rate is relatively low, this ap-
proach leads to higher processor performance without any impacts
on the real-time streams. The reason is that even if the misses oc-
cur in the form of bursts, they can be compensated by buffering the
accesses from other sources. In case of higher cache miss rates,
buffers must be bigger to avoid data loss in lower priority real-time
access. However, buffering video streams in FPGAs is expensive.
One approach is a scheduler that limits the execution frequency of
software processes and, hence, cache miss frequencies, however
such an indirect control approach would require a rather conserva-
tive design.

576

Figure 2: SDRAM controller architecture

An alternative solution, presented in this paper, is to insert
a flow control unit into the memory scheduler (see "flow control"
in figure 2). The simplest flow control is to require a minimum
time distance between two memory read or write accesses. This,
however, does not account for burst-like memory accesses closely
following each other. A slightly more complicated flow control
mechanism considers these access sequences. Appropriate "burst"
event models are known from real-time analysis, e.g. [16] (not to be
confused with SDRAM burst transfers). The sequences are defined
by an outer period T , a number of events n that can occur during T ,
and an inner period t that defines the minimum distance between
any two events. In our design, t is set to 1.

As an example, take n = 1, T = 4: only one request is allowed
within a period of 4 clock cycles. Since, for a DDR burst length
of 8, the bus tramsfer time of a burst is 4 clock cycles, this is also
the maximum rate at which requests can be processed, resulting in
a throughput of 2 words/cycle (DDR-SDRAM data bus utilization
of 100%).

Now, take n = 2, T = 16: two requests within 16 clock cycles.
This results in an average of 1 request per 8 clock cycles (Tφ =
T

n
= 8), but it allows for 2 successive memory requests.
For the current implementation, only the high priority stream is

flow controlled and both read and write paths share one flow con-
trol unit; it might be conceivable to control read and write paths
separately and to have independent flow control units for different
clients or priority levels. However, this would not alter the flow
control principle, and therefore in this paper only one flow control
unit is used.

4. EXPERIMENTS

4.1 Goals & Simulation Environment
We were interested in the impact of priorities and flow control

on different memory access streams. For this purpose an exam-
ple architecture which resembles the setup in figure 1 was devel-
oped as a clock cycle accurate SystemC model. The experimental
setup is shown in figure 3. Beside the DDR-SDRAM controller
and the DDR-SDRAM, it consists of a hardware implementation
of a discrete wavelet transformation (DWT) algorithm and a CPU
with caches.

Besides the timing model, synthezisable models of the SDRAM
controller and DWT core for Xilinx Virtex II FPGAs were created
using the Xilinx ISE 6.3 toolsuite and implemented in real hard-
ware. This allowed us to verify the complete functionality and to
validate maximum operating frequencies.

Figure 3: Experimental setup

DDR-SDRAM & Controller. The DDR SDRAM parameters
were set to 120 MHz clock speed (240 MHz data transport), 32 bit
data bus, 4 banks, a burst length of 8 words (4 clock cycles) and a
64 ms refresh. These parameters were kept constant.

DWT and Stream I/O. The DWT implementation based
on [19], the VHDL implementation resulted in an maximum fre-
quency of 100 MHz. The DWT read a strictly periodic data stream
of 2 pixels (32 bit) per clock cycle through one input port and wrote
strictly periodic data streams to 4 outputs ports with 1/4 of the in-
put data rate. Data transfers from and to SDRAM run via five 1024
pixel-FIFOs, which are also used to cross the different clock do-
mains (120 MHz SDRAM, 100 MHz DWT), to allow deep input
data prefetching, to convert to and from the bursty SDRAM access
and to compensate varying memory access times.

For image input and output, two additional ports read and write a
periodic pixel stream (2 pixel, 32 bit per clock cycle). Both streams
are buffered by FIFOs of the same properties and functionality as
the DWT FIFOs.

The complete DWT system was set up for a pipelined continuous
3-level DWT of 2048 x 1536 12-bit-luminance images at 24 frames
per second (41.7 ms per frame), resulting in an I/O frequency of 37
MHz. A 3-level DWT needs to process each image three times
width the image height and with being halved each turn. Running
at 100 MHz, the DWT needs 20.6 ms per frame.

CPU and Cache. As CPU model the PowerPC 750 simulator
from MicroLib [1] was used and adapted to the PowerPC 405 pro-
cessor provided by VirtexII-Pro FPGAs (one execution unit, simpli-
fied static branch prediction, 16 KByte 2-way associative instruc-
tion and data caches). Since prefetching is of limited use, the CPU
is directly connected to the SDRAM controller. The selected "peg-

577

CPU pri CPU has higher memory access priority yes/no
fc Tφ/n flow control setting: maximum of n consecutive

memory accesses, average one memory access
per Tφ =

T

n
clock cycles

CPU cycles CPU execution time in million CPU clock cycles
(360 MHz)

CPU SpU CPU speedup relative to non-priorized CPU
memory access

Mem lat r/w average cache to memory access latency, read
and write, in memory clock cycles

loss DWT lost pixels, average percent of pixel per
image

Table 1: Results, legend

Nr. CPU fc CPU Mem loss
pri Tφ/n cycles SpU lat r lat w [%]

1.1 no none 195.02 96.7 32.6 0.00
1.2 yes none 63.43 3.07 17.5 11.4 10.35
2.1 yes 10/1 63.02 3.09 17.3 11.3 10.80
2.2 yes 20/1 64.93 3.00 18.0 17.1 10.81
2.3 yes 30/1 71.23 2.74 21.2 27.4 10.71
2.4 yes 40/1 84.55 2.31 28.7 36.8 6.71
2.5 yes 50/1 100.48 1.94 37.8 47.3 3.12
2.6 yes 60/1 117.28 1.66 47.4 56.8 0.00
3.1 yes 60/2 117.00 1.67 47.3 54.5 0.34
3.2 yes 61/2 118.70 1.64 48.3 55.4 0.00
3.3 yes 61/10 117.32 1.66 47.4 55.4 0.00
3.4 yes 61/20 116.89 1.67 47.1 55.1 0.00
3.5 yes 61/30 116.78 1.67 47.0 54.3 0.34

Table 2: Results

witdecode" application from the mediabench [10] benchmark ap-
plications had an instruction cache hitrate of 99.99%, a data cache
hitrate of 89.8% and generated 518,777 burst read and 35,229 burst
write memory accesses. The CPU was clocked at 360 MHz.

4.2 Test Setup & Results
We ran several tests with CPU memory access priorisation en-

abled versus disabled and with different flow control settings (max-
imum n consecutive SDRAM requests with an average of one
memory request per Tφ =

T

n
clock cycles). We recorded the CPU

execution time in clock cycles and the number of lost words per im-
age due to possible buffer over- and underflows of the DWT video
input and output, respectively. Lost words other than 0% means
that the DWT failed to process in real-time. For completeness, the
cache to memory access latency was also recorded. Table 2 shows
the test results, table 1 the according legend.

With priorites and flow control disabled, it can be seen that CPU
does not adversely affect the DWT performance, that means the
DWT does not loose any pixels and processes in real-time (1.1).
Assigning a higher priority to CPU memory accesses leads to a
tremendous CPU speedup of a factor of 3, but the DWT fails to
operate with an average pixel loss per image of 10% (1.2).

Since at this point the SDRAM operates at its bandwith limit and
the latencies are affected by full buffers in the scheduling stage,
activating the flow control with a slight throughput restriction of
one burst every 10 clock cycles (Tφ = 10, n = 1) does not show
any reasonable effects (2.1).

Further increasing of Tφ results as expected in a monotonous in-
crease of the CPU execution time, in parallel the DWT pixel losses
drop until the DWT is back to real-time behavior again (2.2 to 2.6).

At this point (2.6), the CPU still shows a noticeable speedup of 1.66
compared to the non priorized access.

Increasing n to allow for burst-type CPU memory access se-
quences leads again to a small CPU speedup, even though it was
necessary to increase Tφ to keep the DWT pixel losses at zero (3.1
to 3.5, best result 3.4)

Throughout all experiments, the total SDRAM bandwidth uti-
lization was close to 75%.

More simulation results with different setups, e.g. an ARM
instead of a PowerPC processor, can be found in [4].

5. CONCLUSION
Based on experience with an architecture for a reconfigurable

image processing system, an SDRAM scheduler IP was presented
that supports several concurrent access sequence types with dif-
ferent requirements including predictable periodic real-time se-
quences and cache accesses with a minimum latency objective. By
introduction of a combination of prioritized scheduling and flow
control the real-time behavior and system performance was signif-
icantly improved.

We also showed that allowing multiple accesses closely follow-
ing each other (access bursts) also improved the system perfor-
mance while the real-time behavior was not affected.

More important, however, is the increased level of controllabil-
ity. The flow control parameters can be used to smoothly adapt the
processor accesses to the required real-time behavior. Flow con-
trol in combination with access priorities obviously leads to better
system performance predictability. Furthermore, the monotonous
behavior should simplify design space exploration.

6. REFERENCES
[1] http://microlib.org.
[2] http://www.discreet.com.
[3] http://www.flexfilm.org.
[4] http://www.ida.ing.tu-bs.de: svenh/.
[5] http://www.quantel.com.
[6] http://www.thomsonbroadcast.com.
[7] AHN, J. H., DALLY, W. J., KHAILANY, B., KAPASI, U. J., AND DAS, A.

Evaluating the Imagine Stream Architecture. SIGARCH Comput. Archit. News
32, 2 (2004), 14.

[8] HEITHECKER, S., DO CARMO LUCAS, A., AND ERNST, R. A Mixed QoS
SDRAM Controller for FPGA-Based High-End Image Processing. In Workshop
on Signal Processing Systems Design and Implementation (2003), IEEE,
p. TP.11.

[9] KHAILANY, B., DALLY, W. J., AND RIXNER, S. Imagine: Media Processing
with Streams. IEEE Micro (March/April 2001), 35–46.

[10] LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. Mediabench: a
Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems. In International Symposium on Microarchitecture (1997),
pp. 330–335.

[11] LEITJEN, J. A. J., VAN MEERBERGEN, J. L., AND TIMMER, A. H.
PROPHID: a Heterogeneous Multi-Processor Architecture for Multimedia. In
International Conference on Computer Design (October 1997), pp. 164–169.

[12] MISHRA, P., GRUN, P., AND DUTT, N. Processor-Memory Co-Exploration
driven by a Memory-Aware Architecture Description Language. In 14th
International Conference on VLSI Design (Jan 2001).

[13] PANDA, P., CATTHOOR, F., AND DUTT, N. Data and Memory Optimization
Techniques for Embedded Systems. 140–206.

[14] RIXNER, S., DALLY, W. J., AND KAPASI, U. J. Memory Access Scheduling.
In International Symposium on Computer Architecture (2000), pp. 128–138.

[15] SONICS, INC. Sonics SiliconBackplane MicroNetwork Overview.
[16] TINDELL, K. W. An Extendible Approach for Analysing Fixed Priority Hard

Real-Time Systems. 133–152.
[17] VERHAEGH, W., LIPPENS, P., AND AARTS, E. Multi-dimensional periodic

scheduling: model and complexity. Springer Verlag, pp. 226–235.
[18] WEBER, W.-D. Sonics MemMax Memory Scheduler.
[19] WU, P.-C., AND CHEN, L.-G. An Efficient Architecture for Two-Dimensional

Discrete Wavelet Transform. IEEE Transactions on circuits and systems for
video technology 11, 4 (April 2001).

578

