
Normalization at the Arithmetic Bit Level

Markus Wedler, Dominik Stoffel, Wolfgang Kunz
Dept. of Electrical & Computer Eng., University of Kaiserslautern/Germany

email: wedler@eit.uni-kl.de

ABSTRACT
We propose a normalization technique for verifying arith-
metic circuits in a bounded model checking environment.
Our technique operates on the arithmetic bit level (ABL)
description of the arithmetic circuit parts and the property.
The ABL description can easily be provided by the front-end
of an RTL property checker. The proposed normalization
greatly simplifies the SAT instances to be solved for arith-
metic circuit verification. Our approach has been applied
successfully to verify the integer pipeline of an industrial
microprocessor with advanced DSP capabilities.

Categories and Subject Descriptors
B6.3 [Design Aids]: Verification

General Terms
Algorithms, Verification

Keywords
Property checking, arithmetic bit level normalization, SAT

1. INTRODUCTION
Bounded model checking (BMC) [3] has gained increased
significance in Electronic Design Automation (EDA). It is
used to verify that a digital circuit design meets the de-
sired behavior. In BMC the design of a sequential circuit is
unrolled for a finite number of time frames and augmented
with the property under verification. This can be translated
into a satisfiability (SAT) problem and is thus handled by
standard SAT solvers. These solvers will either give a proof
of unsatisfiability or a counter example for the property.
It is well known that SAT solvers have problems when deal-
ing with instances derived from the verification of arithmetic
circuits. Hence, although SAT-based property checking can
often be applied successfully to the control part of a design,
it typically fails on data paths with large arithmetic blocks.
One may resort to incomplete techniques like bit-slicing in
order to find bugs in arithmetic units. However, they cannot
prove the absence of a bug. Especially, it is very likely to
miss errors in corner cases.
This motivated the development of automatic bit width re-
duction techniques like in [8, 9]. However, the resulting
model still is often too large to be handled by a SAT solver
and there are cases where no reduction is possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

Another idea is to use word-level solvers for integer linear
programming (ILP) [4, 7, 14] or constraint logic program-
ming [13]. The problem with word-level solvers is that they
do not incorporate the large variety of pruning techniques
for the Boolean part of the problem. Therefore, they usually
perform poorly on the control part of a design. Moreover, in
order to obtain highly optimized implementations designers
often implement arithmetic functions at the bit-level so that
word-level solvers are not adequate. Thus, a combination of
word-level and Boolean solvers has to be developed. This
problem is not simple because the different solvers cannot
look into each other’s non-solution areas. Two promising
ways of integrating ILP and SAT have been proposed in [2,
5]. The first uses pseudo-Boolean constraints as clauses in
a DPLL style solver and the second uses linear equations as
propositions.
In [10] a method for equivalence checking of multipliers
based on an arithmetic bit level description of the circuit was
proposed. The arithmetic bit level contains partial products
and addition networks. To verify that a circuit is a multi-
plier an arithmetic bit level representation is extracted from
the gate netlist. For property checking this extraction is
not necessary as the synthesis front-end can easily generate
the arithmetic bit level information needed in a proof en-
gine. The method of [11] utilizes the arithmetic bit level
information to prune the search space of a standard SAT
solver. It can help to prune the search space locally when
analyzing individual addition networks. However, it cannot
prevent exponential blowup when looking at sophisticated
data paths consisting of several arithmetic blocks.
In this paper we suggest a normalization technique at the
arithmetic bit level. This technique is based on an arith-
metic bit level description of the problem consisting of par-
tial product generators, addition networks and comparators.
We will introduce an arithmetic normalization with respect
to a set of comparators. After normalization the derived in-
stance is handed over to a SAT solver. Also a hybrid solver
like [2, 5] could be used. In fact, the proposed normaliza-
tion may be very useful in providing additional word-level
abstractions as they can be exploited by these solvers.

2. PROPERTY CHECKING FOR ARITH-
METIC BLOCKS

In RTL property checking, design and property usually are
synthesized into a plain SAT instance that is handled by a
standard SAT solver. Unfortunately, SAT solvers get into
complexity problems as soon as arithmetic circuitry comes
into play.
In the following we use the Infineon property language called
interval temporal logic (ITL) [12] to present a typical exam-
ple of a property to be proven for an arithmetic processor
pipeline. Table 1 specifies that the result of a multiplication
is presented at some internal signal ip res of a design after

28.3

457

four cycles if no reset has occurred and certain assumptions
about the environment are valid. Note that the state of the
design at time t is only constrained by the assumptions ex-
plicitly stated by the verification engineer, i.e., the bounded
model checker starts at an arbitrary state and checks the
implication assumptions→commitments in a bounded time in-
terval. Properties of this kind are used frequently to verify

theorem mulXXX;

freeze: op1 at t=op1@t, op2 at t=op2@t;

assume:
within[t,t+4]:no reset;

within[t,t+4]:environment assumptions;

at t:command(mulXXX,op1,op2);

prove:
at t+4:ip res=command res(mulXXX,op1 at t,op2 at t);

end theorem;

Table 1: Sketch of an arithmetic property

the correct implementation of the instruction set of a pro-
cessor. For an arithmetic instruction one can specify the
result by an arithmetic expression command res(operands).
It is clear that in general the unrolled circuit and the syn-
thesized expression are structurally dissimilar. Moreover,
the unrolled circuit may still contain a significant amount
of control logic. Therefore, a general methodology needs to
address two problems. First, it has to avoid that the SAT
solver reasons over the entire globally reconvergent network
created by expression and design. Second, it has to deal
with the control parts embedded in the unrolled circuit.
The first issue is addressed in Sections 3 and 4. We will
develop a normalization process that transforms both, prop-
erty and design, in a way such that structural similarity is
created and used for globally simplifying the SAT instance.
The second issue is addressed in Section 5 where it is dis-
cussed how the embedded control parts are handled.

3. ABL DESCRIPTION
In this section we will define an arithmetic bit level descrip-
tion (ABL) of a circuit. An ABL models three kinds of
objects: partial products, addition networks and compara-
tors. Therefore, we first define what these basic objects are
and then compose them into a graph. Sometimes we want
to map bit vectors onto the unsigned integer they represent
and use the notion ZZ(x) :=

P
i=0..n 2ixi. Furthermore, mod

denotes the modulo operation on ZZ, i.e., a mod b := k where
k is the smallest k ≥ 0 such that there is an m ∈ ZZ with
a − bm = k.
An addition network calculates a weighted sum

P
l∈A wll

over a set of boolean variables A where the weights are
(signed) integers. Formally, we define:

Definition 1. An addition network N is a 4-tuple
(A, r, w, c) where:

• A is a set of boolean variables with A = A0 ∪ · · · ∪An,

• r = (r0, . . . , rn) is a vector of boolean variables,

• w = (w0, . . . , wn) is a vector of mappings
wi : Ai → ZZ,

• c = (c0, . . . , cn) is a vector of integers ci ∈ ZZ.

We call A the set of addends of the addition network and
n + 1 the number of columns of N . a ∈ Ai is called an

addend of column i of the network. For each addend a,
wi(a) is called its weight. ri is called the result of column i.
ci is called the constant offset of column i.
The result r of N is constrained by the addends through the
following equation:

ZZ(r) = (
X

i=0..n

2i(ci +
X

a∈Ai

wi(a)a)) mod 2n+1. (1)

Note that Ai ∩ Ak = ∅ does not necessarily hold, i.e., an
addend can be added to different columns of the addition
network. Moreover, every addition network can be identified
with a boolean function that is a composition of halfadders.
This is easy to see for addition networks without negative
weights. Fortunately, we can eliminate negative weights in
an addition network. Suppose we have wi(a) < 0 for an ad-
dend a with i < n. By redefining the weight of the addend a
as w′

i(a) = −wi(a) and w′
i+1(a) = wi+1(a)+wi(a), we obtain

an equivalent addition network where the negative weight is
moved to column i + 1. In this way, we can move all nega-
tive weights to column n. For this column we can redefine
w′

n(a) = −wn(a) to obtain an equivalent network with pos-
itive weights. To prove this we consider Equation 1 again.
With x + 2nwn(a) − (x − 2nwn(a)) = 2n+1wn(a) it follows
that (x − 2nwn(a)) mod 2n+1 = (x + 2nwn(a)) mod 2n+1,
i.e., the right hand side of Equation 1 is unchanged.
Negative weights will be used to handle signed arithmetic
operations. But since they can be removed in the shown way
they do not need special consideration in the normalization
technique to be developed.
As an example for an addition network we model the piece
of circuitry in Figure 1 as follows:

• A0 = {x0}, A1 = {x1, x2}, A2 = {x3}, A3 = ∅,
• r = (y0, y1, y2, y3),

• wi(x) = 1 for all x ∈ Ai and all i,

• c = (0, 0, 0, 0).

HA

HA

x
1

x
2

x
3 y

3

y2

y
1

y
0

x
0

Figure 1: Addition network of a 2-bit multiplier

The addition network of Figure 1 produces carries in
columns 1 and 2. Formally we define:

Definition 2. An addition network generates carries in
column k if there is an assignment of the addends such that

sk := (
X

i=0..k

2i(ci +
X

a∈Ai

wi(a)a)) ≥ 2k+1 or sk ≤ −2k+1.

Next, we would like to model partial product generators. A
partial product generator models bitwise multiplication of
two vectors of boolean variables.

Definition 3. A partial product generator P is a triple
(o1, o2, p) where o1 = (o1,0, . . . , o1,n), o2 = (o2,0, . . . , o2,m)
and p = (p0, . . . , pn∗m) are vectors of distinct boolean vari-
ables. The oi,k are called bit-level operands, the pi are called
partial products. o1 and o2 are called word-level operands.
The partial products are constrained by

pi+nk = o1,i · o2,k.

458

Combining addition networks and partial product gener-
ators we can model the arithmetic bit vector functions
+ and ∗. Since weights may be negative, we can also model
subtraction and signed multiplication. Subtraction of two
bit vectors (ak, . . . , a0) and (bk, . . . , b0) is modeled by an
addition network with Ai = {ai, bi}, wi(ai) = 1, wi(bi) =
−1 and ci = 0. For signed multiplication of bit vectors
(ak, . . . , a0) and (bl, . . . , b0) we subtract the partial products
akbi(i < l) and ajbl(j < k) from the appropriate columns
in the addition network, i.e., wk+i(akbi) = −1(i < l) and
wj+l(ajbl) = −1(i < l).
In the following, this framework is extended by a comparator
that represents bit vector comparisons like = and 	=. Dur-
ing the normalization process we will exploit the invariant
of these comparison operations that addition of any value
x to both operands of a comparator does not change the
result. Note that due to possible overflows of the addition
this invariant does not hold for <, >,≤ and ≥. However,
under certain restrictions on addition networks in the fanin
of such a comparison normalization can be performed in the
same manner as it will be introduced for = and 	= in the
following.

Definition 4. A comparator C is a 4-tuple (c1, c2, o, f)
where c1 and c2 are vectors of boolean variables c1 =
(c1,0, . . . , c1,n) and c2 = (c2,0, . . . , c2,n), o is a boolean vari-
able, and f is a mapping f : Bn × Bn → B such that
f(x, y) = f(x + z, y + z) for all z ∈ Bn where + denotes
bit-vector addition. The ci are called operands, o is called
the result and f is called the comparison function. o is con-
strained by the operands by the boolean function

o = f(c1, c2).

From the basic blocks described above we can now compose
our arithmetic bit level description by the following defini-
tion.

Definition 5. Let N be a set of addition networks, P be
a set of partial product generators and C be a set of com-
parators. An arithmetic bit level description (ABL) is a
directed acyclic graph G = (V, E), where V is the union
V = N ∪ P ∪ C.

With this definition we have not yet defined the topology of
the graph. For example, it allows edges between addition
networks that have no variable in common. Before defining
the topology, we define the terms fanin and fanout variable
for the components of the ABL.

Definition 6. A boolean variable v is called fanin vari-
able of an addition network N iff v is an addend of N . v is
called fanin variable of a partial product generator P iff v is
an operand of P . v is called fanin variable of a comparator
C iff v is an operand of C. v is called fanout variable of an
addition network N iff v is a result of N . v is called fanout
variable of a partial product generator P iff v is a partial
product of P .

A correct topology for the ABL is derived from the
fanin/fanout relationship between the components as fol-
lows:

Definition 7. An ABL has a correct topology iff for all
(x, y) ∈ E there is a boolean variable l such that l is fanin
variable of y and l is fanout variable of x.

In the following, all ABLs are supposed to have correct
topology. Note that edges (c, a) or (c, p) with a ∈ N , p ∈ P
and c ∈ C are prohibited by Definition 7. Every node of an
ABL represents a multi-output boolean function and the en-
tire ABL corresponds to the composition of these functions.
Hence, we can establish an equivalence relation on the set
of ABLs.

Definition 8. Two ABLs A, B are equivalent iff they
represent the same boolean function.

4. NORMALIZATION
In this section we define a normal form for an ABL and de-
scribe an algorithm to normalize a given ABL. Before we
go into details, we would like to motivate our ideas with a
small example. Suppose we have a circuit for evaluating the
polynomial p = ax2 + bx+ c in two clock cycles using a mul-
tiply/accumulate unit that calculates o = xy + z. Unrolling
this circuit leads to the expression p = (ax+ b)x+ c. At the
word level one could use the distributive law to normalize
both expressions to p = ax2 + bx + c.
The same kind of normalization can be achieved at the bit
level. Let us suppose that all the operands a, b, c and x are
unsigned two-bit numbers.
Then, we have

p = (2a1 +a0)(2x1 +x0)
2 +(2b1 + b0)(2x1 +x0)+ (2c1 + c0).

We use the distributive law to normalize this expression:

p = 8a1x1 + 8a1x0x1 + 4a0x1 + 4a0x0x1 + 4b1x1

+2a1x0 + 2b0x1 + b0x0 + 2b1x0 + 2c1 + a0x0 + c0.

Unfortunately, in practice we cannot use term representa-
tions like this due to those parts in the design where the
designer realizes an arithmetic function by instantiating bit-
level arithmetic units like halfadders or fulladders. We refer
to these blocks as hard-coded arithmetics. They are used
by designers to obtain more sophisticated implementations.
In these implementations intermediate results cannot be de-
scribed at the word-level and word-level signals are broken
down to the bit-level using slice operators. Generating the
above representation is not practical in this scenario. How-
ever, the intuitive view of normalization translates to our
notion of ABLs in the following way:

Definition 9. An ABL (N ∪ P ∪ C, E) is in normal
form iff E does not contain any edge (N, P) with N ∈ N
and P ∈ P.

In other words, no addition network feeds a partial product
generator.

Definition 10. An ABL (N ∪P ∪C, E) in normal form
is reduced iff the following conditions hold:

a) For all N1, N2 ∈ N for which there is a C ∈ C such
that (N1, C) ∈ E and (N2, C) ∈ E, N1 and N2 do not
have any common addends.

b) There is no edge (N1, N2) ∈ E with N1, N2 ∈ N .

ABLs in reduced normal form do not cascade addition net-
works and simplify comparisons by subtraction of common
addends. Note that the reduced normal form is not canoni-
cal. For example, one could add a constant offset of 2 to the
uppermost column of any addition network and obtain an
equivalent network. Theorem 1 states that every boolean
function can be expressed by an ABL in reduced normal
form. This implies that a reduced normal form for an ABL
always exists.

459

Theorem 1. For every boolean function there is an
equivalent ABL in reduced normal form.

Proof: Let f be a boolean function. f can be expressed in
(positive) Reed-Muller normal form, i.e., f =

P Q
xi, whereP

denotes exclusive OR and
Q

denotes conjunction. Hence
all products

Q
xi can be expressed by cascaded 1×1 partial

product generators. The entire sum can be represented by
an addition network with one column. The products are the
addends of this column with weight 1. �
From the proof of Theorem 1 one could immediately derive a
normalization algorithm for ABLs. However, calculating the
Reed-Muller normal form is not efficient. Furthermore,in the
ABLs, calculated in the proof, all addition networks consist
of a single column only. This eliminates the great benefit
of addition networks that they implicitly represent carries
between their columns. The rest of this section therefore
describes an efficient heuristic algorithm that determines a
reduced normal form directly on a given ABL.

Definition 11. Two addition networks N1 and N2 are
merged into the addition network N3, iff the ABLs (V, E) =
({N3}, ∅) and (V ′, E′) = ({N1, N2}, {(N1, N2)}) are equiva-
lent.

In other words, we can replace N1 and N2 by N3.

Lemma 1. Let N1, N2 be addition networks in an ABL
with (N1, N2) ∈ E. Further let N1 not generate any carries
in the uppermost column. N1 can be merged with N2 if one
of the following conditions holds:

• A column k ≥ 0 of N1 exists such that for each column
j ≥ k the result rj is an addend of column j−k of N2.

• A column k ≥ 0 of N2 exists such that for each column
i of N1 the result ri is an addend of column i + k of
N2.

A column i of an addition network N1 can be merged with a
column j of an addition network N2 if the results of i is an
addend of j.

Two addition networks can be merged in linear time in the
number of addends. This is done by adding all the addends
of N1 to the appropriate addend sets of N2 and redefining
the weight functions and constant offsets accordingly.

Definition 12. Let P1, P2 and P3 be partial product gen-
erators. P1 and P2 are merged into P3 iff for all partial
products of P1 and P2 an equivalent partial product of P3

exists.

Lemma 2. Let P1, P2 be partial product generators in an
ABL. P1 and P2 can be merged if they have a common word-
level operand.

Merging of partial product generators means concatenating
the non-common operands. This can be done in linear time
in the number of operands. If the operands are sorted one
can check the condition of the above lemma in linear time.
Hence the complexity of the merge routine can be bounded
by O(n log n).

Definition 13. Let P be a partial product generator and
N be an addition network with (N, P) ∈ E. P can be dis-
tributed through N iff there is a partial product generator
P ′ and addition networks N ′

1 . . . N ′
k that add up the partial

products of P ′ such that replacing N and P by N ′
1 . . . N ′

k and
P ′ yields an equivalent ABL.

Lemma 3. Let P be a partial product generator and N
be an addition network with (N, P) ∈ E and (N, X) ∈ E ⇒
X = P . P can be distributed through N if one of the operand
sets of P equals the set of results of N .

Note that the conditions of Lemma 3 can always be fulfilled
by duplicating the addition network (in the case of fanout)
and extending the partial product generator such that all
results of the addition network are operands on P .
Figure 2 visualizes the distribution of a 2×1 partial product
generator through a halfadder. Distributing partial product
generators replicates the addition network k times if k is the
size of the second operand of the partial product generator.
Note that this is a potential source of memory blowup. In
practice it turns out that the new addition networks can
usually be merged to some other addition network immedi-
ately.

HA

c

b

a e

f

c

b

a e

fHA

distribute

Figure 2: Distribution of partial products

With these two operations we are now able to move all par-
tial product generators in front of all addition networks, i.e.,
we can normalize and reduce an ABL. This is done by the
following process:

1. merge addition networks
2. merge partial products
3. distribute partial products
4. merge addition networks
5. determine equivalent partial products
6. remove common addends from each pair of addition

networks feeding a common comparator

In fact, for normalization step 3 is sufficient. All the other
steps are added to ensure that the resulting ABL is also
reduced.

5. HANDLING CONTROL LOGIC
In this section we describe how to eliminate control logic
separating arithmetic blocks in a design.

5.1 Constant propagation
For properties like the one sketched in Table 1, the frontend
of a bounded model checker augments the unrolled circuit
with logic creating an output for both, assumptions and
property. The assumptions are set to 1 when proving the
property. In many cases these constants will propagate deep
into the circuit. For example, the assumption that a spe-
cific multiplication instruction is executed will specify a lot
of internal control signals connecting the decoder and the
integer pipeline of a microprocessor. Unfortunately, prop-
agation is not complete. Hence, in real-life problems after
constant propagation there always remains some logic that
separates the arithmetic parts from each other. However,
it turns out that this logic is transparent, i.e., a SAT algo-
rithm can easily prove that equivalences between the out-
puts of one arithmetic block and the inputs of some other
arithmetic block exist or that certain signals are constant.
These equivalences and constants are then used for logic
substitutions which eliminate the remaining logic.

460

5.2 Handling difficult cases by abstraction
There are practically relevant properties where the commit-
ment is not a pure arithmetic expression. These proper-
ties contain a small portion of control. An example for this
kind of problem is multiplication with saturation. Satura-
tion means that the output of a circuit is set to a specific
constant when an arithmetic result exceeds a certain thresh-
old value.
In these cases, we can use normalization to obtain a word
level abstraction for the arithmetic part of the design. Fig-
ure 3 illustrates a situation where normalization is useful for
word-level abstraction.

unrolled
arithmetic

circuit
(bit-level)

op1

op2

saturation
detection

0

1
FFFF_FFFF

expression
(word-level)

saturation
detection

0

1
FFFF_FFFF

1?

design after assumption
propagation

commitment

Figure 3: SAT-problem before abstraction

Suppose a design is composed of a hard-coded arithmetic
circuit and a saturation detection unit. For performance rea-
sons the saturation unit also uses inputs to estimate the sat-
uration condition such that only part of the result is needed
to obtain a correct saturation condition. However, in the
property part of the problem (below the dotted line) the
saturation condition is calculated directly on the result of
an expression. In this situation a SAT solver implicitly has
to verify equivalence of the design and the expression in the
property and this causes an exponential blowup.
With normalization it is easily verified that the arithmetic
circuit portion implements an arithmetic word-level expres-
sion. The problem is then simplified by sharing the word-
level expression and removing the unrolled circuitry. In
essence, we have abstracted the arithmetic circuit portion
in the design by the word-level expression.
This abstracted instance can then be handled using hybrid
solvers like [2, 5]. In our experiments we even solved 32-bit
instances of this kind of problem after abstraction using a
standard SAT solver.

6. EXPERIMENTAL RESULTS
In this section we provide data from the experiments we
conducted with our implementation of the normalization al-
gorithm called ABLProp.
This section is divided into two parts. In the first part we
explore the scalability of our approach with respect to the
bit width of the arithmetic operations. Then, the second
part describes our experience with applying the method to
verify the integer pipeline of an industrial microprocessor.

6.1 Scalability
To demonstrate the scalability of the proposed approach we
applied it to normalize the following equations:

ab + ac = a(b + c) (2)

a(bc) = (ab)c (3)

a ∗ b = a[0 : n − 1] ∗ b[0 : n − 1] (4)

+2na[n : 2n − 1] ∗ b[0 : n − 1]

+2na[0 : n − 1] ∗ b[n : 2n − 1]

+22na[n : 2n − 1] ∗ b[n : 2n − 1]

We assumed all the operations to be specified at the word-
level and generated ABLs in different bit widths. Note that
equation (4) results when an n-bit multiplier is used to calcu-
late the result of a 2n-bit multiplication in four clock cycles.
Table 2 presents the CPU times to prove the equations for
different operand bit widths. Note that the first column al-
ways reports the bit width of a single operand. For equation
(4) the bit width corresponds to n.

bit width runtime for equation [s]
(2) (3) (4)

4 0.01 <0.01 <0.01
8 0.03 0.02 0.02

16 0.43 0.57 0.09
24 3.21 5.59 0.23
32 15.92 30.06 0.46
48 193.46 386.41 1.37
64 1151.86 2303.47 3.16

Table 2: Experimental results for scalability

Table 2 indicates good scalability of the normalization ap-
proach with respect to operand and result bit widths. A
closer look at the numbers confirms that the runtime com-
plexity is polynomial. But, more importantly, using our
approach we can verify very large instances of arithmetic
blocks in short time. For example, all 192 output bits of the
largest instance of Eq. 3 are verified in about 40 minutes of
total CPU time.

6.2 Industrial Application
We examined our approach for the next-generation 32-bit
super-scalar pipelined microprocessor TriCore 2 [1] with ad-
vanced DSP capabilities developed by Infineon. The goal is
to prove that the integer pipeline of the processor performs
all specified integer operations and returns the correct result
in the result register. In our experience, this can be done for
most of the instructions using Infineons SAT-based bounded
model checker Gateprop. Severe problems occur, however, if
the pipeline also implements advanced arithmetic DSP op-
erations, especially multiplication instructions. The integer
pipeline of the examined design performs more than thirty
different multiply-accumulate instructions and each of them
in several variations. None of the resulting SAT instances
could be solved by a state-of-the-art SAT solver. Word-
level solvers turn out not to be applicable because most of
the arithmetic circuitry is hard coded at the bit-level.
For example, there are signed and unsigned multiplications
of 32- and 16-bit operands and packed instructions where
two 16-bit multiplications are performed on two 32-bit in-
put words in parallel. Moreover, there are different modes
of saturation. Since all these instructions are executed by
the same hardware, a lot of control logic exists around the
hard-coded multipliers used in the design. Moreover, the

461

multiply/accumulate unit is pipelined such that intermedi-
ate results are stored in registers and cannot be modeled at
the word level. Therefore, a property like the one sketched in
Table 1 is also infeasible for word-level decision procedures
like ILP or CLP.
We integrated ABLProp, our implementation of the nor-
malization algorithm, with Gateprop, Infineons industrial
SAT-based bounded model checker. The latter was used to
synthesize design and property into a netlist of bit vector
functions. This netlist has two outputs p and a that refer
to property and assumptions. We have to prove the impli-
cation a ⇒ p. As a first step, we assign the value 1 to a and
propagate this into the bit vector netlist. After this propa-
gation step we translate the arithmetic bit vector functions
into an ABL and normalize this ABL. The normalized ABL
and the non-arithmetic bit vector functions are converted to
CNF and handed over to the SAT solver [6].
Using this flow, we verified a representative subset of arith-
metic instructions with multiplication. Table 3 shows the
CPU times of ABLProp including assumption propagation
and the solution of the final SAT-instance. In the first col-
umn of the table the type of arithmetic instruction is speci-
fied. For the two 32-bit operands 16L and 16U refer to the
lower and the upper halfword. ip res refers to the result reg-
ister of the integer pipeline. Furthermore, << refers to a
leftshift and || refers to the concatenation of two bit vectors.

Multiplication Type CPU time

ip res==signed(16L)*signed(16L)
|| signed(16U)*signed(16U) 6.67 s
ip res==signed(16U)*signed(16L)
||signed(16L)*signed(16U) 6.68 s
ip res==signed(16U)*signed(16L)
||signed(16L)*signed(16L) 6.75 s
ip res==signed(16L)*signed(16U)
||signed(16U)*signed(16U) 6.76 s
ip res==signed(16L)*signed(16L)<< 1
||signed(16U)*signed(16U)<< 1 14 s
ip res==signed(16U)*signed(16L)<< 1
||signed(16L)*signed(16U)<< 1 14.02 s
ip res==signed(16U)*signed(16L)<< 1
||signed(16L)*signed(16L)<< 1 14.11 s
ip res==signed(16L)*signed(16U)<< 1
||signed(16U)*signed(16U)<< 1 14.25 s
ip res==signed(16U)*signed(16U) 8.34 s
ip res==signed(16L)*signed(16L) 3.22 s
ip res==signed(32)*signed(16U) 4.03 s
ip res==signed(32)*signed(16L) 4.1 s
ip res==32 most significant bits of
signed(32)*signed(32) 76.5 s
ip res==signed(32)*signed(16U)
sign Extended to 64 Bits 16.29 s

provide abstraction for
ip res == unsigned(32)*unsigned(32)
saturated to 32 Bits 75.09s

Table 3: Experimental results on industrial proper-
ties

To verify the last instruction we used normalization for ab-
straction as described is Section 5. The CPU time reported
refers to the proof that the abstraction is correct.
For the abstracted model we could prove correctness of ip res

using Gateprop. Table 4 reports run times for the two prop-
erties verifying the overflow and non-overflow case. On the
instances without abstraction the proof was aborted after
2500s.

Property CPU time [s]
abstracted model original model

no overflow 152.32 >2500
overflow 56.61 >2500

Table 4: CPU times for saturation

7. CONCLUSION
We have presented a normalization technique at the arith-
metic bit level. To the best of our knowledge this is the first
verification technique that can handle hard-coded pipelined
arithmetic data paths. Our approach can smoothly be in-
tegrated into modern SAT-based BMC environments. Fur-
thermore, it provides abstractions that are useful to enhance
environments using hybrid solver technology.

8. ACKNOWLEDGMENT
This work was funded in part by Infineon and BMBF un-
der grants No. 01M3072E and 01M3069A. We thank Raik
Brinkmann, Infineon, for a fruitful collaboration.

9. REFERENCES
[1] Infineon TriCore 2 Architecural Manual.

http://www.infineon.com/tricore.

[2] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and
R. Sebastiani. A SAT-based approach for solving formulas over
boolean and linear mathematical propositions. In Proc.
Conference on Automated Deduction (CADE), pages 195–210,
2002.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. In Proc. Intl. Design Automation Conference
(DAC-99), pages 317–320, June 1999.

[4] R. Brinkmann and R. Drechsler. RTL-datapath verification
using integer linear programming. In Proc. Asia and South
Pacific Design Automation Conference (ASPDAC-02),
Bangalore, India, 2002.

[5] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint
solver. In Proc. Design Automation Conference (DAC-03),
pages 830–835, 2003.

[6] N. Een and N. Sörensson. An extensible SAT-solver. In Proc. 6.
Intl. Conf. on Theory and Applications of Satisfiability
Testing(SAT 2003), May 2003.

[7] F. Fallah, S. Devadas, and K. Keutzer. Functional vector
generation for HDL models using linear programming and
boolean satisfiability. IEEE Transactions on CAD,
CAD-20(8), 2001.

[8] P. Johannsen. BOOSTER: Speeding up RTL property checking
of digital designs by word-level abstraction. In Proc.Intl. Conf.
Computer Aided Verification(CAV-01), pages 373–377, July
2001.

[9] P. Johannsen and R. Drechsler. Formal verification on the RT
level computing one-to-one design abstractions by signal width
reduction. In Proc. IFIP International Conference on Very
Large Scale Integration(IFIP VLSI-SOC 2001), Montpellier,
France, 2001.

[10] D. Stoffel and W. Kunz. Verification of integer multipliers on
the arithmetic bit level. In Proc. International Conference on
Computer-Aided Design (ICCAD-01), pages 183–189, San
Jose, CA, November 2001.

[11] M. Wedler, D. Stoffel, and W. Kunz. Arithemetik reasoning in
DPLL-based SAT solving. In Proc. Conference on Design,
Automation and Test in Europe (DATE-04), Paris, France,
2004.

[12] K. Winkelmann, D. Stoffel, G. Fey, and H. Trylus.
Cost-efficient block verification for a UMTS up-link chip-rate
coprocessor. In Proc. Conference on Design, Automation and
Test in Europe (DATE-04), Paris, France, 2004.

[13] Z. Zeng, M. Ciesielski, and B. Rouzeyre. Functional test
generation using constraint logic programming. In Proc. IFIP
International Conference on Very Large Scale Integration
(IFIP VLSI-SOC 2001), Montpellier, France, 2001.

[14] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A unified
approach to RTL satisfiability. In Proc. Conference on Design,
Automation and Test in Europe (DATE-01), Munich,
Germany, 2001.

462

