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ABSTRACT 
This paper proposes a rapid and accurate evaluation scheme for 
cycle counts of a pipelined processor using evaluation reuse 
technique. Since exploration of an optimal processor is a time-
consuming task due to large design space, fast evaluation 
methodology for an architecture is crucial. We introduce the 
performance simulation model which can evaluate the 
performance without considering the functional correctness. This 
model has an FSM-like form and can afford to take all hazard 
types of pipelined architectures into consideration. The proposed 
approach is based on the property that an application program, 
especially multimedia application, has many iterative loops in 
general. This property invokes many iterative operations in the 
simulation. Evaluation reuse scheme can alleviate redundantly 
iterative operations of conventional simulators in the loop. A 
performance simulator for the pipeline architecture has been 
developed through which greater speedup has been made 
compared with other approaches in the evaluation of cycle counts.   

Categories and Subject Descriptors 
I.6.0 [Simulation and Modeling]: General; C.0 [General]: 
Modeling of computer architecture 

General Terms 
Design, Language, Performance 

Keywords 
Retargetable simulation, compiled simulation, evaluation reuse, 
instruction set architecture, trace-driven simulation. 

1. INTRODUCTION 
Simulation of pipelined processors involves different levels of 

abstraction from a gate level to a functional level. Simulation for 
measurement of accurate cycle counts requires an abstraction level 
which is lower than or equal to the cycle-accurate level. 
Unfortunately, the speed of cycle-accurate instruction set 
simulator is very slow because of the complex pipeline 
mechanism. Employing a cycle-accurate simulator is not proper 
for design space exploration.  

There are two purposes of the processor simulation. The one is 
to evaluate the performance of the processor, and the other is to 
verify the functional correctness of the software on the processor. 
Therefore, we can divide the behavior of the simulator according 
to the purpose; functional simulation and performance simulation. 
Since scheduling an instruction in the pipeline depends not on data 
value but on the register/resource usage of it, it is possible to 
separate the timing simulation from the functional simulation. 
Table 1 shows each simulation model and the property of it 
compared to analytic model. We evaluate the accurate 
performance rapidly by use of the performance model, while we 
verify the correctness with functional model. 

This paper proposes a new simulation technique to reduce the 

overhead of performance simulation. The factors affecting the 
cycle count are pipeline hazards[8] which occur as the instructions 
are scheduled. The main point is to simulate only these factors and 
reuse the simulation result(state transition) as possible, not to 
mimic the entire behaviors of the hardware.  

Table 1. Property of the Simulation Models 
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This paper is organized as follows. Section 2 reviews related 

work and in section 3 we propose a FSM-like performance 
simulation model for simulation reuse. Experimental result is 
showed in section 4 and conclusion is made in section 5. 

2. RELATED WORK 
Instruction set architecture simulation(ISS) is the highest 

abstract level of simulation to acquire accurate cycle count for an 
application. Unlike lower level simulation, the overhead of the 
simulation is concentrated on instruction decoding, functional 
operation and instruction scheduling. In the last decade, many 
attempts have been made to reduce above overheads. 

Analytic methods seek to achieve fast evaluation time at the 
sacrifice of evaluation accuracy[2]. In their works, they achieved 
great gain of evaluation speed by sacrificing accuracy by about 10 
percents. In [3], ISS with caching result was used to speed up 
estimation. However, above methods are not feasible in case of 
some complex architectures and applications. Especially, these 
approaches are not proper for a hard real-time application since 
they cannot determine the exact error bound. Compiled simulation 
technique has improved simulation speed which is performing 
instruction decoding at compile time. To improve the simulation 
speed further, static scheduling based techniques move the 
instruction scheduling into the compilation phase[1]. Even though 
getting great speed-up, the simulator still needs inevitable 
dynamic scheduling (indirect branch) and the simulator must 
consider every possible case that can be encountered in dynamic 
scheduling since the simulator attempts to resolve pipeline hazards 
statically at the compile time. Recently, cached compiled 
simulation has been developed[4]. It is useful for dynamic 
switching of instruction set modes or applications with run-time 
dynamic program code. Early pipeline evaluation technique was 
proposed for fast behavioral simulation[5]. The approach can 
compute the subsequent values without consideration of data 
dependency between nearby instructions. Binary translation is a 
well-known fast simulation technique[6] in which target processor 
instructions are executed by host processor instructions after 
translation. High simulation speedup is achieved with difficulty in 
translation which preserves an accurate cycle-counts in pipeline 
architecture. A token-level computational model for fast pipeline 
simulation was also proposed[7]. They proposed new abstraction 
level, named ‘token-level’, in which fast calculation for cycle 
count is achieved. 

This paper proposes a novel simulation technique to reduce the 
overhead of performance simulation. Fast performance simulation 
can be achieved in a way that performance for each instruction in 
the trace is evaluated without functional verification of the 
instruction itself. For this, new abstract performance simulation 
model is introduced. Simulation reuse supports simulation 
speedup by elimination of redundant simulation 
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3. PROPOSED SIMULATION MODEL OF 
A PIPELINED PROCESSOR 
3.1 Pipelined processor simulation 

Instruction set architecture simulator carries out roughly 
following operations; instruction fetch, instruction decoding and 
instruction execution. 

1. instruction fetch : get an instruction from the instruction 
memory as the value of PC 

2. instruction decoding : decode the fetched instruction to 
know the behavior, operands and addressing modes. 

3. instruction execution 
 functional execution : execute the functional behavior of 

the decoded instruction such as arithmetic/logical 
operation, load/store, move, branch, etc. 

 instruction scheduling : check the hazard of pipeline and  
manage the advance of the instruction in the pipeline.  

Most of the simulation time is consumed by instruction 
decoding and instruction execution since they have many 
operations of comparison for the decoding and scheduling. 
Therefore, the performance of a simulator heavily depends on how 
the instruction decoding and the instruction execution are 
achieved. 

Generally, an application program is loop-intensive. As rule of 
thumb, a program spends 90% of its time in 10% of its code. 
Especially, multimedia applications perform loop-iterative data 
processing with massive input data. Whenever the instruction at 
the same memory address is executed, the simulator carries out the 
same operation of instruction fetch and instruction decoding. In 
compiled simulation, the instruction decoding is only performed 
once for each instruction(see figure 2), whereas interpretive 
simulators decode the same instruction multiple times if it is part 
of a loop(see figure 1). In token-level simulation, functional 
simulation is performed first, which generates a trace of executed 
instructions. For the architectures with same instruction 
functionality, they can evaluate the performance of the 
architecture only by scheduling the instructions according to the 
trace without functional execution of them(see figure 3). 

This paper holds the concept of the compiled simulation and 
token-level simulation. In addition to two concepts, our work has 
emphasis on reducing the simulation overhead of instruction 
scheduling. We introduce a basic block based performance 
simulation model(figure 4). Compared to the conventional 
simulation, the basic block based simulation can reduce iterative 
redundant operations such as managing pipeline, thereby 
achieving speedup in evaluation. 
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Figure 1.  Interpretive simulation flow 
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Figure 3. Token-level simulation flow 
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Figure 4. Proposed framework of fast evaluation 

3.2 Performance Simulation Model 
Though a same sequence of instructions is executed iteratively 

in the same loop, scheduling of the instructions still depends on 
the scheduling of the preceding instructions. Therefore we should 
define the architectural state of the processor at the highest 
abstract level where we can schedule cycle-accurately an 
instruction into the pipeline. For this, we modeled the processor 
behavior the finite state machine form. We considered the 
followings among others in our model. 

 single issued scalar architecture 
 inter-basic block hazard as well as intra-basic block hazard 
 the instruction which has various execution stages with 

different durations 
 multi-level instruction/data cache  memory (the model is 

extended in section 3.3.2) 
To schedule instructions in the basic block, we need only to 

consider the structural hazards and the data hazards since control 
hazard cannot happen. These two hazards arise from resource 
conflict and data dependency. Therefore, the state of the FSM 
model should include the use of registers and functional units. We 
introduce a scoreboard to show the use of registers and functional 
units at each cycle. However, scheduling an instruction is affected 
not by the scoreboard at a cycle, but by a set of scoreboards for a 
few cycles while the instruction remains in the pipeline. Therefore 
the state of the model is determined by a set of scoreboards which 
affect scheduling of a current instruction. Here is the modeling 
formalism 
M = <R, SB, S, I, C, λ, δ>, where 

 R : union of a set of registers and a set of resources 
 SB : 2R, a set of scoreboard about the uses of registers and 

resources 
 S : 2SB, a set of scoreboards for several cycles 
 I : a set of instructions with usage of registers and resources 
 C : C⊂ N, a set of number of cycle count ( N: natural number) 
 λ : S  C, output function  
 δ : S × I  S, scheduling function 
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λ
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Figure 5. Semantics for performance modeling 

As opposed to a real pipelined processor, the proposed model 
computes all pipelined hazards of an instruction and schedules the 
instruction in the pipeline at a time, not at cycle by cycle. 
Scheduling function δ denotes state transition, while λ means 
output function generating cycle count. In fact, state transition 
means scheduling of an instruction, which is resolved as 
inspecting and stalling the instruction if any hazard occurs. Cycle 
count means the cycle until the next instruction will be fetched. 
The example about the state transition is showed in figure 6. The 
processor under consideration is assumed to have a 4-stage 
pipeline consisting of {IF, ID, EX, WB} with data forwarding 
from EX to ID. We assume that mov, sub and add instruction take 
1 cycle in ALU, while mul instruction takes 4 cycles in multiplier 
unit. 4 instructions (I1~I4) are scheduled as figure 6 shows.  

I1 : mov r0 r1

I2 : mul r3 r0

I3 : add r2 r4

I4 : sub r5 r4
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Figure 6. Scheduling instructions in the pipeline 

In figure 6, hyphen(-) means the stall of the pipeline and other 
alphabets represent IF, ID, EX and WB, respectively. Figure 7 
illustrates the state(scoreboards) transitions for each instruction. 
The next state is determined by timing behavior of each 
instruction. In figure 7, each line of ScoreBoards represents a 
scoreboard for each cycle. ID, ALU, MUL and WB indicate the 
used resources while r0~r5 represent registers. Above modeling 
formalism, total state space has exponential complexity, but 
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moveable state space at simulation run-time is a tiny part of it due 
to reiteration of inputs. 

S0 S1

C = 0
ScoreBoards
2 : ID
3 : ALU, r0
4 : WB

S2

C =1
ScoreBoards
3 : ALU,r0,ID
4 : WB,MUL,r3
5 : MUL,r3
6 : MUL,r3
7 : MUL,r3
8 : WB

S3

C = 2
ScoreBoards
4 : WB, MUL,r3,ID
5 : MUL,r3,ALU,r2
6 : MUL,r3,ALU
7 : MUL,r3,ALU
8 : WB, ALU
9 : WB

S4

C =3
ScoreBoards
5 : MUL,r3,ALU,r2,ID
6 : MUL,r3,ALU, ID
7 : MUL,r3,ALU, ID
8 : WB, ALU, ID
9 : WB, ALU, r5
10 : WB

mov r0 r1 add r2 r2 sub r3 r4 sub r5 r3

C = 0
ScoreBoards
N/A

 
Figure 7. State transitions of figure 6 

3.3 Cycle Count Calculation with Simulation 
Reuse 

To get an accurate cycle counts, we assume that the latencies of 
function units are independent of the input values. We will discuss 
about the instruction which has data-varying latency in section 3.4. 

3.3.1 Processor without cache memory 
The FSM is deterministic, that is, each combination of state and 

input unambiguously defines the next state to move into. Unlike 
general FSM, our processor model has iterative a sequence of 
inputs due to loop-intensive property of applications. 
Consequently, it has high probability of same transition, so it is 
possible to reuse the state transition for achieving efficient 
simulation. Whenever the first instruction of a basic block is going 
to be executed, the simulator looks up the state table entry of the 
basic block that corresponds to the current pipeline state. The 
previously stored data, such as final state and executed cycles is 
used to accelerate the simulation. Figure 7 illustrates the workflow 
of the reuse based simulation. We assume the simulator is going to 
execute the first instruction of the basic block 4 and current 
executed cycles are 384. First, the simulator looks up the initial 
state in the state table of the basic block 4(1) and receives that this 
state has not been executed before. Therefore the instruction 
scheduler is invoked(2) which schedules all instructions in the 
basic block and stores the data(initial state, final state and cycle) 
in the state table(3). Finally the instruction scheduler updates the 
current state and executed cycle of the simulator(4), which is used 
to check structural/data hazards between the basic blocks. If there 
exists any initial state same with current state, step (2) and step (3) 
will be omitted.  
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Figure 8. Simulation reuse flow without cache memory 

When a control hazard occurs, a cycle count is affected by a 
branch prediction result. In case of branch prediction hit, no cycle 
count is added, otherwise a cycle count for the miss penalty 
should be added and the final state should be delayed by the 
amount of miss penalty.  

3.3.2 Processor with Cache Memory 
In case of a processor with cache memory, the simulation reuse 

is more complex. Since scheduling an instruction is affected by 
cache status, i.e. cache miss requires a multi-cycle memory 
operation, we should consider the cache state in addition to the 
state of registers and resources. However, the state of the cache 
memory is so complex in some architectures that the state space of 
processors can enlarge terribly. We solved this problem with the 
use of an extra cache simulator such as DINERO-IV[10]. The 
cache simulator analyzes the overall cache state to determine 
whether cache hits or not. The cache hit/miss trace generated by 
the cache simulator, allows us to simulate the processor without 
considering the cache status. When load/store instructions are 

fetched, the latency of the memory operation is determined as the 
hit/miss trace. We add only cache hit/miss trace to existing state, 
so we can reduce the cache state space greatly. Here is extended 
modeling formalism.  
M = <SB, S, RG, RS, I, CT, C, λ, δ>, where 

 R : union of a set of registers and a set of resources  
 SB : 2R, a set of scoreboard about the uses of registers and 

resources 
 S : 2SB, a set of scoreboards for several cycles 
 I : a set of instructions with usage of registers and resources 
 C : C⊂ N, a set of number of cycle count ( N:natural number) 
 λ : S  C, output function 
 δ : S × I × {Hit, Miss}  S, scheduling function 
In case of memory instruction, cycle calculation and instruction 

scheduling depend on cache hit/miss, while they do not care cache 
hit/miss in case of the other instructions.  

3.4 Limitation 
Though our work is concentrated on a scalar pipelined processor, 

we can easily extend to statically scheduled processors such as 
VLIW(very long instruction word) processor, whereas in case of 
dynamically scheduled processor, i.e. superscalar, we should 
consider various factors which affect the instruction scheduling, 
which enlarge the state space of our framework.  

In some architecture, execution time of some instructions such 
as multiply, divide or square root, depends on data, so it is 
possible that the same basic block in a loop will take different 
number of cycles to execute. In this case, we should consider the 
input value of the instructions. To prevent the state space from 
enlarging greatly, we only add the resolved latency of the 
instructions to the state, not the value of data. We can get the input 
data of the instructions since we employed the functional 
simulator earlier. With the input data trace affecting the cycle 
count, our simulator can schedule instructions accurately and 
reuse the simulation result.  

4. EXPERIMENT 
Simulation experiment with ARM9TDMI has been performed to 

show the efficiency of the proposed evaluation method. 
ARM9TDMI is a high performance Thumb compatible processor, 
which provides a performance upgrade path from ARM7TDMI. 
Three application programs, namely ADPCM, IDCT and g.721, 
are selected from MediaBench for performance simulation. The 
experiment is done using AMD AthlonXP 2100+ running on 
Windows XP. Modeling of the processor is done by using the XR2 
architecture description language developed in our previous 
research[9].  

Table 2 shows comparison of simulation efficiency for the 
proposed approach against three other approaches: instruction set 
behavioral simulation(ISS), token-level simulation[7] and cycle-
accurate simulation(using compiled simulation technique[1]). In 
the table simulation results are represented in terms of MIPS 
(million instructions per second) and MCPS (million cycles per 
second). ISS is represented only by MIPS since it includes not 
cycle information but behavior information of the instructions, As 
a result, the proposed evaluation method is 4~21 times faster than 
a state of the art simulator. 

Table 2. Comparison of Simulation Performance 
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As we know from the above tables, evaluation efficiency of 

proposed reuse-based simulation is highly dependent of the 
characteristics of application programs. The more basic blocks 
with distinct initial state(DBB) iterate, the more speedup will be 
gained. Figure 10 presents the number of instructions on each 
DBB and the number of iterations in each DBB. In summary, table 
3 shows total reuse ratio of instruction scheduling for each 
application. In case of G721, the number of iterations is relatively 
small that we cannot get much gain for speedup, while in case of 
ADPCM and IDCT, the high frequency of the basic blocks 
enables us to evaluate the cycle count rapidly.  

343



ADPCM : # of instruction

0

5

10

15

20

25

0 2 4 5 7 8 9

1
0

1
2

1
4

1
4

1
6

1
6

1
8

1
9

2
0

2
1

2
3

2
3

2
4

2
5

2
5

Distinguished Basic Blcok

IDCT : # of instruction

0

20

40

60

80

100

120

140

160

0 2 4 6 8 9 11 12 14 16 17 19 20 21 22 23 25

Distinguished Basic Block

g721 : #  of instruction

0

5

10

15

20

25

30

0 10 17 26 35 42 52 62 72 81 91 101 111 119 128 138148 158 168 178 187 196

Distinguished Basic Block  
ADPCM : # of iteration

0

200

400

600

800

1000

1200

1400

0 2 4 5 7 8 9

1
0

1
2

1
4

1
4

1
6

1
6

1
8

1
9

2
0

2
1

2
3

2
3

2
4

2
5

2
5

Distinguished Basic Block

IDCT : # of iteration

0

200

400

600

800

1000

1200

0 2 4 6 8 9 11 12 14 16 17 19 20 21 22 23 25

Distinguished Basic Block

g721 : #  of iteration

0

20

40

60

80

100

120

0 10 17 26 35 42 52 62 72 81 91 101111 119128 138 148158 168178 187196

Distinguished Basic Block  
Figure 10. Characteristics of each application

Table 3. Reuse Ratio of applications 
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Figure 11 shows the simulation results including cache. The 

cache memory under consideration is assumed to have 1-level 
data cache, size of 8192 bytes, 1 associative, LRU replacement 
and block size of 16. The experiment shows that evaluation 
performance does not affected greatly by cache memory. It is due 
to execution locality of the program and high cache hit ratio. 
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Figure 11. Simulation 

performance with cache 
We compare the speed for ADPCM of our approach with 

previous works in figure 12. Since they made an experiment on 
the host machine which is different from ours, we calibrated their 
result as to the clock frequency of the CPU. The proposed 
approach is quite fast compared to other approaches from the 
figure. Though the result of our approach does not include the 
overhead of obtaining the basic block traces, it may not matter 
much since behavioral simulation is very fast compared to cycle 
accurate simulation. 

5. CONCLUSION 
This paper proposed a reuse-based evaluation approach which 

supports an accurate, fast simulation for evaluation of high-
performance applications, especially loop-intensive ones. The 
evaluation method can be applied to reduce cost of design space 
exploration for pipelined processors. Within the approach, reusing 
result eliminates iterative scheduling an instruction and checking 
structural/data hazards. Experimental result showed that 
simulation speed of the proposed approach is about 4~21 times 
faster than a state of the art simulator reported in literature. This 
technique can be applied not only to scalar processors but also to 
static-scheduled ILP (Instruction Level Parallelism) processors 
such as a VLIW processor. Future work will concentrate on the 

system-level simulation including co-simulation as well as fast 
high-level power estimation. 
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