
Performance Simulation Modeling for Fast Evaluation
of Pipelined Scalar Processor by Evaluation Reuse

Ho Young Kim and Tag Gon Kim
Systems Modeling Simulation Laboratory, Dept of EECS, KAIST, Korea

hykim@smslab.kaist.ac.kr, tkim@ee.kaist.ac.kr

ABSTRACT
This paper proposes a rapid and accurate evaluation scheme for
cycle counts of a pipelined processor using evaluation reuse
technique. Since exploration of an optimal processor is a time-
consuming task due to large design space, fast evaluation
methodology for an architecture is crucial. We introduce the
performance simulation model which can evaluate the
performance without considering the functional correctness. This
model has an FSM-like form and can afford to take all hazard
types of pipelined architectures into consideration. The proposed
approach is based on the property that an application program,
especially multimedia application, has many iterative loops in
general. This property invokes many iterative operations in the
simulation. Evaluation reuse scheme can alleviate redundantly
iterative operations of conventional simulators in the loop. A
performance simulator for the pipeline architecture has been
developed through which greater speedup has been made
compared with other approaches in the evaluation of cycle counts.

Categories and Subject Descriptors
I.6.0 [Simulation and Modeling]: General; C.0 [General]:
Modeling of computer architecture

General Terms
Design, Language, Performance

Keywords
Retargetable simulation, compiled simulation, evaluation reuse,
instruction set architecture, trace-driven simulation.

1. INTRODUCTION
Simulation of pipelined processors involves different levels of

abstraction from a gate level to a functional level. Simulation for
measurement of accurate cycle counts requires an abstraction level
which is lower than or equal to the cycle-accurate level.
Unfortunately, the speed of cycle-accurate instruction set
simulator is very slow because of the complex pipeline
mechanism. Employing a cycle-accurate simulator is not proper
for design space exploration.

There are two purposes of the processor simulation. The one is
to evaluate the performance of the processor, and the other is to
verify the functional correctness of the software on the processor.
Therefore, we can divide the behavior of the simulator according
to the purpose; functional simulation and performance simulation.
Since scheduling an instruction in the pipeline depends not on data
value but on the register/resource usage of it, it is possible to
separate the timing simulation from the functional simulation.
Table 1 shows each simulation model and the property of it
compared to analytic model. We evaluate the accurate
performance rapidly by use of the performance model, while we
verify the correctness with functional model.

This paper proposes a new simulation technique to reduce the

overhead of performance simulation. The factors affecting the
cycle count are pipeline hazards[8] which occur as the instructions
are scheduled. The main point is to simulate only these factors and
reuse the simulation result(state transition) as possible, not to
mimic the entire behaviors of the hardware.

Table 1. Property of the Simulation Models

verifiedImpossibleFunctional model

not verified
relatively fast,

accurate

Performance

model

verifiedslow, accurateTraditional model

Simulation

Model

not verifiedfast, but inaccurateAnalytic Model

Functional

correctness

Evaluation

Performance

verifiedImpossibleFunctional model

not verified
relatively fast,

accurate

Performance

model

verifiedslow, accurateTraditional model

Simulation

Model

not verifiedfast, but inaccurateAnalytic Model

Functional

correctness

Evaluation

Performance

This paper is organized as follows. Section 2 reviews related

work and in section 3 we propose a FSM-like performance
simulation model for simulation reuse. Experimental result is
showed in section 4 and conclusion is made in section 5.

2. RELATED WORK
Instruction set architecture simulation(ISS) is the highest

abstract level of simulation to acquire accurate cycle count for an
application. Unlike lower level simulation, the overhead of the
simulation is concentrated on instruction decoding, functional
operation and instruction scheduling. In the last decade, many
attempts have been made to reduce above overheads.

Analytic methods seek to achieve fast evaluation time at the
sacrifice of evaluation accuracy[2]. In their works, they achieved
great gain of evaluation speed by sacrificing accuracy by about 10
percents. In [3], ISS with caching result was used to speed up
estimation. However, above methods are not feasible in case of
some complex architectures and applications. Especially, these
approaches are not proper for a hard real-time application since
they cannot determine the exact error bound. Compiled simulation
technique has improved simulation speed which is performing
instruction decoding at compile time. To improve the simulation
speed further, static scheduling based techniques move the
instruction scheduling into the compilation phase[1]. Even though
getting great speed-up, the simulator still needs inevitable
dynamic scheduling (indirect branch) and the simulator must
consider every possible case that can be encountered in dynamic
scheduling since the simulator attempts to resolve pipeline hazards
statically at the compile time. Recently, cached compiled
simulation has been developed[4]. It is useful for dynamic
switching of instruction set modes or applications with run-time
dynamic program code. Early pipeline evaluation technique was
proposed for fast behavioral simulation[5]. The approach can
compute the subsequent values without consideration of data
dependency between nearby instructions. Binary translation is a
well-known fast simulation technique[6] in which target processor
instructions are executed by host processor instructions after
translation. High simulation speedup is achieved with difficulty in
translation which preserves an accurate cycle-counts in pipeline
architecture. A token-level computational model for fast pipeline
simulation was also proposed[7]. They proposed new abstraction
level, named ‘token-level’, in which fast calculation for cycle
count is achieved.

This paper proposes a novel simulation technique to reduce the
overhead of performance simulation. Fast performance simulation
can be achieved in a way that performance for each instruction in
the trace is evaluated without functional verification of the
instruction itself. For this, new abstract performance simulation
model is introduced. Simulation reuse supports simulation
speedup by elimination of redundant simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13-17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

20.3

341

mailto:hykim@smslab.kaist.ac.kr

3. PROPOSED SIMULATION MODEL OF
A PIPELINED PROCESSOR
3.1 Pipelined processor simulation

Instruction set architecture simulator carries out roughly
following operations; instruction fetch, instruction decoding and
instruction execution.

1. instruction fetch : get an instruction from the instruction
memory as the value of PC

2. instruction decoding : decode the fetched instruction to
know the behavior, operands and addressing modes.

3. instruction execution
 functional execution : execute the functional behavior of

the decoded instruction such as arithmetic/logical
operation, load/store, move, branch, etc.

 instruction scheduling : check the hazard of pipeline and
manage the advance of the instruction in the pipeline.

Most of the simulation time is consumed by instruction
decoding and instruction execution since they have many
operations of comparison for the decoding and scheduling.
Therefore, the performance of a simulator heavily depends on how
the instruction decoding and the instruction execution are
achieved.

Generally, an application program is loop-intensive. As rule of
thumb, a program spends 90% of its time in 10% of its code.
Especially, multimedia applications perform loop-iterative data
processing with massive input data. Whenever the instruction at
the same memory address is executed, the simulator carries out the
same operation of instruction fetch and instruction decoding. In
compiled simulation, the instruction decoding is only performed
once for each instruction(see figure 2), whereas interpretive
simulators decode the same instruction multiple times if it is part
of a loop(see figure 1). In token-level simulation, functional
simulation is performed first, which generates a trace of executed
instructions. For the architectures with same instruction
functionality, they can evaluate the performance of the
architecture only by scheduling the instructions according to the
trace without functional execution of them(see figure 3).

This paper holds the concept of the compiled simulation and
token-level simulation. In addition to two concepts, our work has
emphasis on reducing the simulation overhead of instruction
scheduling. We introduce a basic block based performance
simulation model(figure 4). Compared to the conventional
simulation, the basic block based simulation can reduce iterative
redundant operations such as managing pipeline, thereby
achieving speedup in evaluation.

Application
Program Fetch Decode Execute

Run-Time
Figure 1. Interpretive simulation flow
Application
Program

Simulation
complier

Executable
Decoded
Program

Execute

Compile-Time Run-Time
Figure 2. Compiled simulation flow

Application
Program

Functional
Execute

Instruction
Traces

Instruction
Scheduling

Pre Run-Time Run-Time

Simulation
compiler

Decoded
Instructions
For Timing

Figure 3. Token-level simulation flow

Application
Program

Functional
Execute

Basic Block
Traces

Basic Block
Scheduling

Pre Run-Time Run-Time

Simulation
compiler

Decoded
Instructions
For Timing

Instruction
Functional
Description

Instruction
Timing

Description

State
Table

Figure 4. Proposed framework of fast evaluation

3.2 Performance Simulation Model
Though a same sequence of instructions is executed iteratively

in the same loop, scheduling of the instructions still depends on
the scheduling of the preceding instructions. Therefore we should
define the architectural state of the processor at the highest
abstract level where we can schedule cycle-accurately an
instruction into the pipeline. For this, we modeled the processor
behavior the finite state machine form. We considered the
followings among others in our model.

 single issued scalar architecture
 inter-basic block hazard as well as intra-basic block hazard
 the instruction which has various execution stages with

different durations
 multi-level instruction/data cache memory (the model is

extended in section 3.3.2)
To schedule instructions in the basic block, we need only to

consider the structural hazards and the data hazards since control
hazard cannot happen. These two hazards arise from resource
conflict and data dependency. Therefore, the state of the FSM
model should include the use of registers and functional units. We
introduce a scoreboard to show the use of registers and functional
units at each cycle. However, scheduling an instruction is affected
not by the scoreboard at a cycle, but by a set of scoreboards for a
few cycles while the instruction remains in the pipeline. Therefore
the state of the model is determined by a set of scoreboards which
affect scheduling of a current instruction. Here is the modeling
formalism
M = <R, SB, S, I, C, λ, δ>, where

 R : union of a set of registers and a set of resources
 SB : 2R, a set of scoreboard about the uses of registers and

resources
 S : 2SB, a set of scoreboards for several cycles
 I : a set of instructions with usage of registers and resources
 C : C⊂ N, a set of number of cycle count (N: natural number)
 λ : S C, output function
 δ : S × I S, scheduling function

I
δ

CS

λ

Application
program

Cycle
count

M

Figure 5. Semantics for performance modeling

As opposed to a real pipelined processor, the proposed model
computes all pipelined hazards of an instruction and schedules the
instruction in the pipeline at a time, not at cycle by cycle.
Scheduling function δ denotes state transition, while λ means
output function generating cycle count. In fact, state transition
means scheduling of an instruction, which is resolved as
inspecting and stalling the instruction if any hazard occurs. Cycle
count means the cycle until the next instruction will be fetched.
The example about the state transition is showed in figure 6. The
processor under consideration is assumed to have a 4-stage
pipeline consisting of {IF, ID, EX, WB} with data forwarding
from EX to ID. We assume that mov, sub and add instruction take
1 cycle in ALU, while mul instruction takes 4 cycles in multiplier
unit. 4 instructions (I1~I4) are scheduled as figure 6 shows.

I1 : mov r0 r1

I2 : mul r3 r0

I3 : add r2 r4

I4 : sub r5 r4

F D X W

F D X X

F X - -

F D - X

X

D

-

1 2 3 4 5 6 7 8 9 10cycle

X W

- W

W-

Figure 6. Scheduling instructions in the pipeline

In figure 6, hyphen(-) means the stall of the pipeline and other
alphabets represent IF, ID, EX and WB, respectively. Figure 7
illustrates the state(scoreboards) transitions for each instruction.
The next state is determined by timing behavior of each
instruction. In figure 7, each line of ScoreBoards represents a
scoreboard for each cycle. ID, ALU, MUL and WB indicate the
used resources while r0~r5 represent registers. Above modeling
formalism, total state space has exponential complexity, but

342

moveable state space at simulation run-time is a tiny part of it due
to reiteration of inputs.

S0 S1

C = 0
ScoreBoards
2 : ID
3 : ALU, r0
4 : WB

S2

C =1
ScoreBoards
3 : ALU,r0,ID
4 : WB,MUL,r3
5 : MUL,r3
6 : MUL,r3
7 : MUL,r3
8 : WB

S3

C = 2
ScoreBoards
4 : WB, MUL,r3,ID
5 : MUL,r3,ALU,r2
6 : MUL,r3,ALU
7 : MUL,r3,ALU
8 : WB, ALU
9 : WB

S4

C =3
ScoreBoards
5 : MUL,r3,ALU,r2,ID
6 : MUL,r3,ALU, ID
7 : MUL,r3,ALU, ID
8 : WB, ALU, ID
9 : WB, ALU, r5
10 : WB

mov r0 r1 add r2 r2 sub r3 r4 sub r5 r3

C = 0
ScoreBoards
N/A

Figure 7. State transitions of figure 6

3.3 Cycle Count Calculation with Simulation
Reuse

To get an accurate cycle counts, we assume that the latencies of
function units are independent of the input values. We will discuss
about the instruction which has data-varying latency in section 3.4.

3.3.1 Processor without cache memory
The FSM is deterministic, that is, each combination of state and

input unambiguously defines the next state to move into. Unlike
general FSM, our processor model has iterative a sequence of
inputs due to loop-intensive property of applications.
Consequently, it has high probability of same transition, so it is
possible to reuse the state transition for achieving efficient
simulation. Whenever the first instruction of a basic block is going
to be executed, the simulator looks up the state table entry of the
basic block that corresponds to the current pipeline state. The
previously stored data, such as final state and executed cycles is
used to accelerate the simulation. Figure 7 illustrates the workflow
of the reuse based simulation. We assume the simulator is going to
execute the first instruction of the basic block 4 and current
executed cycles are 384. First, the simulator looks up the initial
state in the state table of the basic block 4(1) and receives that this
state has not been executed before. Therefore the instruction
scheduler is invoked(2) which schedules all instructions in the
basic block and stores the data(initial state, final state and cycle)
in the state table(3). Finally the instruction scheduler updates the
current state and executed cycle of the simulator(4), which is used
to check structural/data hazards between the basic blocks. If there
exists any initial state same with current state, step (2) and step (3)
will be omitted.

BB4 Reuse Based
Simulator

0x015da5e0
0x1028e810
0x0007829a

Final state
5

cycle

1

0x0023a5e4
0x1038f8a0

0
Initial stateState

0x015da5e0
0x1028e810
0x0007829a

Final state
5

cycle

1

0x0023a5e4
0x1038f8a0

0
Initial stateState

0x00187e56
0x102937ad

Current state

0x00187e56
0x102937ad

Current state

Instruction
Scheduler

1.Look up2. Request
scheduling

Basic block
trace

3. Update state table

4. Update
current state
and cycles

state table of the BB4

384

Executed Cycle

384

Executed Cycle

Figure 8. Simulation reuse flow without cache memory

When a control hazard occurs, a cycle count is affected by a
branch prediction result. In case of branch prediction hit, no cycle
count is added, otherwise a cycle count for the miss penalty
should be added and the final state should be delayed by the
amount of miss penalty.

3.3.2 Processor with Cache Memory
In case of a processor with cache memory, the simulation reuse

is more complex. Since scheduling an instruction is affected by
cache status, i.e. cache miss requires a multi-cycle memory
operation, we should consider the cache state in addition to the
state of registers and resources. However, the state of the cache
memory is so complex in some architectures that the state space of
processors can enlarge terribly. We solved this problem with the
use of an extra cache simulator such as DINERO-IV[10]. The
cache simulator analyzes the overall cache state to determine
whether cache hits or not. The cache hit/miss trace generated by
the cache simulator, allows us to simulate the processor without
considering the cache status. When load/store instructions are

fetched, the latency of the memory operation is determined as the
hit/miss trace. We add only cache hit/miss trace to existing state,
so we can reduce the cache state space greatly. Here is extended
modeling formalism.
M = <SB, S, RG, RS, I, CT, C, λ, δ>, where

 R : union of a set of registers and a set of resources
 SB : 2R, a set of scoreboard about the uses of registers and

resources
 S : 2SB, a set of scoreboards for several cycles
 I : a set of instructions with usage of registers and resources
 C : C⊂ N, a set of number of cycle count (N:natural number)
 λ : S C, output function
 δ : S × I × {Hit, Miss} S, scheduling function
In case of memory instruction, cycle calculation and instruction

scheduling depend on cache hit/miss, while they do not care cache
hit/miss in case of the other instructions.

3.4 Limitation
Though our work is concentrated on a scalar pipelined processor,

we can easily extend to statically scheduled processors such as
VLIW(very long instruction word) processor, whereas in case of
dynamically scheduled processor, i.e. superscalar, we should
consider various factors which affect the instruction scheduling,
which enlarge the state space of our framework.

In some architecture, execution time of some instructions such
as multiply, divide or square root, depends on data, so it is
possible that the same basic block in a loop will take different
number of cycles to execute. In this case, we should consider the
input value of the instructions. To prevent the state space from
enlarging greatly, we only add the resolved latency of the
instructions to the state, not the value of data. We can get the input
data of the instructions since we employed the functional
simulator earlier. With the input data trace affecting the cycle
count, our simulator can schedule instructions accurately and
reuse the simulation result.

4. EXPERIMENT
Simulation experiment with ARM9TDMI has been performed to

show the efficiency of the proposed evaluation method.
ARM9TDMI is a high performance Thumb compatible processor,
which provides a performance upgrade path from ARM7TDMI.
Three application programs, namely ADPCM, IDCT and g.721,
are selected from MediaBench for performance simulation. The
experiment is done using AMD AthlonXP 2100+ running on
Windows XP. Modeling of the processor is done by using the XR2
architecture description language developed in our previous
research[9].

Table 2 shows comparison of simulation efficiency for the
proposed approach against three other approaches: instruction set
behavioral simulation(ISS), token-level simulation[7] and cycle-
accurate simulation(using compiled simulation technique[1]). In
the table simulation results are represented in terms of MIPS
(million instructions per second) and MCPS (million cycles per
second). ISS is represented only by MIPS since it includes not
cycle information but behavior information of the instructions, As
a result, the proposed evaluation method is 4~21 times faster than
a state of the art simulator.

Table 2. Comparison of Simulation Performance

18.411.7152.9011.8474.5592.89721.761G.721
55.838.0982.8181.9244.7533.19229.045IDCT

104.745.1972.8031.2104.9472.11723.45ADPCM
Benchmark
application

MCPSMIPSMCPSMIPSMCPSMIPSMIPS

Proposed
Evaluation

Cycle-accurate
Simulation

Token-level
SimulationISS

18.411.7152.9011.8474.5592.89721.761G.721
55.838.0982.8181.9244.7533.19229.045IDCT

104.745.1972.8031.2104.9472.11723.45ADPCM
Benchmark
application

MCPSMIPSMCPSMIPSMCPSMIPSMIPS

Proposed
Evaluation

Cycle-accurate
Simulation

Token-level
SimulationISS

As we know from the above tables, evaluation efficiency of

proposed reuse-based simulation is highly dependent of the
characteristics of application programs. The more basic blocks
with distinct initial state(DBB) iterate, the more speedup will be
gained. Figure 10 presents the number of instructions on each
DBB and the number of iterations in each DBB. In summary, table
3 shows total reuse ratio of instruction scheduling for each
application. In case of G721, the number of iterations is relatively
small that we cannot get much gain for speedup, while in case of
ADPCM and IDCT, the high frequency of the basic blocks
enables us to evaluate the cycle count rapidly.

343

ADPCM : # of instruction

0

5

10

15

20

25

0 2 4 5 7 8 9

1
0

1
2

1
4

1
4

1
6

1
6

1
8

1
9

2
0

2
1

2
3

2
3

2
4

2
5

2
5

Distinguished Basic Blcok

IDCT : # of instruction

0

20

40

60

80

100

120

140

160

0 2 4 6 8 9 11 12 14 16 17 19 20 21 22 23 25

Distinguished Basic Block

g721 : # of instruction

0

5

10

15

20

25

30

0 10 17 26 35 42 52 62 72 81 91 101 111 119 128 138148 158 168 178 187 196

Distinguished Basic Block
ADPCM : # of iteration

0

200

400

600

800

1000

1200

1400

0 2 4 5 7 8 9

1
0

1
2

1
4

1
4

1
6

1
6

1
8

1
9

2
0

2
1

2
3

2
3

2
4

2
5

2
5

Distinguished Basic Block

IDCT : # of iteration

0

200

400

600

800

1000

1200

0 2 4 6 8 9 11 12 14 16 17 19 20 21 22 23 25

Distinguished Basic Block

g721 : # of iteration

0

20

40

60

80

100

120

0 10 17 26 35 42 52 62 72 81 91 101111 119128 138 148158 168178 187196

Distinguished Basic Block
Figure 10. Characteristics of each application

Table 3. Reuse Ratio of applications

94.10272412276G721

98.96118818085IDCT

99.78420996667ADPCM

Reuse ratio(%)
of instruction

scheduling
of executed

instruction
Application

94.10272412276G721

98.96118818085IDCT

99.78420996667ADPCM

Reuse ratio(%)
of instruction

scheduling
of executed

instruction
Application

Figure 11 shows the simulation results including cache. The

cache memory under consideration is assumed to have 1-level
data cache, size of 8192 bytes, 1 associative, LRU replacement
and block size of 16. The experiment shows that evaluation
performance does not affected greatly by cache memory. It is due
to execution locality of the program and high cache hit ratio.

0

20

40

60

80

100

120

ADPCM IDCT g.721 coder

application

M
C

P
S

w ithout cache

with cache

0

10

20

30

40

50

60

70

80

90

Athlon 800MHz UltraSPARC 1.2GHz Athlon 1.72GHz Athlon 1.72GHz

LISA complied
simulation

Early pipeline
evaluation

Token-level
simulation

Our approach

M
C

P
S

Speed Calibrated Speed With trace generation
Figure 11. Simulation

performance with cache
We compare the speed for ADPCM of our approach with

previous works in figure 12. Since they made an experiment on
the host machine which is different from ours, we calibrated their
result as to the clock frequency of the CPU. The proposed
approach is quite fast compared to other approaches from the
figure. Though the result of our approach does not include the
overhead of obtaining the basic block traces, it may not matter
much since behavioral simulation is very fast compared to cycle
accurate simulation.

5. CONCLUSION
This paper proposed a reuse-based evaluation approach which

supports an accurate, fast simulation for evaluation of high-
performance applications, especially loop-intensive ones. The
evaluation method can be applied to reduce cost of design space
exploration for pipelined processors. Within the approach, reusing
result eliminates iterative scheduling an instruction and checking
structural/data hazards. Experimental result showed that
simulation speed of the proposed approach is about 4~21 times
faster than a state of the art simulator reported in literature. This
technique can be applied not only to scalar processors but also to
static-scheduled ILP (Instruction Level Parallelism) processors
such as a VLIW processor. Future work will concentrate on the

system-level simulation including co-simulation as well as fast
high-level power estimation.

6. REFERENCE
[1] A. Hoffmann, A.Nohl, G.Braun, O.Schliebusch, T.Kogel

and H.Meyr, ”A Novel Methodology for the Design of
Application Specific Instruction Set Processors using a
Machine Description Language”, IEEE Trans. Computer-
aided Design of Integrated Circuits and Systems, vol. 20, no.
11, pp. 1338-1354, November 2001.

[2] G. Lauterbach, “Accelerating Architectural Simulation by
Parallel Execution of trace samples”, in Proc. of 27th Hawaii
International Conference on System Science, vol. 1, pp.205-
210, January, 1994

[3] J. Liu, M.Lajolo and A. Sangiovanni-Vincentelli, “Software
timing analysis using HW/SW cosimulation and instruction
set simulator,” in Porc. Int. Workshop. Hardware-Software
Codesign, Mar. 1998, pp.65-70

[4] A. Nohl et al. “A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation”, Design Automation
Conference, pp. 22-27, June, 2002

[5] I. Park, S. Kang and Y Yi, “Fast cycle-accurate Behavioral
Simulation for Pipelined Processors Using Early Pipeline
Evaluation,” International Conference on Computer Aided
Design, pp. 138-141, Nov, 2003

Figure 12. Comparison of
other approaches

[6] Jianwen Zhu et al. “An Ultra-Fast Instruction Set
Simulator,” Transaction on VLSI Systems, vol. 10, no. 3
pp.363-373, June 2002

[7] J. K. Kim and T. G. Kim, “Trace-driven Rapid Pipeline
Architecture Evaluation Scheme for ASIP Design”, in Proc.
of Asia South-Pacific Design Automation Conference,
Kitakyushu, Japan, pp.129-134, January, 2003

[8] J. L. Hennessey and D. A. Patterson, Computer
Architecture: a quantitative approach, Morgan Kaufmann
Publisher, 1990

[9] J. K. Kim, H. Y. Kim and T. G. Kim, “Top-down
Retargetable Framework with Token-level Design for
Accelerating Simulation Time of Processor Architecture”,
IEICE Trans. Fundamentals of Electronics, Communications
and Computer Sciences, vol. E86-A, no. 12, pp.3089-3098,
December 2003

[10] Mark D. Hill, “DINERO IV Trace-Driven Uniprocessor
Cache Simulator”, www.cs.wisc.edu/~markhill/DineroIV

344

http://www.cs.wisc.edu/~markhill/DineroIV

	INTRODUCTION
	RELATED WORK
	PROPOSED SIMULATION MODEL OF A PIPELINED PROCESSOR
	Pipelined processor simulation
	Performance Simulation Model
	Cycle Count Calculation with Simulation Reuse
	Processor without cache memory
	Processor with Cache Memory

	Limitation

	EXPERIMENT
	CONCLUSION
	REFERENCE

