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Abstract
In this paper, we propose a new sensitivity based, statistical gate

sizing method. Since circuit optimization effects the entire shape of
the circuit delay distribution, it is difficult to capture the quality of a
distribution with a single metric. Hence, we first introduce a new
objective function that provides an effective measure for the quality
of a delay distribution for both ASIC and high performance designs.
We then propose an efficient and exact sensitivity based pruning
algorithm based on a newly proposed theory of perturbation bounds.
A heuristic approach for sensitivity computation which relies on
efficient computation of statistical slack is then introduced.  Finally,
we show how the pruning and statistical slack based approaches can
be combined to obtain nearly identical results compared with the
brute-force approach but with an average run-time improvement of
up to 89x. We also compare the optimization results against that of a
deterministic optimizer and show an improvement up to 16% in the
99-percentile circuit delay and up to 31% in the standard deviation
for the same circuit area.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis

General Terms
Algorithms, performance, reliability, optimization

1  Introduction
In the nanometer regime, within-die variation has become a sub-

stantial portion of the overall variability and corner-based STA suf-
fers from significant inaccuracy [1]. This has given rise to a new
field of statistical timing analysis known as SSTA [2-4]. In SSTA,
the circuit delay is considered a random variable and the objective
of SSTA is to compute its probability distribution.  From the cumu-
lative distribution function (CDF) of the circuit delay, the user is
then able to obtain the percentage of fabricated dies which meets a
certain delay requirement, or conversely, the expected performance
for a particular yield. In turn, gate or transistor sizing approaches
should perform their optimization in a statistically aware manner.

SSTA-based optimization can significantly improve the yield of a
design compared to deterministic optimization. This is due to the
fact that deterministic optimization tends to create a so-called “wall”
of critical and near critical paths since there is no incentive for the
optimization to improve path delays that are not critical [5]. How-
ever, due to intra-die variability, some of these near critical paths
can become critical causing the statistical circuit delay to deterio-
rate. Hence, deterministic optimization can result in circuits that are
inferior from a yield perspective due to the lack of a correct statisti-
cal objective.

Some recent statistical optimization algorithms have been pro-
posed in [6-8]. In [6] the authors propose a method to avoid the for-
mation of a timing wall by purposely improving non-critical paths in
the deterministic optimization. In [7], the statistical optimization
problem has been considered as a nonlinear programming problem.
However, this approach still has a sensitivity computation complex-
ity of O(n2). In [8], a heuristic approach is proposed using the con-

cept of statistically ‘undominated’ paths. However, since this
approach is path-based, it cannot be applied to large circuits, such as
c6288 from the ISCAS benchmark set [12].

In this paper, we therefore propose a new sensitivity based, statis-
tical gate sizing algorithm. First, we introduce a new statistical
objective function where the delay probabilities are weighted with a
so-called “profit” function, expressing the merit of obtaining chips
at a particular circuit delay. Since brute-force computation of the
sensitivities is extremely expensive, we propose an efficient and
exact pruning algorithm. Our pruning approach is based on a pro-
posed theory of bounds on CDF perturbations due to sizing. We
establish the useful property that these perturbation bounds can only
diminish as the arrival time perturbations are propagated through the
circuit. Based on this property, we find the most sensitive gate in a
sizing iteration, without complete propagation of the perturbed
arrival times for all gates. We obtain runtime improvements of
approximately one order of magnitude compared to the brute-force
approach.

To obtain additional runtime improvement, we then propose a
heuristic method for computing sensitivities using statistical slack.
The approach requires only a single forward and backward SSTA
pass and hence has a runtime that is linear with circuit size. We
show that this heuristic sensitivity computation yields approxi-
mately two orders of runtime improvement over the brute-force sen-
sitivity computation approach. Finally, we propose a combined
method, where the slack-based heuristic sensitivity computation is
first used to filter out the vast majority of gate sensitivities, while the
exact sensitivity computation using bound-based pruning is used to
select the maximum sensitivity among the remaining set. We tested
the proposed methods on benchmark circuits synthesized with an
industrial 0.18µm library and showed an improvement of up to 16%
in the 99-percentile circuit delay and up to 31% improvement in the
standard deviation for the same circuit area, compared to a deter-
ministic optimizer.

The remainder of this paper is organized as follows. In Section 2,
we present our problem formulation and the newly proposed objec-
tive optimization function. In Section 3, we present our approach for
exact sensitivity computation. In Section 4, we present the heuristic
sensitivity computation as well as the combined approach. In Sec-
tion 5, we present our results and in Section 6 we draw our conclu-
sions. 

2  Problem Formulation
In this section we define our modeling assumption and our SSTA

approach. We also formulate the statistical optimization problem
and present basic definitions and the delay model. Similar to other
optimization approaches [7,8] we focus on intra-die variability in
this paper.

One of the difficulties in SSTA arises from reconvergent circuit
structures, which results in correlations between arrival times. In
this paper, we use the bounds proposed in [2] for computation of the
circuit delay CDF. It is important to note that the optimization objec-
tive is defined on this bound of the circuit delay CDF and not on the
exact circuit delay CDF itself, since this would lead to prohibitive
runtimes. However, we show in the result section that the optimiza-
tion of the bounds, as performed by our method, results in nearly
equivalent improvement of the exact circuit delay, as verified using
Monte-Carlo simulation. 

The random component of total delay variability is increasing
due to sources such as discrete doping effects [10]. Also, the spa-
tially correlated component of variability exhibits high correlation
for distances of a few hundred microns [11] and can be modeled
with corner-based analysis. Hence, modeling spatial correlation is of
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more importance for full chip analysis and is of less importance for
moderate circuit blocks on which sizing optimization is performed.
Similar to previous optimization methods [7,8], we therefore do not
model spatial correlations in this paper, although the proposed meth-
ods for a basis from which such correlations can be incorporated.

We use a simple delay model for our experiments, based on the
logic effort model. For the statistical modeling of these delays we
assume that the standard deviation is a fixed percentage of the nom-
inal delay, although our method is not restricted to this model.
2.1 Optimization Objective Function

A simple statistical objective is the mean or standard deviation of
the circuit delay PDF. However, it is difficult to accurately represent
the profit associated with different performance levels since the
shape of the PDF is not represented. Since the proposed approach
uses propagation of discretized arrival time PDFs, we obtain the
entire shape of the circuit delay distribution and hence can support
more general objective functions. We propose an optimization
objective where the yield at a particular circuit delay is weighted
with a so-called profit function. The total merit is then computed as
a weighted sum of the profit function and the corresponding proba-
bilities of the circuit delay PDF, as shown in Figure 1. 

An ASIC design typically has a strict performance constraint,
where chips that fall below a specific performance level are dis-
carded. Hence, a profit function with a step-function profile, as
shown in Figure 1(a), can be used to express such a constraint. On
the other hand, for high performance designs, speed binning is com-
monly used, and the profit associated with a part degrades gradually
with the performance. Such a constraint could be expressed with the
profit function having a saturated ramp profile, as shown in  Figure
1(b).  In this case, the profit associated with fabricated chips is max-
imum when circuit delay is less than dmin and linearly reduces to
zero for chips with circuit delay greater than dmax.

The two profit functions shown in Figure 1 are only two particu-
lar examples of a wide variety of functions that can be utilized.
Once, a designer has specified a particular profit function, the pro-
posed optimization methods will maximize the total profit shifting
the distribution, as well as by changing its shape. In Section 5, we
show that by specifying different profit functions, the optimization
generates different distribution shapes  in order to maximize the
specified objective.

3  Exact Sensitivity Computation
Here, we present the optimization algorithm using brute-force

sensitivity computation and develop novel properties of sensitivity
propagation based on which an efficient pruning algorithm is pre-
sented. For simplicity of explanation, we choose as our optimization
objective the p-percentile confident point  of the delay distri-
bution. However, the same analysis also applies to the more general
profit functions.
3.1 Optimization approach and brute-force sensitivity computa-
tion.

In our experiments, we start from a minimum size implementa-
tion, and size up the maximum sensitivity gate in each iteration of
the algorithm. However, the optimization can be easily extended to a
partial steepest descent algorithm, where a partial gradient is com-
puted using a small set of the most sensitive gates and gates are
sized according to this gradient in each iteration. This necessitates a

statistical timing analysis run for each gate in the circuit at every siz-
ing step of the algorithm which has a runtime complexity of O(N*E)
for every sizing iteration, where N is the number of nodes and E is
the number of edges of graph G. This results in unacceptable runt-
imes. Therefore, we propose an approach where the gate with maxi-
mum sensitivity can be identified without explicit propagation of all
arrival times. 
3.2 Properties of sensitivity propagation

To allow for pruning of sensitivities, we now introduce the fol-
lowing useful definitions and properties of sensitivity propagation. 

As shown in Figure 2, Ai is the CDF of the arrival time random
variable at node i and A'i is the corresponding perturbed CDF
obtained by scaling up a gate. Their PDFs are denoted by ai and a'i,
respectively. We define the difference in the p-percentile point of the
CDFs Ai and A'i as . The maximum
difference over all p is given by .

First, we assume that the perturbed CDF A'i has the exact same
shape as the unperturbed CDF Ai and differs from Ai only by a con-
stant shift in time, i.e. Ai(t) = A'i(t - ∆i) and also ai(t) = a'i(t - ∆i).
This is assumed to be true for all perturbed CDFs. Under this
assumption, we prove in Theorems 1 through 3 that the maximum
difference ∆i between the perturbed and unperturbed CDFs at a node
can not increase as the perturbed CDFs are propagated through the
circuit using convolution and statistical maximum. This property is
useful in bounding the difference between the perturbed and unper-
turbed CDFs at the sink node, without complete propagation of the
gate’s perturbed CDF to the sink node.

Theorem 1. Convolution operation: If the arrival time PDF aj
and the perturbed a'j at node j are given by aj = Conv(ai , de) and
a'j = Conv(a'i , de) , then ∆i = ∆j.

Proof : The proof is clear from the definition of convolution
assuming independence. Proof given in [9].

Theorem 2. Max operation with multiple perturbed arrival
times: If the arrival time CDF Ai and perturbed CDF A'i at node i
are given by, Ai = max(Ai1, Ai2) and A'i = max(A'i1, A'i2) respec-
tively, then .

Proof : Proof given in [9].
Note that the proof can be trivially extended for gates with more

than two inputs.
Theorem 3. Max operation with single perturbed arrival
time.
Proof : This is a special case of Theorem 2, where ∆i2 = 0.
The above three theorems were defined assuming that the per-

turbed CDF has the exact same shape as the unperturbed CDF. As
mentioned, this may not be true in practice and hence, we define a
lower bound on the perturbed CDF which has the exact same shape
as the unperturbed CDF as follows.

Definition 1. The lower bound CDF B'i of perturbed arrival time
A'i is defined as the time shifted CDF Ai by ∆i (Figure 2).

Since the shape of the lower bound B'i is the same as that of the
unperturbed CDF Ai, Theorems 1 through 3 can be applied to this
lower bound. Note, however, that the maximum time difference
between the lower bound of the perturbed CDF B'i and the unper-

p

Figure 1. Optimization Objective using a Profit Function
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turbed CDF Ai is equal to the maximum difference between the per-
turbed CDF A'i itself,  and Ai (by Definition 1). Hence, implicitly,
Theorems 1 through 3 also hold for arbitrary shaped perturbations of
an arrival time CDF. This allows the use of the perturbation bound
∆i as an upper bound on the actual difference between the perturbed
and unperturbed CDFs at the sink node. We can now conclude that
the maximum difference between the perturbed and unperturbed
CDF at the sink node is bounded by the maximum change of the
perturbed and unperturbed CDFs during propagation.
3.3 Bound-based Pruning approach

The goal of an optimization iteration is to find the gate with max-
imum sensitivity without performing a complete SSTA run for each
gate perturbation in the circuit. The idea is to propagate highly sen-
sitive gates (i.e. gates which have a large value of Si , which is the
ratio of the change in p-percentile circuit delay per unit change in
gate width) to the sink node and then use their Si value to prune out
gates which can be shown to have a lesser sensitivity using the pro-
posed bounds. From Theorem 4 it follows that, if at any time during
the propagation of arrival times of  gate x, the upper bound on Sx
becomes less than a previously computed sensitivity Si of gate i,
gate x can be eliminated from further consideration.  

It is advantageous to identify a gate with a high sensitivity value
Si early in the analysis so that a large number of gates can be pruned.
In our approach, we therefore perform level by level propagation of
perturbed arrival times in an iterative manner. During every iteration
the arrival times are propagated one level forward and the upper
bound on Sx is recomputed. When arrival times reach the sink node,
the true sensitivity Si is computed and is used to prune other gates.

4  Heuristic Sensitivity Computation
We propose a new heuristic method to compute the sensitivities

of candidate gates. We first define a so-called impact subgraph of a
candidate gate as the subgraph of the timing graph comprised of all
gates that lie on a path that passes through the candidate gate.  We
then break the problem into two parts:  First, we compute the effect
of sizing a candidate gate on the circuit delay distribution of its
impact subgraph.  Second, we determine the impact of the change of
the impact subgraph delay on the total circuit delay. We now explain
each of the two steps in more detail. 

In Figure 3, a candidate gate x is shown with its impact subgraph

shown shaded. As can be seen, a delay change of gate x will only
impact the arrival times in its fanout cone.  Hence, we first perform
two statistical timing runs on the circuit, one in the forward direction
and the other in the backward. At every gate x in the circuit we then
obtain a forward arrival time PDF Axf and a backward arrival time
PDF Axb. We then compute the delay distribution Axc of the impact
subgraph of x by convolving its corresponding Axf and Axb. This rep-
resents a partial circuit delay PDF, excluding the edges which are
not present in both the fanin cone and fanout cone of x. To compute
the change in this subgraph delay, we then size up gate x, and
recompute the perturbed forward arrival time PDF A'xf, including
the loading effect on its fanin gates. We then convolve this new
arrival time A'xf, with the original Axb and obtained the perturbed
partial circuit delay PDF A'xc of the impact subgraph.

However, in addition to the change in the delay of the impact sub-
graph, it is necessary to determine whether this difference will prop-
agate to the sink node. It is difficult to determine the exact impact of

the delay change on the total circuit delay and hence we propose the
following effective heuristic. We first compute a statistical maxi-
mum of the impact subgraph delay PDF Axc with the exact circuit
delay of the total circuit PDF Anf. We also compute the same maxi-
mum with the perturbed impact subgraph delay, A'xc, and then obtain
the difference in the p-percentile point of the two maxed PDFs. 

While this heuristic is clearly not exact, it was found to work well
because it adheres to the following two properties:  1) if the impact
subgraph delay is small compared to the delay of the total circuit,
the total circuit delay will dominate the statistical maximum, and the
perturbation will have a significantly diminished impact. 2) if the
difference between the perturbed and unperturbed impact subgraph
delay is small, the impact on the total circuit delay will also be
small. 

Finally, the sensitivity is computed again as the ratio of the
change in the p-percentile point to . Since the approach requires
only two statistical timing analyses to compute the forward and
backward circuit delays Axf and Axb and since the computation of the
impact subgraph delays Axc  and A'xc is independent of the circuit
size, the approach has linear runtime complexity with circuit size,
and is extremely fast.   
Combined approach for circuit optimization.

The slack based heuristic provides significant speedup as com-
pared to our pruning approach, however, since the computed sensi-
tivities are heuristic, it suffers from inaccuracies and a reduced
optimization quality. Hence, we propose a combined approach,
where we obtain the top k sensitivities using the slack based heuris-
tic, and then apply our pruning algorithm to obtain the highest sensi-
tivity gate from that set. The value k can be tuned based on the
accuracy required at different points in the optimization trajectory.
However, we found that with a value of k = 30, the optimization
obtained nearly the same result quality as optimization using the
exact bound-based pruning while providing significant speedup over
that approach.

5  Results
The proposed statistical optimization methods were implemented

and tested on a synthesized version of ISCAS’85 [12] benchmark
circuits using a 180nm commercial cell library. Intra-die process
variation was modeled using a truncated Gaussian gate delay distri-
bution. The standard deviation was 10% of the nominal delay and
the distribution was truncated at the 3 sigma point. The deterministic
optimization that we use for comparison is based on coordinate
descent method. However, we have also performed deterministic
optimization using MINOS, which is a non-linear optimizer and ver-
ified the accuracy of our coordinate descent method. 

Table 1 shows a comparison between the bound-based pruning,
statistical slack-based approach, combined approach and determin-
istic optimization for the 99-percentile circuit delay point, after per-
forming 800 sizing iterations, in columns 2-8 (Delay units are in ns).
Column 2 and 3 show the 99-percentile delay obtained from deter-
ministic and statistical slack-based approach, respectively. The %
improvement obtained from slack-based optimization over deter-
ministic optimization is shown in column 4. column 5 and 7 show
the 99-percentile delay obtained using bound-based and our com-
bined approach, respectively and column 6 and 8 show its %
improvement over deterministic optimization. The average
improvement is 7.6% over all benchmarks with a maximum of
16.5%. Column 9 shows the % improvement in the sigma of the cir-
cuit delay PDF, with maximum of 31.4%.  

Table 2 shows a comparison of runtimes between brute force sta-
tistical optimization and our accelerated approaches. Our bound-
based pruning approach provides an average runtime improvement
of up to 20x for large circuits. In column 2 and 3, we report the aver-
age runtime per iteration (computed over 800 iterations) using the
brute force and our bound-based pruning approach, respectively.
column 4 shows the runtime improvement factor. In columns 5 and
7, we show the average runtime per iteration for our combined
approach and slack-based approach, respectively and columns 6 and
8 show their improvement factors over brute-force. Our combined

Figure 3. Impact Subgraph and Heuristic Sensitivity Computation
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approach matches almost exactly with brute-force and shows runt-
ime improvement of up to 89x. 

Figure 4 shows the area-delay curve using our combined
approach and deterministic optimization for c3540. The 99-percen-
tile points of the circuit delay CDF are plotted on the x-axis and the
corresponding total gate size value on the y-axis, for every sizing
iteration. We have also plotted the 99-percentile points of the circuit
delay using Monte Carlo simulations. As shown, there is a very
small difference between the bounds and Monte Carlo results.  

In Figure 5, we show the circuit delay PDF as obtained by the
deterministic and statistical optimization methods, after the total
gate size has been increased by 33% for c880. We can see that statis-
tical optimization shifts the entire distribution to the left, along with
reducing the variability of circuit delay. The deterministically opti-
mized PDF is obtained using an optimal solution of the nonlinear
optimization package MINOS.  

In Figure 6, we show circuit delay PDFs obtained by using our
proposed linear cost function and the 99-percentile delay objective.
We can observe that the PDF shape changes according to the objec-
tive function. The circuit delay PDF obtained by applying the cost

function is better optimized for the cost than the 99-percentile delay
objective. 

6  Conclusions
We have demonstrated the need for a fast statistical optimization

algorithm and shown that there is a clear advantage in using statisti-
cal optimization compared to a deterministic one. We proposed a
fast pruning-based sensitivity computation which is exact in com-
parison with a brute force sensitivity computation but provides sig-
nificant speedup. We also proposed a statistical slack-based
heuristic which is extremely fast, and a combined approach which
provides a significant speedup with negligible loss in accuracy. Our
results show an average runtime improvement up to a factor of 89
using the combined approach over a number of test cases. Future
work includes extending this framework to include spatial correla-
tions.
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Table 1. Results for the 99-percentile delay pt.

name
det. slack-based bound-based combined approach

delay delay %impr delay %impr delay %imp %sigma imp.

c432 3.45 3.40 1.4 3.25 5.8 3.25 5.8 12.2
c499 4.05 3.48 14.0 3.38 16.5 3.38 16.5 31.4
c880 4.18 4.04 3.3 3.94 5.74 3.94 5.74 13.8
c1355 4.70 4.25 9.5 4.10 12.7 4.10 12.7 30.7
c1908 6.20 6.02 2.9 5.82 6.1 5.82 6.1 10.8
c2670 3.61 3.55 1.7 3.50 3.0 3.50 3.0 3.0
c3540 5.98 5.80 5.2 5.70 6.9 5.70 6.9 13.5
c5315 5.90 5.70 3.4 5.40 8.47 5.40 8.47 14.8
c6288 15.8 15.5 1.9 15.05 4.75 15.05 4.75 23.0
c7552 8.10 7.80 3.8 7.60 6.17 7.60 6.17 13.4

Table 2. Results for the runtime improvement

Circuit
name

Average time per iteration (sec)

brute-f b.b. prune imp. f comb. imp. f slack imp. f

c432 5 1.21 4.13 0.78 6.4 0.49 10.2
c499 90 19.9 4.52 3.8 23.7 1.75 51.5
c880 15 3.37 4.45 1.07 14.0 0.85 17.6

c1355 95 19.8 4.79 3.8 25.0 1.6 59.4
c1908 102 22 4.63 5.97 17.0 2.1 48.6
c2670 43 4.47 9.62 1.36 31.6 1.2 35.8
c3540 194 23 8.43 5.8 33.4 3.4 57.0
c5315 403 33 12.2 6.8 59.3 4.2 96.0
c6288 3600 180 20.0 50.3 71.6 35.0 103
c7552 1190 87 13.68 13.4 89.0 8.4 142

Figure 4. Area- delay curve for c3540 (compared w/ M.C.)
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Figure 5. Output PDFs obtained for the same area
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Figure 6. circuit delay PDF for c880 using different cost functions
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