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ABSTRACT
Device and interconnect fabrics at the nanoscale will have a den-
sity of defects and susceptibility to transient faults far exceeding
those of current silicon technologies. In this paper we introduce
a new performance optimization dimension at the microarchitec-
ture level which can mitigate overheads introduced by fault toler-
ance. This is achieved by directly exposing reliability versus delay
design trade-offs while incorporating novel forms of speculation
which use faster but less reliable versions of a microarchitecture’s
performance critical components. Based on a parameterized mi-
croarchitecture, we exhibit the benefits of optimizing these trade-
offs.
Categories and Subject Descriptors: C.1 [Computer Systems
Organization] Processor Architectures, Performance of Systems,
B.8 [Hardware] Performance and Reliability
General Terms: Performance, Design, Reliability.
Keywords: Nanotechnologies, Fault Tolerant Microarchitectures,
Performance Optimization, Reliability-Delay Trade-offs.

1. INTRODUCTION
Recent striking successes in devising and assembling nanoelec-

tronic devices suggest that the ability to build large scale nanofab-
rics for computation is now on the 10–15 year horizon [1, 2, 3].
Nanotechnologies based on carbon nanotubes and silicon nanowires
are particularly promising. Nanotube switches can theoretically op-
erate at unprecedented speeds, e.g., 100–200GHz, while nanowire
junction arrays can be configured as OR, AND, and NOR logic
gates, with gain, and thus be used to realize basic computation[2].
Although many challenges lie ahead, many predict that it will be
possible to assemble workable computer memory and logic devices
from nanoscale building blocks before silicon devices hit their lim-
its[1]. As such, it is critical to start investigating the design meth-
ods and computing system architectures required to take these tech-
nologies into design/production environments [4, 5].

Irrespective of the ‘winning’ (charge carrier transport-based) nan-
otechnologies, it is widely recognized that devices and intercon-
nects at the nanoscale will exhibit fault densities much greater than
state-of-the-art silicon technology. Indeed, they: (1) will have a
density of defects which is much higher than current silicon tech-
nologies [1]; and (2) are likely to be much more susceptible to tran-
sient faults (soft errors) [1]. These increases are, in part, due to the
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physical dimensions being considered. From a materials perspec-
tive, decreasing the size of structures increases the ratio of surface
area to volume, making imperfections in materials interfaces more
critical to the proper function of interconnects and devices. Further-
more, at such reduced scales, the discrete nature of atomic matter
and charge becomes significant. Namely, a single charge or defect
may significantly impact the structural stability of a nanodevice,
as well as its timing/performance characteristics and sensitivity to
fluctuations in the local electrostatic environment (electric noise).
These observations point to a reliability problem which is intrinsic
to nanoscale regimes.

In this paper we formalize the problem of exploring reliability–
delay trade-offs at the microarchitecture level, for performance en-
hancement. This is achieved by a novel form of reliability-driven
speculation relying on faster but less reliable versions of a microar-
chitecture’s performance critical components or stages. Based on a
simple parameterized microarchitecture, we exhibit the benefits of
explicitly exploring this novel class of trade-offs at the microarchi-
tectural level.
2. RELIABILITY-DELAY TRADE-OFFS AT THE

MICROARCHITECTURE LEVEL
For the purpose of this research we will use a parametric model

that captures how a component’s delay might scale with its desired
reliability. The reliability of a component is the probability it per-
forms its function correctly on a given use. Our model is based on
fundamental considerations on how reliability increases with re-
dundancy, and how the increased area associated with redundancy
would lead to higher delays – see [6] for details. This strongly
suggests that highly fault-tolerant microarchitecture component de-
signs for nanotechnologies will incur substantial delay overheads.
Here then lies the fundamental question addressed in this paper:
can one effectively ‘hide’ the performance overheads incurred by
fault-tolerant component designs, at the microarchitecture level?
We will show that this is indeed the case.

A new set of tradeoffs at the microarchitecture level. The key
novelty of our work is the introduction of a new performance opti-
mization dimension in microarchitectural design. This is achieved
by exposing reliability-delay trade-offs through novel forms of spec-
ulation relying on faster but less reliable versions of a microarchi-
tecture’s performance critical components. Architects will need to
perform design space exploration to identify the most favorable
reliability-delay tradeoff for each ‘speculative’ component. We
shall call this broad class of techniques reliability-driven specula-
tion and microarchitectures enhanced with such features reliability-
aware (RA) microarchitectures.

Selection of baseline microarchitecture. The principle of reli-
ability-driven speculation, and associated performance optimiza-
tion, can be applied to essentially any architecture, including EPIC/
VLIW, dataflow, etc. In this paper, we will demonstrate its im-
pact on out-of-order (OOO) superscalar processors. Given the sub-
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stantial body of recent work on fault-tolerant microarchitectural
techniques targeted at OOO superscalar processors, this provides
a good context in which to highlight the novelty of our approach.

Where can/should one apply reliability-driven speculation? The
performance of an OOO superscalar machine is critically impacted
by several factors, including the speed at which data dependencies
between instructions can be resolved within the processing core,
the ability to quickly access data from memory, and the ability to
deliver a steady stream of instructions to the processing core. Thus,
the machine’s processing core, front-end (i.e., fetch engine), and
memory subsystem are all excellent candidates on which to apply
reliability-driven speculation. In this paper, we will focus on apply-
ing these ideas on a machine’s processing core. In order to elimi-
nate effects caused by extraneous factors and sharpen our analysis,
the front-end and the memory subsystem for both the baseline and
the reliability-aware machines are assumed to be ‘perfect’ in our
experiments.

Optimistic and pessimistic assumptions on technology scaling.
We consider two scaling regimes for the target nanotechnologies:
‘optimistic’ and ‘pessimistic.’ Under the optimistic scaling only the
latency of complex transformational components – that is, func-
tional units – will scale aggressively with reliability, i.e. with the
level of fault tolerance of a design. Under the pessimistic scaling,
all pipeline stages will scale similarly with reliability. The latter
is likely to be overly conservative for non-transformational compo-
nents.

2.1 Reliability-driven data speculation
Under the optimistic scaling scenario, reliability-delay tradeoffs

can be exposed by using two different fault-tolerant designs for the
microarchitecture’s functional units (FUs) – one with high relia-
bility (1− ρ), say ρ = 10−20, and another with lower reliability
(1−α), say α = 10−4, where ρ and α denote the corresponding
probabilities of failure. From now on we refer to components with
reliability (1−α) as unreliable, and components with reliability
(1−ρ) as reliable. Naturally, unreliable FUs would also have a re-
duced latency relative to more reliable counterparts. To exploit this,
one can design a processing core which speculatively executes in-
structions on faster unreliable FUs and subsequently validates these
results on reliable FUs. Such a core would quickly generate results
for consumer instructions yet, upon detecting an error, would pay
a roll-back penalty to restore reliable state and subsequently refill
the pipeline. This form of reliability-driven data speculation has
the potential to enhance performance relative to a standard/baseline
core which purely executes instructions on reliable FUs – yet, the
enhancement depends critically on the selection of parameter α.

Reliability-aware microarchitecture: the α and ρ pipelines We
implemented the reliability-driven data speculation introduced
above on a two-pipeline microarchitecture comprising a ‘specula-
tive’ (or α) pipeline and a ‘validation’ (or ρ) pipeline, see Figure
1. The FUs instantiated in the execute phase of the ρ pipeline are
reliable while their counterparts in the α pipeline have lower re-
liability – namely, (1−α), where α is a design parameter. The
ρ pipeline is much simpler than the α pipeline since, when in-
structions enter the ρ pipeline, all of their data dependencies are
guaranteed to have been resolved in the α pipeline, as in [7]. To
ensure the ρ pipeline is not a bottleneck, the number of reliable
FUs available to it should exceed the number of unreliable FUs in-
stantiated in the α pipeline by a factor which is roughly the ratio
of the latency of a reliable FU to that of its unreliable counterpart.
Indeed, this would permit overlapping of as many instruction val-
idations in the ρ pipeline (irrespective of possible data dependen-
cies among them) as necessary to sustain the throughput of the α
pipeline. In fact, with such dimensioning of FU resources, it can be

shown that, when no faults are generated in the α pipeline, the IPC
of our two-pipeline processing core is bound by the latency of its
speculative execute stage (i.e., the smaller latencies associated with
the FUs in the α pipeline), hiding those of the validation pipeline.
However, if an incorrect value is detected during validation, a per-
formance penalty is incurred, which reflects the cost of flushing
both pipelines, rolling back to a reliable state, and then refilling
both pipelines. Thus, as the design parameter α increases, i.e., FUs
in the α pipeline are made faster but less reliable, the error-free
performance of the core would improve, but the number of ‘miss-
speculations’ would increase, eventually compromising the actual
performance of the core. This is the key trade-off exposed by our
reliability-aware (RA) microarchitecture. For additional details on
the RA microarchitecture see [6].

CommitFront
End

Front
End CommitBaseline processing core

α
Processing Core

ρ
Processing Core

Figure 1: Top-level pipeline organization for RA and baseline machines

2.2 Other forms of reliability driven speculation
Under the ‘pessimistic’ scaling assumption, improving the speed

at which the processing core resolves data dependencies requires
exploiting reliability-delay trade-offs also on the issue and write-
back stages of the alpha pipeline. For simplicity, we refer to the de-
sign parameters controlling the reliability-delay tradeoffs for these
stages as α, yet clearly they can be optimized independently. Thus,
load memory accesses are now first issued with (1-α) reliability in
the alpha pipeline, and then validated in the ρ pipeline. We con-
sider two fundamental types of errors for the unreliable issue and
write-back stages: (1) errors that can be detected locally, for exam-
ple, using reliable watchdog timers (e.g., instruction is never sent
to functional unit); and (2) errors that can be only detected when
the instruction is re-executed in the ρ pipeline (e.g., instruction is
issued with incorrect operands) [6]. Clearly, the second type of er-
rors incurs a performance penalty that is much more severe than
that associated with the first type of error. 1

3. EXPERIMENTAL METHODOLOGY
3.1 Modeling different hypothetical nanotechnolo-
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Figure 2: Design space exploration for selection of design parameter α.

A total of six possible technology scalings T1−T6 were exam-
ined – see Table 1. Latencies, measured in cycles, are presented for
FUs with a probability of failure ρ and α – the α delays are in paren-
thesis, and are always 1 for the integer ALU, because it defines the
cycle time. The rightmost column in Table I exhibits the relative
cycle delays among the technology scalings being considered, i.e.,
1In the experiments discussed in Section 5, we assume the errors
of types 1 and 2 are equally likely.
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Figure 3: Speedups for RA / Baseline for different α (mp3 benchmark).

FU latencies in cycles Relative
Technology ρ(α) cycle

int ALU int Mul/Div fp ALU fp Mul/Div delay
T1 3 (1) 8/54 (4/22) 5 (3) 10/32 (5/13) 1.00
T2 4 (1) 11/79 (4/22) 7 (3) 15/46 (5/13) 1.35
T3 4 (1) 13/91 (4/22) 9 (3) 17/53 (5/13) 1.69
T4 5 (1) 16/123 (4/23) 11 (3) 22/71 (5/14) 1.24
T5 8 (1) 24/175 (4/23) 15 (3) 32/102 (5/14) 1.95
T6 9 (1) 27/193 (4/23) 18 (3) 36/113 (5/14) 2.66

Table 1: Latencies for reliability 1-ρ and 1-α (ρ = 10−20,α = 10−4).

the ratio of the delay of a cycle under a given scaling relative to
the fastest considered. For a detailed discussion supporting these
numbers see [6].
3.2 Identifying suitable reliability-delay trade-offs

for ‘maximum’ performance enhancement
As discussed above, the actual performance enhancement

achieved through reliability-driven speculation depends critically
on the selection of the design parameters capturing the reliability-
delay trade-offs exposed by the microarchitecture. Since we are us-
ing a rough parametric model for the relative scaling of delay with
reliability, during design space exploration we only consider varia-
tions in α within an order of magnitude. Our aim is to illustrate the
associated tradeoffs at work, and how one may select ‘good’ values
for such parameters, using representative workloads.

Figure 2 shows a sample of our design space exploration results
for the reliability-aware (RA) machine described in Section 2.1.
Design parameter α (shown on the x-axis) defines the target relia-
bility (1-α) for the ‘speculative’ FUs instantiated in the α pipeline.
For the three benchmarks shown, α = 10−4 delivers the best perfor-
mance (measured in instructions per cycle) across all hypothetical
nanotechnologies T1-T6, (MaxDepWindow defines the actual ma-
chine configurations used in these experiments, see Section 3.3 for
details). Figure 3 shows the speedup achieved by our reliability-
aware machine over a baseline machine (i.e., a ‘traditional’ OOO
core), for the mp3 benchmark, with design parameter α varying
from 10−1 to 10−20. As seen, when α is set to 10−4, the speedup is
substantial, and is more pronounced for technologies with more ag-
gressive delay scalings, since the ability to ‘hide’ delay overheads
becomes more critical in those cases. More importantly, this figure
clearly shows the new optimization dimension exposed via design
parameter α.

3.3 Design of experiments
Experiment 1: Assessing relative performance of reliability

aware versus baseline machines. In order to assess the perfor-
mance enhancement potential of reliability-driven speculation, we
consider an abstract ‘single-bottleneck’ processing core, i.e., a hy-
pothetical core whose performance is limited by the capacity of a
single ‘abstract resource’. Specifically, the performance bottleneck
is the maximum number of instructions waiting on data dependen-
cies that can be queued in the processing core, denoted MaxDep-
Window. We set several values for MaxDepWindow, namely, 16,
64 and 256, and configured the RA and baseline machines so that
all other resources appear to be unlimited, i.e., will not slow down
execution, for any of the benchmarks. This is a realization of a
‘single-bottleneck’ machine. We then determine the IPC achieved
for such RA and baseline machines, for a number of benchmarks.

Experiment 2: Assessing relative efficiency/scalability of re-
liability aware versus baseline machines. Experiment 2 focuses
on actual scalability issues, namely, on assessing how the two ma-
chines scale with different levels of target performance. In this
set of experiments, we contrast baseline and RA machines that de-
liver the same performance (IPC), for a common workload. To this
end, we start by considering each ‘pair’ of baseline and RA single-
bottleneck machines obtained in our first set of experiments, for a
specific MaxDepWindow value and technology. Since the RA ma-
chine is always faster than its baseline counterpart, for each bench-
mark we let the IPC delivered by the baseline machine be the ‘tar-
get performance’, and then decrease the number of integer ALUs
on the α pipeline of the RA machine until it matches the IPC of
the baseline. Then, for these pairs, i.e., baseline and ‘reduced’ RA
machines, we report the number of integer ALUs used in the α
pipeline of the RA machine and utilization statistics (average + std.
deviation) for integer ALUs in the ρ pipeline of the RA machine,
and integer ALUs in the baseline machine.

3.4 Experimental Setup
The simulators used in our experiments are derived from the

Simplescalar simulator [8], targeted at the PISA instruction set.
The main modifications and extensions to the simulator are de-
scribed in [6]. We selected 10 benchmarks from the CPU2000 and
Mediabench suites, including integer (gzip, parser, mpeg2, jpeg,
bzip2, g721) and FP (ammp, mp3, equake) applications, with dif-
ferent degrees of ILP. All benchmarks were compiled with the -O2
-funroll-loop flags and 10M instructions were analyzed for each
one of them, after forwarding a sufficiently large number of in-
structions.
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Figure 4: IPC results, MaxDepWindow = 16, 256, optimistic, α=10−4

4. EXPERIMENTAL RESULTS FOR MACHINES
WITH OPTIMISTIC DELAY SCALING

Results of experiment 1 for optimistic scaling. Figure 4 ex-
hibits the instructions per cycle (IPC) for the baseline machine, the
RA machine, and the RA machine when no faults are injected in
the α pipeline. The latter case, denoted ‘RA no-rollback’ in the
figures, was simulated to assess the penalties incurred in the ac-
tual RA machine due to faulty operation. The corresponding IPC
values are shown as three superimposed bars, in 10 groups of six
corresponding to the 10 benchmarks and six technology scalings,
T1–T6, from left to right. These results correspond to α = 10−4,
with each graph being associated with a different MaxDepWindow,
16 and 256. Graphs for MaxDepWindow 64 can be seen in [6].

Figure 5 exhibits the speedup of the reliability aware versus the
baseline machine, but this time the results are grouped by technol-
ogy scaling, i.e., six groups of 10 benchmarks. Due to space lim-
itations we present results only for MaxDepWindow 16. As it can
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Figure 5: Speedups RA/Baseline, MaxDepWindow=16, optimistic,
α=10−4

be seen, for each technology scaling, the speedup is similar across
benchmarks. However changes in technology, corresponding to an
increase in the ratios of FU latencies for the ρ pipeline over those
of the α pipeline, result in substantially increased speedups – from
an average speedup of 2.31 for technology T1 (2.23, 2.35 and 2.35,
for MaxDepWindow 16, 64 and 256, respectively), to an average
speedup of 6.42 for technology T6 (6.26, 6.6 and 6.41, for MaxDe-
pWindow 16, 64 and 256, respectively). Note that the speedups are
roughly invariant to the MaxDepWindow considered. The increase
in speedup from T1 to T6 exhibits the ability of reliability-driven
speculation to hide delay overheads associated with fault tolerant
FU designs – as the latency of (1−ρ) reliable FUs increases, the
corresponding speedups increase as well.

While the speedup of the RA machine over the baseline depends
to first order on the target technology, as shown in Figure 4, the IPC
of both machines decreases as we move from T1 to T6, i.e., as the
latency of the (1−ρ) reliable FUs increases. Specifically the IPC
for the baseline decreases on average by 65% (64.9%, 65.6% and
65.6%, for MaxDepWindow 16, 64 and 256, respectively) as we
move from T1 to T6 – this substantial IPC degradation results from
increases in FU latencies across the six technologies. In contrast,
the IPC of the RA machine decreases on average by only 3.82%
(1.75%, 3.48% and 6.26%, for MaxDepWindow 16, 64 and 256, re-
spectively). Finally, note that the IPC numbers for the RA machines
simulated with no α pipeline errors remain essentially flat. This is
so because, for simulation purposes, the integer ALU latencies for
the α pipeline (in clock cycles) are normalized to be identical for
all technologies (see Section 3.1).

Results of experiment 2 for optimistic scaling. Figure 6 ex-
hibits representative results obtained for Experiment 2 under the
optimistic scaling assumption. The graph shows the number of
int-ALUs used in the baseline and in the α and ρ pipelines of the
RA machine, for a MaxDepWindow of 16. On average, the to-
tal number of int-ALUs used the RA machine’s pipeline is slightly
smaller than the number of int-ALUs used on the baseline machine:
96.9% (109%, 94.6%, and 87.1% as MaxDepWindow varies from
16 to 64 and 256 – see [6]). However, the superior scalability of
the reliability-aware machine lies in observing that most of its int-
ALUs are instantiated in the much simpler ρ pipeline. That is, the
much more ‘power-hungry’ α pipeline, which has a ‘complexity’
commensurate with that of the baseline machine, need only include
a fraction of the int-ALUs that are needed in the baseline machine –
namely, 18.9%, 16.6%, and 15.1%, for MaxDepWindow 16/64/256.
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Figure 7: IPC results, MaxDepWindow = 16, pessimistic, α=10−4

5. EXPERIMENTAL RESULTS FOR MACHINES
WITH PESSIMISTIC DELAY SCALING

The speedup of the RA machine over the baseline is much higher
under the ‘pessimistic’ scaling assumption – see e.g. Figure 7. For
example, for T1 and MaxDepWindow 16, 64 and 256, we observe
an average speedup of 5.86, 6.26 and 6.16, respectively. For T6,
the corresponding average speedup increases even more dramati-
cally, to 17.6, 18.1, and 16.9 respectively. This is so because the
delays incurred to resolve data dependences, (i.e., issuing to the
reservation stations, executing, and writing back the results) have
increased substantially for the baseline machine. Concerning ex-
periment 2, the α pipeline again requires a small fraction of the
int-ALUs used in the baseline machine – see [6] for detailed data.

6. RELATED WORK AND CONCLUSIONS
The idea of speculatively executing instructions on a fast unre-

liable core, first proposed in the DIVA processor [7], is also ex-
plored in our work, yet in a conceptually different way. Namely,
[7] focuses on “reducing the burden of correctness in microproces-
sor designs”, while we address the problem of maximizing the per-
formance of a machine targeted at fault-prone substrates. Specifi-
cally, we demonstrated the value of introducing a new class of de-
sign parameters, capturing reliability–delay requirements for time-
critical microarchitectural components, and the need to develop
novel reliability-aware microarchitectures that expose such perform-
ance-critical trade-offs, to enable performance optimization.
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