
15.2

 254

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

Modular Domain-Specific Implementation and Exploration
Framework for Embedded Software Platforms

Christian Sauer, Matthias Gries, Sören Sonntag
Infineon Technologies, Corporate Research, Munich, Germany

{Christian.Sauer|Matthias.Gries|Soeren.Sonntag}@infineon.com

ABSTRACT
This paper focuses on designing network processing software for
embedded processors. Our design flow CRACC represents an
efficient path to implementation based on a modular application
description, while avoiding much of the overhead of existing
component-based techniques. We illustrate results for a real-world
application implementing a full IP-based DSL Access Multiplexer
(IP-DSLAM) system. We quantify overhead and optimization
potential incurred by our modular implementation. We also point
out how CRACC can be deployed for HW-SW partitioning and
design space exploration.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments.
D.3.4 [Programming Languages]: Processors - code generation.

General Terms
Design, Languages, Performance.

Keywords
Software Development, Programmable Platforms, Design Space
Exploration, DSLAM, Network Processing.

1. INTRODUCTION
Increasing time-to-market pressure is leading to heterogeneous
programmable architectures as a main platform of customizable
embedded systems for different application domains. Current best
practice in developing embedded software under tight memory
and run-time constraints is based on programming in assembler.
Examples are applications for cell phones and the data plane in
network processors. Clearly, this approach is in conflict with other
design criteria, such as ease of maintainability and portability
among architectures. Due to the complexity of these systems, a
more deterministic and reliable design flow is required, both in
terms of development time and software quality (e.g., predictable
performance). On the other hand, the design of reliable software
in general is a vivid area of research [12].
The question arises whether we can bridge the efficiency gap to
some extent between embedded software development on the one
hand, and general software engineering concepts on the other
hand. In this context we have to recognize that programming in C
is the only abstraction above assembler that is established as a

programming model for embedded processors [7]. In order to
reach wide acceptance among embedded software engineers, we
have to provide a programming framework that supports a
systematic path to efficient implementations based on C (or even
assembler) while offering enough abstraction for software reuse,
ease of mapping, and performance evaluation. The overhead for
granting a higher abstraction to stimulate reuse and to establish a
disciplined development flow must not exceed the requirements of
a plain implementation significantly to be economically
justifiable. As a side effect, apart from optimizing the design
process of firmware, a better abstraction enables the option to
release the architecture as an open platform to the customer.
Flexible and programmable platforms are particularly popular in
the domain of network processing, which is the focus of this
paper. The results can be extended to other dataflow-oriented
application domains as well. The modular application description
framework Click is the basis for our design flow CRACC (Click
Rapidly Adapted to C-Code) that enables the fast migration of
network processing functionality to different embedded
processing cores. We will show that real-world network
processing applications can be implemented using CRACC with
minor overhead with respect to code size, while providing a
reasonable abstraction for rapid exploration of different
implementation alternatives, e.g. in terms of different mappings
and hardware-software partitioning trade-offs on a heterogeneous
programmable platform. Contrary to CRACC, current best-
practice requires the programmer to optimize resource allocation
and scheduling across the whole application in assembly.
The paper is structured as follows. In the following section, we
introduce the main concepts of Click and discuss related work. In
Section 3 we describe our approach called CRACC, which is the
main focus of this work. Section 4 gives the results of our case
study where we implement a digital subscriber line access
multiplexer (DSLAM) using CRACC, followed by a discussion in
Section 5. We conclude in Section 6.

2. EXPLOITING MODULARITY
As a first step, we implement our functional IP-DSLAM scenarios
in Click, a domain-specific framework for describing network
applications [5]. We have chosen Click for several reasons: Click
models are modular, executable, implementation independent, and
capture inherent parallelism in packet flows and dependencies
among elements (Click components). Furthermore, Click's
abstraction level and the existing extensible element library allow
us to focus on application specifics during the implementation. By
using Click, a functionally correct model of the application can be
derived quickly. The following performance optimization can then
focus on individual elements and the partitioning of elements onto
processing cores. This systematic approach leads to improved
design productivity and simplifies reuse.

 255

2.1 Click Characteristics
In Click, applications are composed in a domain-specific language
from elements written in C++ that can be linked by directed
connections. The elements describe common computational
network operations, whereas connections specify the flow of
packets (i.e. data) between elements. Packets are the only data
type that can be communicated. All application state is kept local
within elements. Two patterns of packet communication are
distinguished in Click: push and pull. Push communication is
initiated by a source element and models the arrival of packets at
the system. Pull communication is initiated by a sink and models
space that becomes available in an outbound resource. Figure 1
shows a simple illustrative Click example using a common
graphical syntax to represent the interaction of elements. In the
example, packets are inserted by the FromDevice element into the
system (push outputs [black]). The packets are then fed into a
Classifier. This element forwards a packet to one of its output
ports depending on the result of the internal processing, e.g. based
on filtering header fields. Two outputs are connected to queues. In
Click, queues are explicit elements that have push inputs and pull
outputs (white). Thus, the Scheduler can pull packets out of the
queue at its own rate removing them from the system.

FromDevice
 ToDevice

Discard

Classifier
Scheduler

Queue0

Queue1

FromDevice -> cl::Classifier [0] ->

cl [1] ->

cl [2] ->

q0::Queue ->

q1::Queue ->

Discard;

[0] s::Scheduler ->

[1] s;

ToDevice;

Figure 1: Click Example.

2.2 Related Work
Related work to our approach can be found in three areas: I) work
extending the Click software to exploit specific architectures, II)
frameworks that use Click for application modeling and
architecture design space exploration, and III) methods that use
Click to map hardware description language content to particular
processing hardware.
Click [5] was originally implemented on Linux using C++. Recent
extensions to Click include SMP-Click [2] and NP-Click [11]. In
[2], a multi-threaded Linux implementation for general-purpose
PC hardware is described. In [11], Shah et al. show how Click,
augmented with some abstracted architectural features, can be
used as a programming model for the Intel IXP 1200 network
processor. In Section 3, we will provide a way to map Click
software onto embedded processor cores.
StepNP is a design framework for network processors [8] that
uses Click for specifying the application. The corresponding
application development environment [9] is based on C++ and
provides common SMP and message passing programming
abstractions. Contrary to that, we rely on common ANSI-C
compilers in our library-based approach for efficiency reasons.
Programming close to hardware using C is the most accepted form
of application development due to tight design constraints on
latency and code size. It is also often the only programming
abstraction above assembler provided by the core manufacturer

[7]. Finally, Teja C [3] extends the C language for programming
network processors and thus requires a proprietary compiler. In
our approach, we encapsulate platform-specific aspects in library
elements so that ANSI-C compilers can be used that are prevalent
in the domain of embedded systems.

Click is also used to encapsulate hardware description language
content. In the CLIFF work [6], Click elements are mapped to
FPGAs while reusing standard back-end tools. CRACC’s front-
end can be adapted to generate netlists for CRACC and CLIFF,
given a Click input. By incorporating CLIFF, we could provide a
comprehensive framework for hardware-software partitioning and
implementation of network applications based on standard
deployment tools. In this way, profiling-based input to systematic
mapping tools, e.g. based on ILP [1] or analytical models [13],
can be generated seamlessly.

3. CRACC – Click for Embedded Processors
Click [5] is implemented in C++ and uses Linux OS concepts,
such as timers and schedulers. Most application-specific
embedded processors, however, provide only limited
programming environments, poor runtime support, and often do
not support C++ [7]. Especially in case of network processors we
observe a lack of proper compilers and operating systems for
processing elements within the data plane. Instead, they rely on
assembler and as many static optimizations as possible in order to
achieve fast implementations.

Thus, we need to transform our Click application description into
a representation an embedded processor can support, e.g. a 'C'
program. Such a solution needs to address the following features
that Click offers:

• Domain-specific language for hierarchical composition,
configuration, and interaction of elements.

• Run-time re-configurability of element connections.
• Modular programming style using object oriented features.
• Concurrency and scheduling of elements at run-time.
• Timers and timed rescheduling of elements.
• Communication interfaces between elements.

In this section, we first describe CRACC (Click Rapidly Adapted
to C Code), a framework which adapts Click to ANSI-C elements
that can be executed on embedded processor cores. Then, we
discuss how CRACC is mapped onto embedded cores. We discuss
concepts for heterogeneous multi-processors and combined
hardware/software solutions at the end of this section.

3.1 Click Rapidly Adapted to C Code
The CRACC design flow (see Figure 2) starts with an
implementation in Click. The application programmer can model
the functionality on any host where Click can be simulated. After
a functionally correct model of the application has been derived,
which can usually be done quickly, CRACC’s Click front-end is
used to generate a netlist and the corresponding configurations for
CRACC elements. The CRACC source code can then be cross-
compiled and profiled on the respective embedded platform. The
subsequent performance optimization can focus on individual
elements and possibly on the partitioning of elements onto several
processing cores. This systematic approach leads to improved
design productivity and simplifies reuse.

 256

Click

CRACC

Click
Elements

Click
Source

Click Engine Linux/OS
Auxiliaries

Simulation/
Execution

Element
Configuration

CRACC
Elements

X-Compile Target
Auxiliaries

Ex ecutable on embedded uni-processor

Profiling

Netlist

Figure 2: CRACC Framework.

3.1.1 Preserving Modularity
CRACC preserves Click’s modularity by emulating object-
oriented programming. Particularly objects and their construction
using new, inheritance, and virtual function calls are supported
using function pointers in structs, e.g. described in [4]. That
means, a Click element is represented in C by a struct that
contains pointers to element functions in addition to its element
data. In that way, Click's push/pull function call semantics can be
preserved. In the following we discuss these issues using our
CRACC implementation.
• An object in C – Object methods require in contrast to C++ an

explicit pointer to the associated element. A struct is declared
that can be used similarly to a class in C++. Before it can be
used, however, the element's local data needs to be initialized
and the method function pointers need to be set to local
methods.

• Object construction – Similar to C++’s new, we implement a
function that creates an object struct, calls its init function, and
returns a pointer to the struct. This encapsulates the element
initialization and provides a convenient way of instantiation.

• Inheritance – Click uses a quite flat class hierarchy. Most
elements are directly derived from the element class. In
CRACC inheritance is achieved by using macros that declare
an element's data and methods. The struct then simply contains
an ordered list of all parent class macros followed by the local
declaration. For proper initialization, the init functions of all
parents followed by the local init must be called.

• Virtual functions – Using function pointers in structs actually
makes every function virtual since it allows replacing an
element function with another one even at run-time.

3.1.2 Packets and Other Data Types
CRACC implements a Packet data type that allows the
modification of its data. In Click Packets and WriteablePackets
are distinguished to preserve memory using a reference-or-copy-
before-modification approach. Although more memory consuming
in some rare cases, the CRACC behavior seems more natural for
embedded packet processing since we expect most packets (at
least their headers) to be modified anyway. The packet methods
are called directly without using function pointers to avoid
runtime overhead.
Other Click data types that are often used to ease the element
configuration, such as classification rules and IPv6 addresses, are
translated by the Click/CRACC front-end into ANSI-C data types.

3.1.3 Timers
In Click timed and rated elements require a common time base for
their operations. Click uses the operating system's (Linux) time
base and exploits OS facilities for timed operations. Click
implements two concepts for timed operations: tasks and timers.
Tasks are used for operations that need to be called very
frequently (tens of thousands of times per second) and therefore
should execute fast. Infrequent operations are more efficiently
supported by timers.
Timed elements in CRACC can only access time by using timers.
They are also used instead of tasks for 'fast' scheduling. Timers
encapsulate the specifics of a target’s implementation, e.g. a
hardware timer that is register mapped, memory mapped, or
implemented as a co-processor.

3.1.4 Simulation Engine
A simulation engine is provided by CRACC to enable execution
of the generated and compiled code for verification purposes. The
engine provides a global time, maintains lists of scheduled events,
and triggers the execution of push/pull chains.
The scheduling order of the CRACC simulation differs from Click
due to the different task and timer implementations. That means,
the order of packets generated by different sources or pulled by
different sinks will not necessarily be the same. However, packet
flows generated by the same source/sink pair have an identical
sequential order.

3.1.5 Preserving the Click Language
The Click language describes the composition of a packet
processing application from elements and its configuration. Our
CRACC implementation preserves this language front-end by
extending Click. The modified Click first evaluates a Click source
description and executes all initialization phases (configure and
init functions). Then, it generates a C schematic of an application
that instantiates, configures, and connects CRACC elements
according to the Click description (see Figure 2).
Since the CRACC configuration is done after processing of the
Click configuration strings, only preprocessed valid data
structures are used for configuring the CRACC elements.

3.2 Targeting CRACC to Embedded Cores
So far, we targeted CRACC to a representative set of ten
embedded processors, which among others includes the common
32bit cores MIPS, ARM, and PowerPC. The initial tool chains
we were using for the cores are based on GNU tools and public
domain instruction set simulators, e.g. GDB. In a second phase,
we switched to cycle precise simulators provided by the
individual core vendors when necessary.
For CRACC the different endian-ness of the embedded cores was
the issue with the largest impact on implementation effort and
code base. The individual tool chains and programming
environments furthermore required the adaptation of makefiles
and runtime environments (e.g. startup and initialization code).

3.3 Platform Mapping, HW Encapsulation
A Click application graph is partitioned at element boundaries and
mapped onto a heterogeneous multi-processor platform manually.
In the following, we will discuss issues related to targeting and
mapping CRACC to a processor platform in more detail.

 257

3.3.1 Packet I/O
Packet I/O in CRACC uses the same concepts as Click, i.e. From-
and ToDevices that encapsulate interface specifics. A typical
FromDevice, for instance, contains an ingress queue followed by
an Unqueue mechanism that pushes received packets into the
system. Depending on the underlying hardware, polling as well as
interrupting schemes may be implemented and encapsulated.
In the context of a multi-processor SoC, our From- and ToDevices
are mapped onto the physical I/O interfaces, e.g. Gigabit Ethernet
and Utopia. The communication with neighboring elements then
follows the on-chip communication scheme as described in
Section 3.3.3. From- and ToDevices can be replaced by artificial
packet sources/sinks if our simulation engine is used.

3.3.2 Special Purpose Hardware
In order to ease the mapping of CRACC applications onto
different platforms special purpose hardware, such as Timers and
coprocessors, is encapsulated in auxiliary modules that export a
hardware independent API.
Depending on the way of coupling, special purpose hardware can
be deployed either directly using the API within CRACC
implementations or indirectly by particular CRACC elements that
are mapped onto the special purpose hardware.
A register mapped timer, for instance, requires only the Timer
abstraction for its deployment. A loosely coupled CRC accelerator
linked into the packet flow, on the other hand, is more naturally
addressed by special SetCRC and CheckCRC element
implementations. Element encapsulation requires loosely coupled
hardware accelerators to support the communication interfaces
described in the next section.

3.3.3 Inter-Element Communication
CRACC elements pass packet descriptors between elements.
These descriptors contain extracted packet header and payload
data, annotated flow information, and header and payload
pointers. Three communication schemes can be distinguished
depending on the mapping of the elements:
• On the same processor – Inter-element communication on the

same processor is handled using function calls that pass the
packet descriptor. Elements on the same processor require an
additional element scheduler that fires all sources (sinks) of
push (pull) chains. The scheduling of a push (pull) chain is
non-preemptive. Its rate is implementation specific and may
depend on priorities. Elements on different processors use
special sources (sinks) to communicate.

• Between different processors – The communication of
elements on different processors requires message passing
semantics including a destination address. The address must
allow the identification of both the target processor (in case of
shared connections) and the associated task graph on that
processor. For that purpose special transmit and receive
elements in combination with a FIFO are inferred after
partitioning that annotate the packet with the required
information. These elements furthermore convert push and pull
chains as needed (see Fig. 3,4). In case of a pull chain
conversion, shown in Figure 4, user-specified rate information
is currently required for the transmitter. Finally, these elements
encapsulate the processor’s hardware communication interface
similar to other From- and ToDevices. We anticipate using

specialized on-chip communication interfaces for the processor
subsystems that provide ingress packet queues in hardware.
These queues will require only a small number of entries
depending on the number of task graphs executed
simultaneously on a processing node. However, the message
passing semantics enables other implementations as well.

• Between Elements in SW and HW – The interface of a
cluster of hardware elements to the on-chip communication
network must support the same message passing semantics as
for inter-processor communication, e.g. ingress queues.
Depending on the interface between hardware elements the
HW side of transmitters and receivers need to convert the
communication semantics accordingly. In case of CLIFF HW
elements [6] and queue interfaces, for instance, a three way
handshake needs to be generated using full and empty signals
of the queues.

Task1 Task2

FromDevice (push)

Task1 I/O
wrapper Task2I/O

wrapper Queue

CPU 2CPU 1

I) Before

II) After refinement
Figure 3: Synthesis of Push Chain Communication Wrappers.

Task1 Task2

ToDevice (pull)

Task1 I/O
wrapper Task2I/O

wrapper Queue

CPU 2CPU 1

I) Before

II) After refinement

Figure 4: Synthesis of Pull Chain Communication Wrappers.

3.3.4 Data Layout and Distinct Memories
Communication with memories is encapsulated within CRACC
elements. CRACC assumes a unified access to the memory
hierarchy. Besides the local data memory all distributed/shared
on- and off-chip memories are mapped into the processors
memory space. Data objects are either local or shared, and are
mapped explicitly by the programmer to a particular memory. In
order to provide a hardware independent solution shared data
should be encapsulated into objects that define its access
semantics (e.g. blocking/non-blocking) while deploying platform
specific hardware, such as semaphore banks. Using such objects
different data scopes as described in [11] can be implemented. In
case of read-only data the encapsulation can be omitted.

4. CASE STUDY
We apply the Click/CRACC framework to the domain of access
networks and model a complete IP based DSL access multiplexer
(DSLAM) [10] on the functional level in Click. We use Click for
the functional verification of the model and the CRACC execution
profiles on embedded processors for further design space
exploration.

4.1 Setup
Figure 5 shows a generic upstream line card in Click that deploys
Ethernet or ATM based links and operates on IPv4 packets. The

 258

processing steps experienced by each packet on its way through
the card are: Layer-2 protocol termination (Ethernet or AAL5), IP
Header verification, IP address validation, 5-tuple classification to
determine the destination port and traffic class, policing and
scheduling for QoS, and forwarding. Due to limited space, we
report the specification for a line card only. In general, a DSLAM
consists of several line cards – connecting customers to the
DSLAM – and one trunk card that bundles customer traffic to the
service provider. Usually up- and downstream packet flows
require different processing steps.

fro
m_

eth

Se
tA

nn
o(

1,p
-1
)

Ch
ec

kIP
He

ad
er

Ge
tIP

Ad
dr

es
s(1

2)

IP
Ve

rify
Po

rt(
…

)

Se
tA

nn
o(

4,0
)

IP
Fi

lte
r(…

)
…

BandWidthMeter
BandWidthMeter

BandWidthMeter
BandWidthMeter

…

SetAnno(3,0)
SetAnno(3,1)

SetAnno(3,tc-1)
SetAnno(3,tc)

…

fro
m_

at
m

Se
tA

nn
o(

1,
 p-

1)

Ch
ec

kIP
He

ad
er

Ge
tIP

Ad
dr

es
s(1

2)

IP
Ve

rify
Po

rt(
…

)

Se
tA

nn
o(

4,0
)

IP
Fi

lte
r(…

)

…

BandWidthMeter
BandWidthMeter

BandWidthMeter
BandWidthMeter

…

SetAnno(3,0)
SetAnno(3,1)

SetAnno(3,tc-1)
SetAnno(3,tc)

…
Pr

io
Sc

he
d

……

Se
tA

nn
o(

2,$
lid

)

to
_e

th
($li

d,$
up

l)

…

Figure 5: Upstream Line Card Functionality in Click.

4.2 CRACC Resource Requirements
As an indication for the required resources in both development
and deployment we look at the modeling effort for the DSLAM
and CRACC implementation, and the efficiency of the resulting
code on selected embedded processors.

4.2.1 Modeling Effort
For the DSLAM domain, we had to extend Click’s library with a
few functional elements with approximately 2000 lines-of-code in
total (ranging from 50 to 730 lines per element).
To date more than 50 elements have been implemented in
CRACC that enable modeling of arbitrary IP-DSLAM systems.
The implementation of the CRACC library and evaluation
environment took about five man-months.
The pure Click description of the IP-DSLAM is rather small
requiring only 266 lines-of-code (without comments),
representing 932 connected Click elements. This is not surprising
since the Click code only describes the composition and
configuration of elements, the actual functionality is contained in
the element library. Implementation and testing of the functional
DSLAM model after completion of the CRACC library took a
couple of days only. Composing the Click elements to form a
DSLAM was finished within a day, whereas the actual
configuration of filters, classifiers, and so on with corresponding
test runs took several days.

4.2.2 Code Efficiency
The CRACC element implementations are much smaller than their
Click counterparts due to the removed OO overhead and
simplified packet abstractions. The compiled IPVerifyPort object,
for instance, is 7025 bytes in Click’s C++ framework, and only
1268 bytes in CRACC’s C environment (g++, gcc, –O3, x86
platform). In average, CRACC’s object code size is only 17% of
the size of the Click objects. Table 1Error! Reference source not
found. gives an overview of code sizes of the CRACC framework
on selected embedded processors. We distinguish between code

that implements data plane functionality and code for performance
evaluation (e.g., simulator and traffic sources). As one can see, the
whole DSLAM can be implemented with less than 20 KByte of
code memory that can be provided as on-chip memory.

Table 1: CRACC Library Code Size on Different Platforms.
Code Size [Bytes] PowerPC ARM MIPS

Base 5268 3728 4484
Deployed elements 14340 10296 13024

Sum 19608 14024 17508

Environment/Traffic gen. 4140 2880 3552
Simulation engine 2992 3168 3040
Unused elements 8640 7656 7884

Sum 15772 13704 14476

Total 35380 27728 31984

4.3 DSLAM Performance Results
For the study, we evaluated different function partitions between
line and trunk cards of the IP-DSLAM. In Figure 5, the profiling
results are shown for a distributed DSLAM implementation. The
data generated by cycle-accurate simulators of the corresponding
cores is scaled down to the number of cycles required for the
processing of a single packet. Assuming a core frequency of
300MHz, one core can process up to 210K packets-per-second
(pps) in upstream direction or 650K pps in downstream direction
on a line card. On a trunk card, the processing capability is 720K
pps upstream and 150K pps downstream respectively. This would
be sufficient to support a 64 port ADSL line card with one single
processor assuming minimum-size (worst-case) packets and
today’s ADSL line rates (512kb/s upstream, 3Mb/s downstream).

5. DISCUSSION
We have introduced a comprehensive framework for evaluating
and implementing network processing applications on
heterogeneous embedded platforms. The advantages of using a
modular specification can be summarized as follows:
A disciplined design flow for the exploration of partitioning and
mapping decisions leads to a foreseeable, more deterministic path
to an optimal design with respect to performance. A Click element
is a natural encapsulation of local data and processing required for
a certain task. The number of mapping and partitioning choices
can thus be reduced considerably to a set of rational alternatives.
The run-time overhead for modularity is well justifiable by
strongly reduced implementation time. There is potential for

Figure 5: Profiling Results [clock cycles per packet].

r

0

500

1000

1500

2000

2500

3000

3500

Linecard,
upstream

Linecard,
downstream

Trunkcard,
upstream

Trunkcard,
downstream

ARM MIPS PowerPC

 259

optimization after the mapping has been decided, as discussed in
the next subsection.
The Click application can easily be specified using a graphical
front-end. This supports documentation and simplifies reuse of
components.
Platform-specific hardware is encapsulated in auxiliary modules
or distinct CRACC elements. Only these few components must be
ported to a new platform. CRACC thus provides a rapid
prototyping path to different architectures.
Since Click is increasingly being used for specifying applications,
we believe it is crucial and beneficial to support Click as input to
implementation on embedded processors. Due to this focus,
CRACC understands Click and is internally based on C.

5.1 Potential for Optimization
Applying modularity as provided by Click comes at the price of
some overhead in run-time and code size. This overhead can be
reduced significantly after partitioning and mapping steps have
been completed.
• Static push/pull element resolution – CRACC supports

push/pull agnostic elements. Their type is currently determined
at run-time by the neighboring elements. We expect much of
CRACC’s function-call overhead to be removed if this
resolution can be done during the initialization phase. We have
performed a couple of experiments with this respect and were
able to achieve an application speedup of up to 30%.

• Push/pull concatenation – The actual packet processing code
in push or pull chains can be concatenated into one element and
scheduled at once. On the one hand, this would remove most of
the modularity runtime overhead. On the other hand, by
combining several elements into one, the worst-case blocking
penalty for a high-priority packet due to the processing of a low
priority packet increases due to non-preemptive scheduling of
elements. This clearly is a design trade-off to be made for any
modular framework. A reasonable implementation is in between
these corner-cases, i.e. small elements like counters should be
combined with their surrounding elements.

• Lean element implementation – The current element module
implements all local methods by function pointers for
generality. Most of them, however, are not used. In addition,
most of those used are never redefined. This would allow a
leaner version that only implements the required functions. A
second phase then could even distinguish between non-virtual
and virtual methods, although this means different calling
conventions.

• Elements in assembly – CRACC library elements are currently
written in C for portability. Performance critical elements can of
course also be implemented in assembly.

Finally, if simulator speed would be an issue, scheduling of timed
elements can be made faster. Currently, timers are the only way
to trigger push/pull chains in simulation mode. In case the
CRACC simulation is used extensively a fast round-robin like
way similar to task scheduling in Click would be an option.

6. CONCLUDING REMARKS
Click models the data plane of a network processing application.
The configuration of the data path is the duty of the control plane.
It is possible to expose Click element configurations to the control

plane via NPF-compliant API calls, which remains to be
implemented for completeness.

We have shown that a full DSLAM can be implemented on
embedded processors using our framework CRACC “out-of-the-
box” by requiring less than 20 KByte of code memory only. A
processor running at 300 MHz on a DSLAM line card can support
64 of today’s ADSL ports for worst-case traffic. Assuming that
no elements must be added to the CRACC library, the software
implementation of a full DSLAM data plane can be done within a
few days.

The current CRACC library size reflects the functionality of an
IP-DSLAM. The results achieved so far in terms of code size and
efficiency are promising. We intend a public release of CRACC.

7. ACKNOWLEDGMENTS
This work has been supported by the German government
(BMBF) grant 01AK065A (PlaNetS). The initial idea goes back
to class projects of the MESCAL team at U.C. Berkeley. We
especially thank S. Weber and M. Shilman for their input. In
addition, we would like to thank W. Brunnbauer (TU Munich) for
his help implementing our framework and M. Thies (U.
Paderborn) for his helpful feedback on issues related to ANSI C.

8. REFERENCES
[1] A. Bender: MILP Based Task Mapping for Heterogeneous

Multiprocessor Systems, EURO-DAC, 1996
[2] B. Chen, R. Morris: Flexible Control of Parallelism in a

Multiprocessor PC Router, USENIX, June 2001
[3] K. Crozier: A C-Based Programming Language for

Multiprocessor Network SoC Architectures, Network
Processor Design, vol. 2, Morgan Kaufmann, Nov. 2003

[4] A.I. Holub: C + C++: Programming With Objects in C and
C++, McGraw-Hill, 1991

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek:
The Click Modular Router, ACM Transactions on Computer
Systems, 18(3), Aug. 2000

[6] C. Kulkarni, G. Brebner, G. Schelle: Mapping a Domain
Specific Language to a Platform FPGA, DAC, 2004

[7] P. Marwedel: Embedded Software: How to Make it
Efficient? Digital System Design, Euromicro, Sept. 2002

[8] P. Paulin, C. Pilkington, E. Bensoudane: StepNP: A
System-Level Exploration Platform for Network Processors,
IEEE Design and Test of Computers,19(6), 2002

[9] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, G.
Nicolescu: Parallel Programming Models for a Multi-
processor SoC Platform Applied to High-Speed Traffic
Management, CODES+ISSS, 2004

[10] C. Sauer, M. Gries, S. Sonntag: Modular Reference
Implementation of an IP-DSLAM, ISCC, June 2005

[11] N. Shah, W. Plishker, K. Keutzer: NP-Click: A Programming
Model for the Intel IXP1200, Network Processor Design,
vol. 2, Morgan Kaufmann, Nov. 2003

[12] I. Sommerville: Software Engineering, International
Computer Science Series, 7th edition, Addison Wesley, 2004

[13] L. Thiele, S. Chakraborty, M. Gries, S. Künzli: A Framework
for Evaluating Design Tradeoffs in Packet Processing
Architectures, Design Automation Conference (DAC), 2002

