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ABSTRACT 
This paper focuses on designing network processing software for 
embedded processors. Our design flow CRACC represents an 
efficient path to implementation based on a modular application 
description, while avoiding much of the overhead of existing 
component-based techniques. We illustrate results for a real-world 
application implementing a full IP-based DSL Access Multiplexer 
(IP-DSLAM) system. We quantify overhead and optimization 
potential incurred by our modular implementation. We also point 
out how CRACC can be deployed for HW-SW partitioning and 
design space exploration. 

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments. 
D.3.4 [Programming Languages]: Processors - code generation. 

General Terms 
Design, Languages, Performance. 

Keywords  
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1. INTRODUCTION 
Increasing time-to-market pressure is leading to heterogeneous 
programmable architectures as a main platform of customizable 
embedded systems for different application domains. Current best 
practice in developing embedded software under tight memory 
and run-time constraints is based on programming in assembler. 
Examples are applications for cell phones and the data plane in 
network processors. Clearly, this approach is in conflict with other 
design criteria, such as ease of maintainability and portability 
among architectures. Due to the complexity of these systems, a 
more deterministic and reliable design flow is required, both in 
terms of development time and software quality (e.g., predictable 
performance). On the other hand, the design of reliable software 
in general is a vivid area of research [12].  
The question arises whether we can bridge the efficiency gap to 
some extent between embedded software development on the one 
hand, and general software engineering concepts on the other 
hand. In this context we have to recognize that programming in C 
is the only abstraction above assembler that is established as a 

programming model for embedded processors [7]. In order to 
reach wide acceptance among embedded software engineers, we 
have to provide a programming framework that supports a 
systematic path to efficient implementations based on C (or even 
assembler) while offering enough abstraction for software reuse, 
ease of mapping, and performance evaluation. The overhead for 
granting a higher abstraction to stimulate reuse and to establish a 
disciplined development flow must not exceed the requirements of 
a plain implementation significantly to be economically 
justifiable. As a side effect, apart from optimizing the design 
process of firmware, a better abstraction enables the option to 
release the architecture as an open platform to the customer.  
Flexible and programmable platforms are particularly popular in 
the domain of network processing, which is the focus of this 
paper. The results can be extended to other dataflow-oriented 
application domains as well. The modular application description 
framework Click is the basis for our design flow CRACC (Click 
Rapidly Adapted to C-Code) that enables the fast migration of 
network processing functionality to different embedded 
processing cores. We will show that real-world network 
processing applications can be implemented using CRACC with 
minor overhead with respect to code size, while providing a 
reasonable abstraction for rapid exploration of different 
implementation alternatives, e.g. in terms of different mappings 
and hardware-software partitioning trade-offs on a heterogeneous 
programmable platform. Contrary to CRACC, current best-
practice requires the programmer to optimize resource allocation 
and scheduling across the whole application in assembly.  
The paper is structured as follows. In the following section, we 
introduce the main concepts of Click and discuss related work. In 
Section 3 we describe our approach called CRACC, which is the 
main focus of this work. Section 4 gives the results of our case 
study where we implement a digital subscriber line access 
multiplexer (DSLAM) using CRACC, followed by a discussion in 
Section 5. We conclude in Section 6. 

2. EXPLOITING MODULARITY  
As a first step, we implement our functional IP-DSLAM scenarios 
in Click, a domain-specific framework for describing network 
applications [5]. We have chosen Click for several reasons: Click 
models are modular, executable, implementation independent, and 
capture inherent parallelism in packet flows and dependencies 
among elements (Click components). Furthermore, Click's 
abstraction level and the existing extensible element library allow 
us to focus on application specifics during the implementation. By 
using Click, a functionally correct model of the application can be 
derived quickly. The following performance optimization can then 
focus on individual elements and the partitioning of elements onto 
processing cores. This systematic approach leads to improved 
design productivity and simplifies reuse.  
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2.1 Click Characteristics 
In Click, applications are composed in a domain-specific language 
from elements written in C++ that can be linked by directed 
connections. The elements describe common computational 
network operations, whereas connections specify the flow of 
packets (i.e. data) between elements. Packets are the only data 
type that can be communicated. All application state is kept local 
within elements. Two patterns of packet communication are 
distinguished in Click: push and pull. Push communication is 
initiated by a source element and models the arrival of packets at 
the system. Pull communication is initiated by a sink and models 
space that becomes available in an outbound resource. Figure 1 
shows a simple illustrative Click example using a common 
graphical syntax to represent the interaction of elements. In the 
example, packets are inserted by the FromDevice element into the 
system (push outputs [black]). The packets are then fed into a 
Classifier. This element forwards a packet to one of its output 
ports depending on the result of the internal processing, e.g. based 
on filtering header fields. Two outputs are connected to queues. In 
Click, queues are explicit elements that have push inputs and pull 
outputs (white). Thus, the Scheduler can pull packets out of the 
queue at its own rate removing them from the system.  

FromDevice
 ToDevice

Discard

Classifier
Scheduler

Queue0

Queue1

FromDevice  -> cl::Classifier [0]  ->

cl [1]  ->

cl [2]  ->

q0::Queue  ->

q1::Queue  ->

Discard;

[0] s::Scheduler  ->

[1] s;

ToDevice;

 
Figure 1: Click Example. 

2.2 Related Work 
Related work to our approach can be found in three areas: I) work 
extending the Click software to exploit specific architectures, II) 
frameworks that use Click for application modeling and 
architecture design space exploration, and III) methods that use 
Click to map hardware description language content to particular 
processing hardware.  
Click [5] was originally implemented on Linux using C++. Recent 
extensions to Click include SMP-Click [2] and NP-Click [11]. In 
[2], a multi-threaded Linux implementation for general-purpose 
PC hardware is described. In [11], Shah et al. show how Click, 
augmented with some abstracted architectural features, can be 
used as a programming model for the Intel IXP 1200 network 
processor. In Section 3, we will provide a way to map Click 
software onto embedded processor cores.  
StepNP is a design framework for network processors [8] that 
uses Click for specifying the application. The corresponding 
application development environment [9] is based on C++ and 
provides common SMP and message passing programming 
abstractions. Contrary to that, we rely on common ANSI-C 
compilers in our library-based approach for efficiency reasons. 
Programming close to hardware using C is the most accepted form 
of application development due to tight design constraints on 
latency and code size. It is also often the only programming 
abstraction above assembler provided by the core manufacturer 

[7]. Finally, Teja C [3] extends the C language for programming 
network processors and thus requires a proprietary compiler. In 
our approach, we encapsulate platform-specific aspects in library 
elements so that ANSI-C compilers can be used that are prevalent 
in the domain of embedded systems.   

Click is also used to encapsulate hardware description language 
content. In the CLIFF work [6], Click elements are mapped to 
FPGAs while reusing standard back-end tools. CRACC’s front-
end can be adapted to generate netlists for CRACC and CLIFF, 
given a Click input. By incorporating CLIFF, we could provide a 
comprehensive framework for hardware-software partitioning and 
implementation of network applications based on standard 
deployment tools. In this way, profiling-based input to systematic 
mapping tools, e.g. based on ILP [1] or analytical models [13], 
can be generated seamlessly.   

3. CRACC – Click for Embedded Processors 
Click [5] is implemented in C++ and uses Linux OS concepts, 
such as timers and schedulers. Most application-specific 
embedded processors, however, provide only limited 
programming environments, poor runtime support, and often do 
not support C++ [7]. Especially in case of network processors we 
observe a lack of proper compilers and operating systems for 
processing elements within the data plane. Instead, they rely on 
assembler and as many static optimizations as possible in order to 
achieve fast implementations. 

Thus, we need to transform our Click application description into 
a representation an embedded processor can support, e.g. a 'C' 
program. Such a solution needs to address the following features 
that Click offers: 

• Domain-specific language for hierarchical composition, 
configuration, and interaction of elements. 

• Run-time re-configurability of element connections. 
• Modular programming style using object oriented features.  
• Concurrency and scheduling of elements at run-time. 
• Timers and timed rescheduling of elements. 
• Communication interfaces between elements. 

In this section, we first describe CRACC (Click Rapidly Adapted 
to C Code), a framework which adapts Click to ANSI-C elements 
that can be executed on embedded processor cores. Then, we 
discuss how CRACC is mapped onto embedded cores. We discuss 
concepts for heterogeneous multi-processors and combined 
hardware/software solutions at the end of this section.   

3.1 Click Rapidly Adapted to C Code 
The CRACC design flow (see Figure 2) starts with an 
implementation in Click. The application programmer can model 
the functionality on any host where Click can be simulated. After 
a functionally correct model of the application has been derived, 
which can usually be done quickly, CRACC’s Click front-end is 
used to generate a netlist and the corresponding configurations for 
CRACC elements. The CRACC source code can then be cross-
compiled and profiled on the respective embedded platform. The 
subsequent performance optimization can focus on individual 
elements and possibly on the partitioning of elements onto several 
processing cores. This systematic approach leads to improved 
design productivity and simplifies reuse.  
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Figure 2: CRACC Framework. 

3.1.1 Preserving Modularity  
CRACC preserves Click’s modularity by emulating object-
oriented programming. Particularly objects and their construction 
using new, inheritance, and virtual function calls are supported 
using function pointers in structs, e.g. described in [4]. That 
means, a Click element is represented in C by a struct that 
contains pointers to element functions in addition to its element 
data. In that way, Click's push/pull function call semantics can be 
preserved. In the following we discuss these issues using our 
CRACC implementation.  
• An object in C – Object methods require in contrast to C++ an 

explicit pointer to the associated element. A struct is declared 
that can be used similarly to a class in C++. Before it can be 
used, however, the element's local data needs to be initialized 
and the method function pointers need to be set to local 
methods. 

• Object construction – Similar to C++’s new, we implement a 
function that creates an object struct, calls its init function, and 
returns a pointer to the struct. This encapsulates the element 
initialization and provides a convenient way of instantiation. 

• Inheritance – Click uses a quite flat class hierarchy. Most 
elements are directly derived from the element class. In 
CRACC inheritance is achieved by using macros that declare 
an element's data and methods. The struct then simply contains 
an ordered list of all parent class macros followed by the local 
declaration. For proper initialization, the init functions of all 
parents followed by the local init must be called. 

• Virtual functions – Using function pointers in structs actually 
makes every function virtual since it allows replacing an 
element function with another one even at run-time.  

3.1.2 Packets and Other Data Types  
CRACC implements a Packet data type that allows the 
modification of its data. In Click Packets and WriteablePackets 
are distinguished to preserve memory using a reference-or-copy-
before-modification approach. Although more memory consuming 
in some rare cases, the CRACC behavior seems more natural for 
embedded packet processing since we expect most packets (at 
least their headers) to be modified anyway. The packet methods 
are called directly without using function pointers to avoid 
runtime overhead. 
Other Click data types that are often used to ease the element 
configuration, such as classification rules and IPv6 addresses, are 
translated by the Click/CRACC front-end into ANSI-C data types.  

3.1.3 Timers 
In Click timed and rated elements require a common time base for 
their operations. Click uses the operating system's (Linux) time 
base and exploits OS facilities for timed operations. Click 
implements two concepts for timed operations: tasks and timers. 
Tasks are used for operations that need to be called very 
frequently (tens of thousands of times per second) and therefore 
should execute fast. Infrequent operations are more efficiently 
supported by timers.  
Timed elements in CRACC can only access time by using timers. 
They are also used instead of tasks for 'fast' scheduling. Timers 
encapsulate the specifics of a target’s implementation, e.g. a 
hardware timer that is register mapped, memory mapped, or 
implemented as a co-processor. 

3.1.4 Simulation Engine   
A simulation engine is provided by CRACC to enable execution 
of the generated and compiled code for verification purposes. The 
engine provides a global time, maintains lists of scheduled events, 
and triggers the execution of push/pull chains. 
The scheduling order of the CRACC simulation differs from Click 
due to the different task and timer implementations. That means, 
the order of packets generated by different sources or pulled by 
different sinks will not necessarily be the same. However, packet 
flows generated by the same source/sink pair have an identical 
sequential order.  

3.1.5 Preserving the Click Language 
The Click language describes the composition of a packet 
processing application from elements and its configuration. Our 
CRACC implementation preserves this language front-end by 
extending Click. The modified Click first evaluates a Click source 
description and executes all initialization phases (configure and 
init functions). Then, it generates a C schematic of an application 
that instantiates, configures, and connects CRACC elements 
according to the Click description (see Figure 2). 
Since the CRACC configuration is done after processing of the 
Click configuration strings, only preprocessed valid data 
structures are used for configuring the CRACC elements. 

3.2 Targeting CRACC to Embedded Cores 
So far, we targeted CRACC to a representative set of ten 
embedded processors, which among others includes the common 
32bit cores MIPS, ARM, and PowerPC.  The initial tool chains 
we were using for the cores are based on GNU tools and public 
domain instruction set simulators, e.g. GDB. In a second phase, 
we switched to cycle precise simulators provided by the 
individual core vendors when necessary. 
For CRACC the different endian-ness of the embedded cores was 
the issue with the largest impact on implementation effort and 
code base. The individual tool chains and programming 
environments furthermore required the adaptation of makefiles 
and runtime environments (e.g. startup and initialization code).  

3.3 Platform Mapping, HW Encapsulation 
A Click application graph is partitioned at element boundaries and 
mapped onto a heterogeneous multi-processor platform manually. 
In the following, we will discuss issues related to targeting and 
mapping CRACC to a processor platform in more detail.     
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3.3.1 Packet I/O 
Packet I/O in CRACC uses the same concepts as Click, i.e. From- 
and ToDevices that encapsulate interface specifics. A typical 
FromDevice, for instance, contains an ingress queue followed by 
an Unqueue mechanism that pushes received packets into the 
system. Depending on the underlying hardware, polling as well as 
interrupting schemes may be implemented and encapsulated. 
In the context of a multi-processor SoC, our From- and ToDevices 
are mapped onto the physical I/O interfaces, e.g. Gigabit Ethernet 
and Utopia. The communication with neighboring elements then 
follows the on-chip communication scheme as described in 
Section 3.3.3. From- and ToDevices can be replaced by artificial 
packet sources/sinks if our simulation engine is used.  

3.3.2 Special Purpose Hardware 
In order to ease the mapping of CRACC applications onto 
different platforms special purpose hardware, such as Timers and 
coprocessors, is encapsulated in auxiliary modules that export a 
hardware independent API.  
Depending on the way of coupling, special purpose hardware can 
be deployed either directly using the API within CRACC 
implementations or indirectly by particular CRACC elements that 
are mapped onto the special purpose hardware. 
A register mapped timer, for instance, requires only the Timer 
abstraction for its deployment. A loosely coupled CRC accelerator 
linked into the packet flow, on the other hand, is more naturally 
addressed by special SetCRC and CheckCRC element 
implementations. Element encapsulation requires loosely coupled 
hardware accelerators to support the communication interfaces 
described in the next section.  

3.3.3 Inter-Element Communication 
CRACC elements pass packet descriptors between elements. 
These descriptors contain extracted packet header and payload 
data, annotated flow information, and header and payload 
pointers. Three communication schemes can be distinguished 
depending on the mapping of the elements: 
• On the same processor – Inter-element communication on the 

same processor is handled using function calls that pass the 
packet descriptor. Elements on the same processor require an 
additional element scheduler that fires all sources (sinks) of 
push (pull) chains. The scheduling of a push (pull) chain is 
non-preemptive. Its rate is implementation specific and may 
depend on priorities. Elements on different processors use 
special sources (sinks) to communicate.  

• Between different processors – The communication of 
elements on different processors requires message passing 
semantics including a destination address. The address must 
allow the identification of both the target processor (in case of 
shared connections) and the associated task graph on that 
processor. For that purpose special transmit and receive 
elements in combination with a FIFO are inferred after 
partitioning that annotate the packet with the required 
information. These elements furthermore convert push and pull 
chains as needed (see Fig. 3,4). In case of a pull chain 
conversion, shown in Figure 4, user-specified rate information 
is currently required for the transmitter. Finally, these elements 
encapsulate the processor’s hardware communication interface 
similar to other From- and ToDevices. We anticipate using 

specialized on-chip communication interfaces for the processor 
subsystems that provide ingress packet queues in hardware. 
These queues will require only a small number of entries 
depending on the number of task graphs executed 
simultaneously on a processing node. However, the message 
passing semantics enables other implementations as well. 

• Between Elements in SW and HW – The interface of a 
cluster of hardware elements to the on-chip communication 
network must support the same message passing semantics as 
for inter-processor communication, e.g. ingress queues.  
Depending on the interface between hardware elements the 
HW side of transmitters and receivers need to convert the 
communication semantics accordingly. In case of CLIFF HW 
elements [6] and queue interfaces, for instance, a three way 
handshake needs to be generated using full and empty signals 
of the queues.   

Task1 Task2

FromDevice (push)

Task1 I/O
wrapper Task2I/O

wrapper Queue

CPU 2CPU 1

I) Before

II) After refinement  
Figure 3: Synthesis of Push Chain Communication Wrappers. 

Task1 Task2

ToDevice (pull)

Task1 I/O
wrapper Task2I/O

wrapper Queue

CPU 2CPU 1

I) Before

II) After refinement
 

Figure 4: Synthesis of Pull Chain Communication Wrappers. 

3.3.4 Data Layout and Distinct Memories 
Communication with memories is encapsulated within CRACC 
elements. CRACC assumes a unified access to the memory 
hierarchy. Besides the local data memory all distributed/shared 
on- and off-chip memories are mapped into the processors 
memory space. Data objects are either local or shared, and are 
mapped explicitly by the programmer to a particular memory.  In 
order to provide a hardware independent solution shared data 
should be encapsulated into objects that define its access 
semantics (e.g. blocking/non-blocking) while deploying platform 
specific hardware, such as semaphore banks. Using such objects 
different data scopes as described in [11] can be implemented. In 
case of read-only data the encapsulation can be omitted.  

4. CASE STUDY 
We apply the Click/CRACC framework to the domain of access 
networks and model a complete IP based DSL access multiplexer 
(DSLAM) [10] on the functional level in Click. We use Click for 
the functional verification of the model and the CRACC execution 
profiles on embedded processors for further design space 
exploration.  

4.1 Setup 
Figure 5 shows a generic upstream line card in Click that deploys 
Ethernet or ATM based links and operates on IPv4 packets. The 
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processing steps experienced by each packet on its way through 
the card are: Layer-2 protocol termination (Ethernet or AAL5), IP 
Header verification, IP address validation, 5-tuple classification to 
determine the destination port and traffic class, policing and 
scheduling for QoS, and forwarding. Due to limited space, we 
report the specification for a line card only. In general, a DSLAM 
consists of several line cards – connecting customers to the 
DSLAM – and one trunk card that bundles customer traffic to the 
service provider. Usually up- and downstream packet flows 
require different processing steps.  
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Figure 5: Upstream Line Card Functionality in Click. 

4.2 CRACC Resource Requirements 
As an indication for the required resources in both development 
and deployment we look at the modeling effort for the DSLAM 
and CRACC implementation, and the efficiency of the resulting 
code on selected embedded processors.   

4.2.1 Modeling Effort 
For the DSLAM domain, we had to extend Click’s library with a 
few functional elements with approximately 2000 lines-of-code in 
total (ranging from 50 to 730 lines per element).  
To date more than 50 elements have been implemented in 
CRACC that enable modeling of arbitrary IP-DSLAM systems.  
The implementation of the CRACC library and evaluation 
environment took about five man-months.  
The pure Click description of the IP-DSLAM is rather small 
requiring only 266 lines-of-code (without comments), 
representing 932 connected Click elements. This is not surprising 
since the Click code only describes the composition and 
configuration of elements, the actual functionality is contained in 
the element library. Implementation and testing of the functional 
DSLAM model after completion of the CRACC library took a 
couple of days only. Composing the Click elements to form a 
DSLAM was finished within a day, whereas the actual 
configuration of filters, classifiers, and so on with corresponding 
test runs took several days. 

4.2.2 Code Efficiency  
The CRACC element implementations are much smaller than their 
Click counterparts due to the removed OO overhead and 
simplified packet abstractions. The compiled IPVerifyPort object, 
for instance, is 7025 bytes in Click’s C++ framework, and only 
1268 bytes in CRACC’s C environment (g++, gcc, –O3, x86 
platform). In average, CRACC’s object code size is only 17% of 
the size of the Click objects. Table 1Error! Reference source not 
found. gives an overview of code sizes of the CRACC framework 
on selected embedded processors. We distinguish between code 

that implements data plane functionality and code for performance 
evaluation (e.g., simulator and traffic sources). As one can see, the 
whole DSLAM can be implemented with less than 20 KByte of 
code memory that can be provided as on-chip memory.  

Table 1: CRACC Library Code Size on Different Platforms. 
Code Size [Bytes] PowerPC ARM MIPS 

Base 5268 3728 4484 
Deployed elements 14340 10296 13024 

Sum 19608 14024 17508 

Environment/Traffic gen. 4140 2880 3552 
Simulation engine 2992 3168 3040 
Unused elements 8640 7656 7884 

Sum 15772 13704 14476 

Total 35380 27728 31984 

4.3 DSLAM Performance Results 
For the study, we evaluated different function partitions between 
line and trunk cards of the IP-DSLAM. In Figure 5, the profiling 
results are shown for a distributed DSLAM implementation. The 
data generated by cycle-accurate simulators of the corresponding 
cores is scaled down to the number of cycles required for the 
processing of a single packet. Assuming a core frequency of 
300MHz, one core can process up to 210K packets-per-second 
(pps) in upstream direction or 650K pps in downstream direction 
on a line card. On a trunk card, the processing capability is 720K 
pps upstream and 150K pps downstream respectively. This would 
be sufficient to support a 64 port ADSL line card with one single 
processor assuming minimum-size (worst-case) packets and 
today’s ADSL line rates (512kb/s upstream, 3Mb/s downstream). 

 

5. DISCUSSION  
We have introduced a comprehensive framework for evaluating 
and implementing network processing applications on 
heterogeneous embedded platforms. The advantages of using a 
modular specification can be summarized as follows:  
A disciplined design flow for the exploration of partitioning and 
mapping decisions leads to a foreseeable, more deterministic path 
to an optimal design with respect to performance. A Click element 
is a natural encapsulation of local data and processing required for 
a certain task. The number of mapping and partitioning choices 
can thus be reduced considerably to a set of rational alternatives. 
The run-time overhead for modularity is well justifiable by 
strongly reduced implementation time. There is potential for 

Figure 5: Profiling Results [clock cycles per packet]. 
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optimization after the mapping has been decided, as discussed in 
the next subsection. 
The Click application can easily be specified using a graphical 
front-end. This supports documentation and simplifies reuse of 
components.  
Platform-specific hardware is encapsulated in auxiliary modules 
or distinct CRACC elements. Only these few components must be 
ported to a new platform. CRACC thus provides a rapid 
prototyping path to different architectures. 
Since Click is increasingly being used for specifying applications, 
we believe it is crucial and beneficial to support Click as input to 
implementation on embedded processors. Due to this focus, 
CRACC understands Click and is internally based on C. 

5.1 Potential for Optimization 
Applying modularity as provided by Click comes at the price of 
some overhead in run-time and code size. This overhead can be 
reduced significantly after partitioning and mapping steps have 
been completed.  
• Static push/pull element resolution – CRACC supports 

push/pull agnostic elements. Their type is currently determined 
at run-time by the neighboring elements. We expect much of 
CRACC’s function-call overhead to be removed if this 
resolution can be done during the initialization phase. We have 
performed a couple of experiments with this respect and were 
able to achieve an application speedup of up to 30%. 

• Push/pull concatenation – The actual packet processing code 
in push or pull chains can be concatenated into one element and 
scheduled at once. On the one hand, this would remove most of 
the modularity runtime overhead. On the other hand, by 
combining several elements into one, the worst-case blocking 
penalty for a high-priority packet due to the processing of a low 
priority packet increases due to non-preemptive scheduling of 
elements. This clearly is a design trade-off to be made for any 
modular framework. A reasonable implementation is in between 
these corner-cases, i.e. small elements like counters should be 
combined with their surrounding elements.  

• Lean element implementation – The current element module 
implements all local methods by function pointers for 
generality. Most of them, however, are not used. In addition, 
most of those used are never redefined. This would allow a 
leaner version that only implements the required functions. A 
second phase then could even distinguish between non-virtual 
and virtual methods, although this means different calling 
conventions.  

• Elements in assembly – CRACC library elements are currently 
written in C for portability. Performance critical elements can of 
course also be implemented in assembly.   

Finally, if simulator speed would be an issue, scheduling of timed 
elements can be made faster.  Currently, timers are the only way 
to trigger push/pull chains in simulation mode. In case the 
CRACC simulation is used extensively a fast round-robin like 
way similar to task scheduling in Click would be an option. 

6. CONCLUDING REMARKS 
Click models the data plane of a network processing application. 
The configuration of the data path is the duty of the control plane. 
It is possible to expose Click element configurations to the control 

plane via NPF-compliant API calls, which remains to be 
implemented for completeness. 

We have shown that a full DSLAM can be implemented on 
embedded processors using our framework CRACC “out-of-the-
box” by requiring less than 20 KByte of code memory only. A 
processor running at 300 MHz on a DSLAM line card can support 
64 of today’s ADSL ports for worst-case traffic.  Assuming that 
no elements must be added to the CRACC library, the software 
implementation of a full DSLAM data plane can be done within a 
few days.  

The current CRACC library size reflects the functionality of an 
IP-DSLAM. The results achieved so far in terms of code size and 
efficiency are promising. We intend a public release of CRACC. 
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