
A Pattern Matching Coprocessor for Network Security

Young H. Cho and William H. MangioneSmith
University of California, Los Angeles
Department of Electrical Engineering

Los Angeles, California

young,billms@ee.ucla.edu

ABSTRACT

It has been estimated that computer network worms and
virus caused the loss of over $55B in 2003. Network security
system use techniques such as deep packet inspection to de-
tect the harmful packets. While software intrusion detection
system running on general purpose processors can be up-
dated in response to new attacks. They lack the processing
power to monitor gigabit networks. We present a high per-
formance pattern matching co-processor architecture that
can be used to monitor and identify a large number of in-
trusion signature. The design consists of a bank of pattern
matchers that are used to implement a highly concurrent
filter. The pattern matchers can be programmed to match
multiple patterns of various lengths, and are able to leverage
the existing databases of threat signatures. We have been
able to program the filters to match all the payload patterns
defined in the widely used Snort network intrusion detection
system at a rate above 7 Gbps, with memory space left to
accommodate threat signatures that become available in the
future.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-purpose
and application-based systems

General Terms

Security,Design

Keywords

Network security, Intrusion, Pattern matching, Pattern search,
Snort

1. INTRODUCTION
In August of 2003, the Internet worm named Sobig-F ac-

counted for $29.7 billion of economic damages worldwide.
This type of worm spreads through a file in the payloads of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1595930582/05/0006 ...$5.00.

e-mail. Most firewalls today are equipped to examine the
packet headers only. Therefore, application layer network
attacks can slip through the security systems undetected.
While e-mail lends itself to store and scan techniques, such
as those developed by anti-virus companies, other applica-
tions (e.g. databases) do not.

An effective security measures for such attack is deep
packet inspection [1]. Deep packet inspection not only ex-
amines the packet headers but also the payload data. There-
fore, a security system that incorporates deep packet inspec-
tion offers better protection from attacks than traditional
firewalls. It is evident that traditional firewalls that in much
use today have not been effective in differentiating network
packets containing the “Sobig-F” worm from normal e-mails.
However, deep packet inspection system, such as Snort [2, 3,
4], can be configured to detect “Sobig-F” worm by searching
for a specific 76 byte signature pattern in the payload.

1.1 Deep Packet Inspection
Since the network traffic is made of fragmented packets,

each stream need to be reassembled before sending it to the
deep packet inspection system. There are also some class
of attacks that use unconventional protocol features to con-
fuse and avoid the intrusion detection system. One such
attack uses overlapping fragmented IP packets. Such must
be eliminated by normalising the packets. Packet normal-
ization produces consistantly clean network traffic without
abnormalities [5].

Most of the currently available deep packet inspection sys-
tems use one or more general purpose processors running
signature-based filtering software. Although these software
systems can be easily reconfigured to detect new attacks,
the underlying processor are not powerful enough to sustain
acceptable filtering rate on gigabit (and above) networks.
For example Snort, one of the most widely used software
system, when configured with 500 real string patterns can
only sustain a bandwidth less than 50 Mbps on a dual 1 Ghz
Pentium 3 system.

Since the payload data is under the control of the user
application, all the patterns must be compared at every byte
of the payload during the search process. Therefore, as the
number of patterns in the software system increases, the
filtering process needs more processing power. We refer to
this pattern matching task as the dynamic inspection.

This exhaustive search process on general purpose pro-
cessor is expensive and the current software solutions are
impractical for networks over 1 Gbps. Therefore, we have
developed a specialized pattern matching co-processor for
the dynamic pattern search.

14.3

234

In the following section, we briefly discuss how imple-
menting pattern matching on reconfigurable hardware al-
lows deep packet filtering on high bandwidth network. Then,
in section 3, we present our new architecture for 1+ giga-
bit networks. We show that our system provides better
performance while maintaining the flexibility of being re-
programmable. In section 4, we describe an initial pattern
matcher implementation using the architecture. We develop
algorithms to map all the patterns defined in the Snort rules
into the design. We conclude with comparison of our imple-
mentation and other recent implementation of the pattern
matcher.

2. RELATED WORK
Sidhu and Prasanna mapped Non-deterministic Finite Au-

tomata (NFA) for regular expression into FPGA to per-
form fast pattern matching [6]. Subsequently, Franklin and
Hutchings implemented a pattern search engine in JHDL,
based on a subset of Snort IDS rules [7]. At around the
same time, our FPGA filter used 8-bit decoders to build 3.2
Gbps pattern match engine on FPGA [2]. Sourdis mapped a
similar design with a deeper pipeline to increase the filtering
rate to 10 Gbps [8].

Our follow-up work and a similar JHDL based design by
Clark and Baker made contribution in reducing the size of
the design by eliminating duplicate logic [3, 9, 10]. Such
improvement allowed the decoder design to fit into a single
FPGA with performance of several gigabits per second

Gokale et al. of Los Alamos National Laboratory imple-
mented a fast re-programmable pattern search system using
content addressable memories (CAM) [11]. Although such
system does not require reconfiguration of FPGA, the low
performance of CAM limits the usefulness as well as the
number of mappable rules.

Washington State University presented an approximate
method using Bloom filters. They detect the patterns at
600 Mbps with number of false positives which is dependent
on the number of rules as well as size of the alotted mem-
ory. Their approach uses hashing, and ultimately requires
a secondary exact string comparison process to detect false
positives [12].

Our latest FPGA implementation that uses a combina-
tion of 8-bit decoders and read-only-memory to reduce the
amount of discrete gates by store partial information in the
memory. The logic savings is achieved by using the decoders
to generate the address for the partial pattern entry in a
ROM. By balancing the use of the discrete gates and mem-
ory, this yields the highest performance per gate, thus far
[3, 13].

Unlike the software solutions, many of the FPGA im-
plementations satisfy the gigabit per second filtering rate.
However, other than the CAM implementation [11] and the
bloom filter design [12], the FPGA design compilation and
reconfiguration time can be in the order of minutes to days.
Such delay in reconfiguration may not acceptable as new
worms are released to the network in higher frequency.

3. ARCHITECTURE
A Snort rule contains information to search through all

layers of network packets to detect a particular attack [4].
The most computationally intensive phase of the detection
process is an exhaustive string search on the packet payload.

We present a compact and programmable pattern search co-
processor for multi-gigabit per second network.

3.1 Pattern Detection Module
The basic pattern detection module (PDM) is shown in

figure 1. The function of the pattern detection module is to
efficiently detect segments of pattern using programmable
hash functions followed by discrete string comparison.

At every clock cycle the input pattern is hashed to gen-
erate an index. The index is then used as an address of a
memory where the corresponding pattern is stored. The re-
trieved pattern from the memory is then compared with the
input pattern to determine whether the pattern is an exact
match. When there is a match, the index can be forwarded
with an unique identifier for the pattern.

Index

Hash

Shifter

Memory

Comp

Index

Detected

Pattern

Signal

Match

Offset

Aligned Pattern

Pattern

Input Pattern

Figure 1: Pattern Detection Module

We use parametrized and cascaded hardware so that the
length of the patterns are not fixed. Therefore, the max-
imum length of the input bytes that is used to generate
the hashed index is the minimum length of the patterns de-
tectable by a single PDM. Moreover, the maximum range of
the hashed index determines the maximum entries that can
be stored in the memory. For instance, if two byes of the in-
put pattern are hashed to generate the index, the PDM can
be configured to detect maximum of 65,536 patterns with
the minimum length of two bytes.

3.1.1 Hashed Index

Hashing the substrings in a static position places a con-
straint on which patterns can be detected by one PDM. If
the first two bytes of all the patterns are used for generating
the index, some would have the same hash value and could
not be stored in the same PDM. For higher resource utiliza-
tion, we allow the index to be generated by any substring of
the pattern.

In practice, each pattern consists of more than one unique
substring. By allowing the hash function to start at differ-
ent byte offsets of the pattern, the PDM memory utilization
can be improved. Therefore, the byte offset data is stored
with the pattern information in the memory. Using the off-
set and the pattern length, the input pattern is shifted and
compared against the target pattern as shown in figure 1.

Since the index is generated from a substring of the pat-
tern at a different offset, the timing of the identification
index output may not indicate the starting byte of the pat-
tern. By using the offset value with the switched pipeline as
the one shown in figure 2, the index output timing can be
adjusted to correspond with the start of the pattern.

3.1.2 Prioritized Parallel Modules

Some patterns, especially the ones with a small set of
unique substrings, cannot be mapped on to the same PDM
module because the entries for their hashed indices might

235

1

1

0

1

0

1

0

1

0

Index

0

DecoderOffset

n 0n−1

Figure 2: Switched Pipeline

be used by another pattern (e.g. pattern that is made of all
zeros). Therefore, more than one PDM must run in parallel
to detect multiple patterns with equal hashed values.

In order to increase memory utilization, each PDM can
have different sized memory and logic based on a range of
target patterns. To maintain consistent output timing for
the parallel modules, smaller PDMs may need extra stages
of pipeline to match with longest PDM.

If the PDMs are configured to examine the same data
simultaneously, in most cases, only one PDM will output a
valid index for a pattern match. By extending the output
bits to indicate its module number, the outputs from the
parallel PDMs can be merged to produce one index output.

Depending on the memory content of the PDMs, more
than one PDM can output valid indices at a given cycle.
Multiple detections occur if one pattern is a substring, start-
ing with the first byte, of another pattern. We refer to such
patterns as “overlapping patterns.” When more than one
index is detected in the same cycle, it is sufficient to output
the index for the longest pattern since it also indicates the
detection of the shorter patterns.

Our design use chains of multiplexors to assign the prior-
ities and merge the outputs of parallel PDMs. The longer
of any conflicting patterns must be stored in the PDM with
the highest priority.

The above PDM architecture allows the detection of pat-
terns of lengths that are less than or equal to that of the
widest memory module from all the PDMs. We refer to
such pattern as “short pattern.”

3.2 Long Pattern State Machine
For applications such as Snort, where some patterns are

long, it is not efficient to have the PDM with memory wide
enough to store those patterns. In this section, we describe
another component that uses PDMs to detect patterns that
are longer than the width of PDM memories.

3.2.1 Sequence of Segments

THE PATTERN THAT IS TOO LONG TO FIT IN A PDM

PDM 1 PDM 2PDM 0
Input

Stream

Index

Priority Multiplexor

Parallel

PDMs

Index DIndex CIndex BIndex A

Figure 3: Divided segments of the long pattern

maybe detected by different PDMs

Every long pattern can be broken into several short pat-
tern segments. If we match the order and the timing of the
segment sequence, we can effectively detect the correspond-
ing long pattern.

As in figure 3, the long pattern is divided into smaller
segments that fit in to a specific PDM. These segments are
stored in the PDMs along with a flag bit that indicates that
it is a segment of a long pattern. The detected indices are
forwarded to the long pattern state machine (LPSM).

3.2.2 Programmable State Machine

The LPSM examines the sequence of segment indices for
the correct ordering and the timing to detect the correspond-
ing long pattern.

As shown in figure 4, the LPSM is consists of the memory
and the pipeline similar to that of PDM. Unlike the PDM,
the memory only contains information for the current and
the next “state”. Each state is expressed as number which
is based on the index of the pattern segments detected by
the PDMs.

Memory comp

reset

Register

state
next

delay type

comp
predicted

statePipeline

Switched

statecurrent

Segment Index

AND
LPSM bits

match

To other

LPSMs

next valid

Figure 4: Long Pattern State Machine

The memory entry in LPSM with the state information
is loaded using part of the index identified by the PDMs.
The rest of the bits for the index are stored in the memory
to verify the current state. The entry also has a type field
that indicates whether the current index is the first, the
middle, or the last segment of the long pattern. The entry
also specifies what the next state is and when it is expected
to be detected by the PDMs.

The sequence matching process is only initiated when the
type of the current state indicates that it is the start of a
long pattern segment. The expected next state is forwarded
to the switched pipeline like the one used in PDM to add
the appropriate delay. When the next index reaches the end
of the pipeline, it is compared with the actual current state
to determine whether there was a match.

When the previous next state is an exact match of the cur-
rent state at the end of the pipeline, the expected next state
is forwarded in to the pipeline as before. If the expected
next state does not match the current state, this process
is terminated without any output. Otherwise, the process
continues until the current state is specified as the last seg-
ment of the long pattern. Then the last matching index is
forwarded as an index for the detected long pattern.

236

3.2.3 Parallel LPSM

Depending on the depth of the LPSM memory and the
long pattern indices, more than one entry maybe necessary
for the same address. In order to address this, more than one
LPSM can run in parallel to detect more than one sequence
of states.

In order to interoperate between the LPSMs, the match
bit is forwarded to the modules that contain all the corre-
sponding next state for the current state. When any of the
LPSM receives the match bit, its expected next state is for-
warded to the pipeline regardless of the result in its own
comparator.

3.3 System Integration and Features
Unlike the FPGA designs, which required functional cir-

cuit changes, this design only requires updating memory val-
ues. With the correct memory values, the short patterns
are identified using the PDMs whereas the long patterns are
identified using both the PDM and the LPSM modules.

3.3.1 Reusing Memory Entries

Since the multiple index sequences can be tracked by the
parallel LPSMs, they can be programmed to reuse pattern
segments that appear in more than one pattern. By reusing
the pattern segments for more than one pattern, the memory
requirement for PDM can be reduced.

Aho and Corasick’s keyword tree [14] is used in many effi-
cient software pattern search algorithms, including the Snort
IDS [4]. This algorithm is used in the FPGA implementa-
tion to reduce the hardware area [3]. We also apply the
algorithm to configure the PDM memories.

A keyword tree is a way to store a set of patterns into
an optimized tree of common keywords. The conversion
not only reduces the amount of required storage, but also
narrows the number of potential patterns as the pattern
search algorithm traverses the tree.

First, the pattern set must be analyzed to form the key-
word trees. Once the keyword trees are generated, its key-
words are stored as pattern segments in the PDMs and
the edges are stored as the state transitions in the paral-
lel LPSMs. This optimization allows the duplicate pattern
segments to be collapsed into a single segment to save PDM
memory space.

4. SNORT IMPLEMENTATION
Snort is one of the most widely used network intrusion de-

tection system (NIDS) that uses deep packet inspection. It
is open source software that can be configured with the set
of signatures that are used to identify network attacks. In
June 2004, the Snort rule set contained 1,729 string patterns
that should to be searched dynamically in the network pay-
load. To evaluate the effectiveness of our architecture, we
implement the filter based on the architecture to support
the entire Snort rule set. Our design contains additional
memory space for flexible configuration in the face of new
attacks.

4.1 Hardware Configuration
The dimension of the memories, the number of PDMs,

the number of LPSMs, and the hash functions are the ar-
chitecture parameters. These parameters allow the designer
to customize the filter for a given threat profile. Depending
on the pattern set, the parameters of the architecture may

differ dramatically to optimize the resource utilization. For
example, the designer may decide that LPSMs are unnec-
essary if all the target patterns are short and uniform in
length. On the other hand, the designer may choose to have
small PDM followed by many parallel LPSMs if the patterns
consists of repetitive set of common substrings.

Determining the parameters of the architecture is a com-
plex process which effects the behavior of the system. How-
ever, this process is beyond the scope of this paper. There-
fore, we attempt to describe one system we have imple-
mented to successfully map the entire Snort rules.

4.1.1 PDM Parameters

The length of the patterns range from 1 to 122 bytes in
Snort rule set. The contents of the patterns vary from bi-
nary sequences to ASCII strings. Therefore, we design the
filter to support patterns of various lengths as well as the
content. For the pattern set, using different size memories in
the PDMs can increase the memory utilization and decrease
the logic area. However, we choose to set the dimension of
all the PDM to be same to simplify of the design process.

The dimension of the memory in each PDM is 146 bits
by 512 entries. The memory is wide enough to store all the
information necessary to detect up to 17 bytes long pattern.
In our filter, eight of these PDM units are connected in
parallel to provide 8-levels of priority.

The filter takes two consecutive input bytes to generate
the 9 bit address for the PDM memories. As we mentioned
in the architecture description, the minimum pattern length
for our filter, therefore, is 2 bytes long. Since single byte
pattern can be more efficiently detected using byte decoders,
we do not map them on the filter.

The hash function logic consists of series of multiplexors
to independently choose any 9 bits of the 16 bits. The hash
logic in each PDM are individually configurable to give more
flexibility for the programmer.

4.1.2 LPSM Parameters

The design consists of eight units of LPSMs, each with
29 bit by 512 memory entries. Although we found that 256
memory entries per LPSM is sufficient to completely map
the entire Snort contents, we use the bigger memory for eas-
ier filter programming in the future. Since each LPSM can
match different sequence of pattern, the design is capable of
reusing one short pattern segment up to eight times.

In order to save memory space, the hashing logic for LPSM
uses portion of index bits to load the state information. The
index bits 11 through 2 are directly connected to the address
of the memory while the rest of the bits are, later, matched
with the memory content.

4.2 Pattern Software
Once the hardware parameters are set, the resulting data-

path can be programmed using several different algorithms.
Depending on the complexity of the algorithms and the pat-
terns, there can be a big difference in compilation time as
well as the program size. In general, reducing the size of the
program takes longer compilation time. However, smaller
program tend to yield cleaner indexing result. The system
performance stays constant, regardless the size of the pro-
gram.

Due to variety of possible algorithms and optimizations
that can be applied to program the filter, we believe this

237

step is also beyond the scope of this paper. Therefore, we
present a few direct and effective algorithms used to map
the entire pattern set defined in the Snort rules.

4.2.1 Pattern Preprocessing

For the above hardware, the long patterns must be broken
into shorter segments of 17 bytes or less. Due to the prior-
ities assigned to the PDM units, the short patterns do not
have to be unique. However, eliminating duplicate patterns
would save memory space. In order to identify each pattern
with an unique index, the last segment of every pattern must
be different.

A simple algorithm is used to break the long patterns
into smaller segments that fit in the PDMs. The algorithm
produces a list of segments containing overlapping patterns.
The overlapping patterns can assert detections in several
PDMs in a single cycle. By assigning higher priority to the
longer of any two overlapping patterns, the detection of the
longer index also indicates the detection of shorter patterns.
There is no need for priority for the non-overlapping pat-
terns.

If any segment of the long pattern is an overlapping pat-
tern, it must have the highest priority. Such priority is au-
tomatically assigned when the algorithm divides the pattern
into maximum lengthed segments.

Once the list of pattern segments are generated, it can
be used to generate index sequences for all the long pat-
terns. When the long patterns are divided into smaller seg-
ments, the corresponding sequence of segment identifiers are
recorded along with the time delay between subsequent seg-
ments and the type flags. These data are programmed into
LPSM to keep track of the long patterns.

4.2.2 Programming the Filter

All the PDMs and the LPSMs are memory mapped. As
far as the programmer is concerned, the filter can look like
a large memory. The parameters of the hash functions can
be also treated as a memory mapped location. Our imple-
mentation uses two ports to program the filter, one for the
memory modules in the PDMs and LPSMs and the other
for programming hash functions.

Before the filter is programmed, the data for the pattern
matching modules must be mapped on to a virtual filter
with same configuration. The mapping procedure is neces-
sary to determine exact address locations for all data. Once
the data is correctly mapped in to the virtual memory space,
programming the filter is equivalent to writing into a mem-
ory.

The list of pattern segments, their length, and the con-
trol information from the preprocessing step are mapped on
to the PDMs. Our mapper uses an algorithm that incre-
mentally fills the PDM memory according to the pattern
segment priority and the hash value. If the hash function
fails to map the patterns, it simply changes the hashing pa-
rameters to re-map the patterns.

These simple algorithm mapped the entire Snort on to
our initial implementation. However, the segments were not
evenly distributed into all the memory modules. A better
algorithm can use the distribution of the patterns in the
memory and the frequency of possible indices for each pat-
tern to efficiently map the pattern. Such mapping analysis
will take longer execution time.

The sequences of indices and other control fields are mapped

on to the LPSMs. Each index is mapped on to one LPSM
pointing to one or more LPSMs that matches the corre-
sponding next index. If there are patterns with same be-
ginning indices, the programmer can choose to use only one
LPSM to keep track of all the patterns until it branches off
to different patterns. This optimization will allow the un-
used entries of the LPSMs to be used for other sequence of
patterns.

After the data is successfully mapped on to the virtual
filter, the memory values can be directly copied in to the
filter memories.

4.3 Results
The hardware design is written in structural verilog and

the programmer is written in C++. As described in the
previous sections, the hardware is composed of 8 parallel
units of PDMs and 8 parallel units of LPSMs.

As of June 2004, there are total of 1,729 unique patterns
with lengths 2 to 122 bytes in Snort NIDS. The total number
of bytes that the filter need to compare are 22,340 bytes.
Using the simple algorithms, the programmer successfully
configured the hardware to filter the entire set of patterns.

The pattern mapping would be more efficient if the mem-
ory usage distribution and the index information of patterns
are used. Although our algorithm does not consider them
in during the mapping process, the hardware still proved to
be robust enough to store the rule set.

During the programming process, 374 long patterns are
transformed into 752 short pattern segments; making the
total number of patterns for the PDMs 2,107. Along with
the segments, the LPSMs are programmed to make up to 7
state transitions.

The entire pattern set occupies approximately 50% of the
PDM and 18% of LPSM memory, leaving enough space
many additional patterns. In fact, given a complex algo-
rithm that reuses duplicate substring, the filter can have
more than double the number of patterns defined in the
Snort NIDS.

On an AMD Athlon XP 1800+ processor under cygwin,
the total runtime of the programmer to process and map
the patterns into the virtual memory space is 771 msec. We
generated the memory modules in Verilog with the contents
of the virtual memory to verify our design in simulation
environments.

Module Area Units×Area Cr-path

PDM Logic 0.075 mm
2

0.600 mm
2

<1.0 ns

LPSM Logic 0.024 mm
2

0.188 mm
2

<1.0 ns

PDM Mem 0.844 mm
2

6.752 mm
2

1.12 ns

LPSM Mem 0.168 mm
2

1.342 mm
2

1.12 ns

DPF Filter - 8.882 mm
2

1.12 ns

Table 1: ASIC design area of the filter using 0.18

µm technology

We synthesized and routed the filter in ASIC using 0.18
µm technology in Cadence Synopsis tools. The area for the
processing modules account for less than 9% of the entire
design while the rest of the area is occupied by the memory
modules. As shown in table 1, the area and the critical path
is with to the memory modules in the design. Since the
memory can operate at an effective frequency of 893 Mhz,
the sustainable bandwidth of the filter is 7.144 Gbps.

In table 2, we list the area and performance result of our

238

Design Device
BW

(Gbps)

of

Bytes

Total

Gates

Mem

(kb)

Gates/

Byte

Cho-MSmith

RDL+ROM

Spartan3

400
1.90 20800 4415 162 0.21

Baker-Prasanna

USC Unary

Virtex2

Pro100
1.79 8263 2892 0 0.35

Cho-MSmith

ASIC SRAM
ASIC 7.14 * 22340 † 11163 864 0.50

Cho-MSmith

Decoder

Spartan3

1500
2.00 20800 16930 0 0.81

Sourdis et al.
Pred. CAM

Virtex2
3000

2.68 18031 19902 0 0.97

Clark-Schimmel

RDL based

Virtex

1000
0.80 17537 19698 0 1.10

Franklin-

Hutchings

VirtexE

2000
0.40 8003 20618 0 2.58

Gokhale et al.

CAM

VirtexE

1000
2.18 640 ~9722 24 15.19

* Bandwidth measured from ASIC design using 0.18
�

m library

† Patterns are using only about half of the maximum capacity of the filter

Table 2: Pattern Filter Comparison Chart

filter with other recently built pattern filters. The new de-
sign is indicated as ASIC SRAM. For the sake of comparison
our ASIC filter was also compiled and mapped using FPGA
tools. As indicated, the gates per byte for our filter is rela-
tively comparable to the smallest design in FPGA. However,
only half of the filter capacity is utilized with Snort NIDS.
By applying new programming algorithm and adding new
patterns to the set, the gates per byte may possibly decrease
to below the smallest design.

5. CONCLUSION
In this paper we describe a novel architecture for pat-

tern matching co-processor for network intrusion detection
system. The co-processor is RAM-based design that is pro-
grammable using the list of substrings and the state tran-
sistions. Its efficient pattern matching engine is capable of
filtering the multiple gigabit network traffic. Since the pat-
terns are programmed into the co-processor with software,
the architecture can be used to implement designs in FPGA
as well as ASIC.

We have shown that our pattern filter is capable of yield-
ing performance that surpasses the most recent FPGA im-
plementations while enabling the users to program it with-
out having to regenrate and reconfigure the hardware. Such
quick configuration may become critical, as the rate of emer-
gence of new attack increase.

6. REFERENCES

[1] Seda O. Memik Gokhan Memik and William H.
Mangione-Smith, “Design and Analysis of a Layer
Seven Network Processor Accelerator Using
Reconfigurable Logic,” in IEEE Symposium on
Field-Programmable Custom Computing Machines,
Napa Valley, CA, April 2002, IEEE.

[2] Young H. Cho, Shiva Navab, and William H.
Mangione-Smith, “Specialized Hardware for Deep
Network Packet Filtering,” in 12th Conference on
Field Programmable Logic and Applications,

Montpellier, France, September 2002, pp. 452–461,
Springer-Verlag.

[3] Young H. Cho and William H. Mangione-Smith,
“Deep Packet Filter with Dedicated Logic and Read
Only Memories,” in IEEE Symposium on
Field-Programmable Custom Computing Machines,
Napa Valley, CA, April 2004, IEEE.

[4] Neil Desi, “Increasing Performance in High Speed
NIDS: A look at Snort’s Internals,” Feb 2002.

[5] David Watson, Matthew Smart, G. Robert Malan,
and Farnam Jahanian, “Protocol Scrubbing: Network
Security through Transparent Flow Modification,” in
IEEE/ACM Transactions on Networking. April 2004,
ACM Press.

[6] R. Sidhu and V. K. Prasanna, “Fast Regular
Expression Matching using FPGAs,” in IEEE
Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 2001,
IEEE.

[7] R. Franklin, D. Carver, and B. L. Hutchings,
“Assisting Network Intrusion Detection with
Reconfigurable Hardware,” in Proceedings of the IEEE
Symposium on FPGA’s for Custom Computing
Machines, Napa Valley, CA, April 2002, IEEE.

[8] Ioannis Sourdis and Dionisios Pnevmatikatos, “Fast,
Large-Scale String Match for a 10Gbps FPGA-based
Network Intrusion Detection System,” in 13th
Conference on Field Programmable Logic and
Applications, Lisbon, Portugal, September 2003,
Springer-Verlag.

[9] Christopher R. Clark and David E. Schimmel,
“Scalable Parallel Pattern-Matching on High-Speed
Networks,” in IEEE Symposium on
Field-Programmable Custom Computing Machines,
Napa Valley, CA, April 2004, IEEE.

[10] Zachary K. Baker and Viktor K. Prasanna, “A
Methodology for Synthesis of Efficient Intrusion
Detection Systems on FPGAs,” in IEEE Symposium
on Field-Programmable Custom Computing Machines,
Napa Valley, CA, April 2004, IEEE.

[11] M. Gokhale, D. Dubois, A. Dubois, M. Boorman,
S. Poole, and V. Hogsett, “Granidt: Towards Gigabit
Rate Network Intrusion Detection Technology,” in
12th Conference on Field Programmable Logic and
Applications, Montpellier, France, September 2002,
pp. 404–413, Springer-Verlag.

[12] J.W. Lockwood, J. Moscola, M. Kulig, D. Reddick,
and T. Brooks, “Internet Worm and Virus Protection
in Dynamically Reconfigurable Hardware,” in Military
and Aerospace Programmable Logic Device (MAPLD),
Washington DC, September 2003, NASA Office of
Logic Design.

[13] Young H. Cho and William H. Mangione-Smith,
“Programmable Hardware for Deep Packet Filtering
on a Large Signature Set,” in First IBM Watson
P=ac2 Conference, Yorktown, NY, October 2004,
IBM.

[14] Alfred V. Aho and Margaret J. Corasick, “Efficient
String Matching: An Aid to Bibliographic Search,” in
Communications of the ACM. June 1975, pp. 333–340,
ACM Press.

239

