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ABSTRACT 
This paper presents a new Green function-based approach for 
substrate parasitic extraction in substrates with inhomogeneous 
layers. This new formulation allows analysis of noise coupling 
with sinkers, trenches and wells, - a limitation in prior Green 
function-based extractors. Numerical examples for sinkers and 
trenches are provided and compared with the results from three-
dimensional semiconductor device simulations. It is shown that 
the proposed method is accurate and computationally efficient.    

Categories and Subject Descriptors 
B7.2 [Integrated Circuits]: Design Aids - Simulation, Verification. 

General Terms 
Algorithms. 
Keywords 
Substrate noise, parasitic extraction, Green function. 

1. INTRODUCTION 
With the continuous increase in chip complexity, device density 
and circuit speed, substrate noise has become one of the major 
concerns in ICs [1-13]. Different methods have been proposed and 
applied to the extraction of parasitics. Depending on whether the 
meshing is over the substrate body or just its boundaries, all these 
methods can be generally divided into two categories, the volume 
element methods, i.e., the finite difference method (FDM) or the 
finite element method (FEM) [5-9] and the boundary element 
methods (BEM) [10-13]. Fine mesh requirements make the 
volume methods slow for large-scale problems. The boundary 
element methods, on the other hand, result in a much smaller 
matrix size and show much better computational efficiency when 
discrete sine or cosine transforms are used [10-12]. However, the 
Green function techniques are typically limited to a substrate that 
can be approximated as a multilayer structure, and each of these 
layers has a uniform conductivity and/or permittivity [10]. This 
limits the application of these methods to modern day processes 
where substrates may have sinkers, trenches and wells, as shown 
in Fig. 1 for a BiCMOS process. Clearly the homogeneous layered 
approximation can not be used for this process. 

One way to deal with the lateral variation in the material property 
is to use a combined boundary element and finite difference 
method (BEM/FDM), or a combined boundary element and finite 
element method (BEM/FEM) [14, 15]. In these approaches, a 
substrate is divided into two parts, as shown in Fig. 2, the top part 
consists of the inhomogeneous material, and finite element or 
finite difference methods are used for this region. The bottom part 
is layer-wise homogeneous, and the boundary element method is 
used. The two regions are connected such that a boundary element 
panel is associated with a finite element or finite difference node 
on the interface. This method needs FEM/FDM meshing for the 
whole volume of the top inhomogeneous region, and BEM 
meshing for the interface. Compared to the full FEM or FDM, this 
method uses volume-meshing for part of the substrate volume, 
and thus saves memory and improves the computational 
efficiency. On the other hand, when compared with the full BEM, 
this method needs to mesh the interface of two large regions, 
instead of meshing only the contacts. Thus more panels are 
created, which requires larger computational resources. However, 
the combined BEM/FEM or BEM/FDM approaches improve 
FEM or FDM’s computational efficiency by sacrificing some of 
the computational efficiency of the BEM. 
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Fig. 1: Cross section of a BiCMOS process with approximate 
resistivities. 

 

 

 
 
 
 

 
Fig. 2: Schematic for the combined BEM/FEM or BEM/FDM 
method. 
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The combined BEM/FEM and BEM/FDM in [14, 15] can be 
further improved by a so called ‘two-problem’ approach. The 
basic idea of this approach was proposed in [8]. To the authors’ 
best knowledge, this method has not been used in practice. This 
method is based on the observation that, lateral inhomogeneity is 
caused by local variations such as trenches, sinkers and wells, 
with the rest of the substrate being laterally homogeneous. We 
will call these local feature regions ‘L-regions’, and the surfaces 
of the L-regions the ‘L-surfaces’. With the two-problem approach, 
a substrate does not need to be split into two distinct regions. The 
volume meshing is only needed for the L-regions, and the BEM 
meshing is only needed for the L-surfaces, which is much smaller 
than the interface in the combined BEM/FEM and BEM/FDM in 
[14, 15]. 

This paper develops the two-problem approach and applies it for 
extracting parasitics in substrates with lateral variations. The 
organization is as follows: Section II provides to a brief outline of 
the previous Green function based methods in [11] for laterally 
homogeneous substrates. Section III details the ‘two-problem’ 
approach and the related equation derivation. Examples are 
presented in Section IV including comparisons with three-
dimension device simulations. Conclusions are provided in 
Section V.  

2. GREEN FUNCTION METHOD 
FORHOMOGENEOUS LAYERED 
SUBSTRATES 

Although the conductance extraction and capacitance extraction 
are physically different, they are mathematically similar [10, 11]. 
For convenience of referring to the previous work in [10] and 
[11], we outline the method based on capacitance extraction.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3:  Substrate as a multilayer structure. 

Physically, a Green function ( )sssfff zyxzyxG ,,,,,  represents 

the potential at a field point at ( )fff zyx ,,  induced by a point 

charge source at ( )sss zyx ,,  under specified boundary conditions.   
Once the Green function is given, the matrix of potential, [ ]P , can 
be calculated, which relates contact potential, { }V , to their 
charges, { }Q , in such a way that 

    [ ]{ } { }VQP =                                                                           (1) 

and any entry of the matrix [ ]P  can be expressed as  
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        (2) 

where ξV  and ηV are the volumes of contact ξ  and contact η , 
respectively. Once the matrix of potential is established the 
capacitances can then be calculated. 

For a homogeneous layered substrate, as shown in Fig. 3, the 
Green function can be expressed as a double infinite summation. 
For a field (or observation) point in the j-th layer and a source 
point in the k-th layer the Green function can be expressed as [11] 
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where, the superscripts u and l  indicate the upper and lower 
solutions, depending on whether the field point (or observation 
point) is above or below the source point. a and b are the substrate 
dimension in the x- and y- directions, respectively, as shown in 
Fig. 3. More details about this equation can be found in [11]. 

3. THE TWO-PROBLEM APPROACH FOR 
INHOMEGENEOUS LAYERS 

In this section, details of the two-problem approach are presented. 
For simplicity, but without loss of generality, we assume as shown 
in Fig. 4, there are two contacts ξ and η on the top of a substrate 
and the permittivity of the substrate layer is εN. There is a L-
region with a permittivity of ε* (ε*≠ εN) in the substrate. We are 
interested in the coupling parasitics between these two contacts. 
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Fig. 4: Schematic for the two-problem approach for lateral 
permittivity variation. (a) The original problem. (b) Virtual 
contacts around a L-region. (c)  Discretization of the C-region and 
(d) parasitic network for a cubic cell inside the C-region. 

The first step in the two-problem approach is to remove the L-
region and fill the cavity with the substrate material to make it 
laterally homegeneous. The previous interface, i.e., the L-surface, 
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is assumed to be still there. The L-surface is then meshed into 
panels. We call these panels virtual contacts. The first problem 
takes the virtual contacts to be the same as real contacts, and 
extracts the corresponding parasitic network. Since the substrate is 
now layer-wise homogeneous, the Green function derived in [11] 
can be used. 

It needs to be noted that, real contacts, such as contacts ξ and η 
are three-dimensional. However, since the contact thickness is 
usually much smaller than its lateral dimensions, contacts can be 
approximated as planar contacts in the x-y plane with zero 
thickness [10-12]. In the first problem in the two-problem 
approach, all the virtual contacts are planar contacts with zero 
thickness. As shown in Fig. 4 (b), these planar contacts can be 
horizontal or vertical. Equations to calculate the entries of [ ]P  
matrix in Eq. (1) related to horizontal zero-thickness contacts can 
be found in [11].  The equations related to vertical zero-thickness 
contacts can be derived from the equations for general three-
dimensional contacts. A vertical two-dimensional contact is taken 
as a special case of a three-dimensional contact with its x- or y-
dimension shrunk to zero.  
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Fig.5: Definition of three-dimensional contacts. 

For the contact coordinates shown in Fig. 5, substituting Eq. (3) 
into Eq. (2) gives, 

*00***,
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where ul
jkG ,

0, is a constant depending on the substrate thickness and 
resistivity, and 
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As an example of the equation derivation for vertical planar 
contacts, we shrink the x-dimension of contact ξ  to zero to derive 
the equations for calculating the coupling between a planar 
contact in the y-z plane and a three-dimensional contact. 
Equations for other cases can be derived in a similar manner.  
It can be shown that 
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By the use of Eq. (9), Eq. (5) can be expressed as 
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Similarly, for 0*
ξηp  , we have 
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Eq. (7) for *0
ξηp does not change with the shrinking of the x-

dimension. 
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Expanding Eq. (10) results in 32 terms of mixed discrete sine-
cosine transforms (MDSCT) in the following form 
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Eq. (12) can be calculated efficiently in a similar way as the two-
dimensional DCT or DST. It needs (M-1) one-dimensional DCTs, 
followed by (N-1) one-dimensional DSTs [16]. Eq. (11) can be 
calculated by four one-dimensional DSTs. Expanding Eq. (7) 
results in eight one-dimensional DCTs. 
The second problem is a grid representation of the internal 
parasitic network of a region with a permittivity equal to ε*- εN, 
and an outer surface a ‘copy’ of that of the L-region.  We call this 
region a companion region, or a C-region.   When the C-region is 
meshed into cubes, as shown in Fig. 4 (c), each of these cubes has 
an internal parasitic network, as shown in Fig. 4 (d).  The 
parasitics in the x-, y- and z-directions can be calculated by  
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where Nεεε −= * is the permittivity of the  C-region. 

The solution to the original problem can be obtained by putting 
the parasitic network for the C-region in parallel with the parasitic 
network from the first problem.  The resultant network can then 
be included in a circuit simulator to compute the effect of the 
lateral variation, as suggested in [10]. However, this would 
significantly increase the number of nodes in simulation, and, 
therefore, is not computationally efficient. A better way is to lump 
the parasitic network to the original contacts. This can be done in 
the following manner [9]: 
Let the matrix of capacitances for the resultant capacitance 
network be [ ]TC , which relates the node voltage, { }TV ,  to  the 
charges, { }TQ , 

[ ]{ } { }TTT QVC =                                                                  (14) 

Let the total number of real contacts be N. Now we are looking for 
a model, [ ] NNCC × , that relates the voltages at these real contacts, 

{ }NCV  to their charges, { }NCQ , by 

[ ]{ } { }CCC QVC =                                                                (15) 

Clearly, { }NCV  and { }NCQ  are the subsets of  { }TV   and { }TQ , 
respectively. We can, therefore, write 
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where { }IV  and { }IQ  are the voltages and charge related to nodes 
that are not connected to the real contacts. 
By using  Eq. (16), Eq. (15) can be recast as 
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Since only the real contact nodes can have a non-zero charge, 
i.e., { } 0=IQ ,  

{ } [ ]{ }CICIICICCC VCCCCQ 1−−=                                         (18) 

Thus 

      [ ] [ ]ICIICICCC CCCCC 1−−=                                                   (19) 

4. NUMERICAL EXAMPLES 
The two-problem method has been implemented in a solver called 
EPIC (Extraction of Parasitics in ICs). In this section, simulation 
examples with EPIC are presented, and comparisons with the 
results from ATLAS [17], a commercial semiconductor device 
solver, are also provided.  

We consider two identical square contacts of size 10µm×10µm 
that are separated by a L-region, as shown in Fig. 6 (a), (b). The 
corresponding π-resistance network is shown in Fig. 6(c). 
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Fig. 6: Test configuration (not to scale). (a) The top view, (b) the 
cross section, and (c) the π-network. 
First, let us assume the L-region is filled with silicon dioxide, i.e., 
the L-region is a trench. We consider both heavily and lightly 
doped substrates with typical cross sections shown in Fig. 7. Fig. 
8 shows a comparison of R11, R12 obtained from EPIC and 
ATLAS. There is a reasonably good agreement. For the heavily 
doped substrate, the relative errors of EPIC results with respect to 
the ATLAS are about 10% and 3% for R11 and R12, respectively. 
For the lightly doped substrate, these errors are 6.0% and 8.5%, 
respectively. In both cases, the trench depth does not affect R11. 
However, R12 shows a strong dependence on the trench depth, 
especially when the trench bottom is within the top layer of the 
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substrates (i.e., h < 1.0µm). R12 also depends on the trench length, 
as shown in Fig. 9, where R11 and R12 are shown as a function of 
the trench depth and length. An increase in the length of the 
trench increases 12R , especially when the trench depth is large.  
R11, on the other hand, does not show a dependence on both the 
width and the length of the trench. 

 
                     (a)                                               (b) 

Fig. 7: Resistivity and thickness of layered substrates. (a) A 
heavily doped substrate, and (b) a lightly doped substrate. 
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Fig. 8: Comparison of ATLAS and EPIC results for a trench. The 
separation between two identical square contacts is d = 8µm. The 
trench width (W) and length (L) are 2 µm and 10µm, respectively. 
(a) R11 and R12 as a function of the trench depth for the heavily 
doped substrate, and (b) R11 and R12 as a function of the trench 
depth for the lightly doped substrate. 

Fig. 10 shows the computational time comparison between EPIC 
and ATLAS. The CPU cost in ATLAS mainly depends on the 
total number of grid nodes. For the simple example problem, the 
mesh was kept unchanged, and thus the CPU cost does not change 
with trench depth. The CPU cost of EPIC, however, increases as 

the trench depth increases. There are two reasons for this increase. 
First, as the trench depth increases, more sets of DCT, DST and 
DSCT are needed. If the maximum number of panels in the z-
direction is n, then n(n-1)/2 sets of DCT, DST and DSCT 
calculations are needed. Second, the increase in trench depth also 
increases the total number of virtual contacts, and the [P] matrix 
size in Eq. (1)  increases. 
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Fig. 9: Effect of the trench length (L) on R11 and R12 for the 
heavily doped substrate. The separation between the two identical 
square contacts is d = 8µm. The trench width (W) is 2.0 µm. 
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Fig. 10: CPU time as a function of trench depth. 

To see the effect of the trench for different contact separations, the 
trench depth is fixed at 6 µm for a heavily doped substrate. Fig. 11 
shows ratios of 0

1111 RR  and 0
1212 RR as a function of contact 

separation, where 0
11R and 0

12R  are the 11R  and 12R  values, 
respectively, when there is no trench between the two contacts. 
We see that, the ratio 0

1111 RR is a constant, indicating that R11 

does not change much with separation. 0
1212 RR , on the other 

hand, decreases as the separation increases, implying that for a 
given trench depth, there is less of an effect at large separations. 
In other words, if the separation between two contacts is large, 
increasing the trench depth may not be an effective way to 
improve the isolation (i.e., increase R12) since the coupling current 
penetrates deeper into the heavily doped substrate. 
To conclude this section, let’s consider the effect of the L-region’s 
resistivity on the resistance network, assuming the trench is filled 
with p-type silicon with different doping levels.  Fig. 12 shows the 
coupling resistance as a function of the L-region’s resistivity. The 
resistance value of 6112Ω is the R12 value without the L-region. 
As expected, a smaller resistivity results in a smaller 12R . The 
decrease in R11 is negligible. When the resistivity is less than that 
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of the substrate, then the L-region becomes a sinker, 12R becomes 
smaller than that in the case when there is no L-region. In other 
words, a sinker between two contacts increases the coupling 
between the contacts. 
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Fig. 11: Ratios of 0
1111 RR and 0

1212 RR  as a function of separation 
in a heavily doped substrate. 
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Fig. 12: Effect of L-region resistivity on R11, and R12 for the 
heavily doped substrate. The contact separation is 8µm, and the 
trench length, width and depth are 20µm, 2µm and 6µm, 
respectively.  

5.   CONCLUSIONS 
This paper presents a new approach to handle the parasitic 
extraction in substrates with inhomogeneous layers. Numerical 
simulations show that, the formulations are accurate, and, together 
with the use of DCT, DST, and MDSCT, the formulations are also 
computationally efficient. Compared with ATLAS this method 
has less than 10% error. Furthermore, the proposed approach can 
be several orders of magnitude faster than conventional device 
simulation or combined BEM/FDM/FEM approaches. 
respectively.  
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