
9.1

 117

Response Compaction with any Number of Unknowns
using a new LFSR Architecture*

Erik H. Volkerink 1,2 and Subhasish Mitra 2,3

Agilent Laboratories 1
Palo Alto, CA

Erik_Volkerink@Agilent.com

Intel Corporation 2
Folsom, CA

Subhasish.Mitra@Intel.com

Center for Reliable Computing 3
Stanford University

Stanford, CA

ABSTRACT
This paper presents a new test response compaction technique
with any number of unknown logic values (X’s) in the test
response bits. The technique leverages an X-tolerant response
compactor (X-compact), and forces X’s that are not tolerated by
X-Compact to known values. The data required to designate the
X’s not tolerated by the X-compactor, also called mask data, is
stored in a compressed format on the tester and decompressed on-
chip. We applied this technique to four industrial designs and
obtained 26-fold to 60-fold reduction in test response data volume
with no impact on test quality.

Categories and Subject Descriptors
B.8.1 [Integrated Circuits]: Reliability, Testing, and Fault
Tolerance.
General Terms
Algorithms, Design, Economics, Reliability, Theory.
Keywords
VLSI Test, Compression, X-compact, LFSR, BIST.

1. INTRODUCTION
Boolean testing is performed by applying test patterns to an
integrated circuit chip from the tester and observing the
corresponding responses. A logic simulator is used to simulate
the fault free design to obtain the responses expected from a fault-
free chip for the applied test patterns. The tested integrated circuit
chip passes the test if and only if all observed test response bits
match the simulated fault-free test response bits. Unfortunately,
for complex designs, logic simulators cannot accurately predict
the logic values of all test response bits. This is due to the
presence of un-initialized and uncontrollable bistables, bus
contention, floating busses, multiple clock domains or simply
because the simulation model is inaccurate. The test response bits
whose logic values are not accurately predicted by the simulators
are also called unknown test response bits or Xs.

A major problem arises when test responses are compacted using

on-chip hardware. For example, classical signature analyzers
such as Multiple Input Signature Registers (MISRs) [3, 5, 15] are
probably the best response compactors. The major problem with
classical signature analysis is that the signature can be corrupted
in the presence of Xs. Figure 1 illustrates the problem. The
outputs of four scan chains are connected to the inputs of the
MISR. The initial MISR state is 0000. The states of the MISR
during the first four clock cycles are shown in Fig. 1.

Scan Outputs MISR State Clock
Cycle Output

1
Output

2
Output

3
Output

4
Bit 1 Bit 2 Bit 3 Bit 4

1 1 0 0 0 1 0 0 0
2 1 0 0 X 0 1 0 X
3 0 0 X 1 X 0 X 1
4 0 1 X 0 X X X X

QD

Scan Out
1

Q D Q D QD

Q1 Q2 Q4Q3

Scan Out
2

Scan Out
3

Scan Out
4

Figure 1. Multiple Input Signature Register

Xs appearing at scan chain outputs corrupt the MISR contents.
After four clock cycles, the expected MISR signature obtained
from fault-free simulation consists of all X’s. Signature bits
whose expected values are X’s are ignored during comparison of
the expected signature with the actual signature. In this example,
no comparison can be made.

This paper presents a technique to force the Xs to known values
before compacting the test response data on-chip. The data
required to identify the Xs, also called the mask data, is
compressed and stored in the tester memory, and decompressed
using on-chip hardware.

Application of this technique to four industrial designs results in
26-fold to 60-fold reduction in test response data volume without
impact on test quality.

Section 2 presents previous work. Section 3 presents the basic
technique. Section 4 presents the results. The paper ends with the
conclusions in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13-17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

* This work was done at Stanford CRC

 118

2. PREVIOUS WORK
Test response data can be compressed by generating signatures
using signature analyzers such as MISRs (Multiple Input
Signature Registers). However, as discussed in Sec. 1, the major
drawback of signature analysis is signature corruption in the
presence of one or more Xs. Removal of all possible X sources
through Design for Testability structures such as test points is not
practical – often, the X sources cannot be identified until after the
chips have already been manufactured. The other drawback of
signature analysis is that the failing flipflops cannot be directly
identified from the signature for diagnostics.

The X-Compact technique [8, 9] is a response compaction
technique that guarantees detection of any erroneous test response
in the presence of a limited number of Xs, also called the
tolerated Xs. The X-Compactor is a combinational circuit
designed with XOR gates, and the number of tolerated Xs
determines the compactor design and the number of compactor
outputs. Of course, the number of tolerated X’s needs to be
known during design time. Several publications discuss design of
X-Compactors and X-tolerant signature analyzers that can tolerate
several Xs [9]. The techniques presented in [13, 14, 21, 22, 23]
also use a compactor tree that tolerates Xs. The techniques in [14,
21] use the X tolerant compactor circuitry and reduce the number
of bits to be observed at the expense of the number of X’s
tolerated over multiple scan cycles. The technique in [23]
introduces a graph-theoretic formulation, in contrast with the
matrix-theoretic formulation. The response compaction technique
in [16] uses a parity bit for every scan chain in addition to XOR-
trees – however, a single X in a scan chain will corrupt the parity
bit. The I-Compact technique [11] performs post-processing of
compacted responses on the tester to identify defective parts.
Although this is a promising approach, its application is limited
by the number of Xs that can be handled, and the tester support
required for post-processing of test responses.

Our test response compression technique is used together with an
X-Compactor or a MISR. The technique guarantees detection of
any erroneous test response in the presence of any number of Xs,
even if the number of Xs exceed the number of Xs that can be
tolerated by the X-Compactor. The fundamental concept behind
our technique is to mask Xs in the test response using on-chip
hardware. The mask bits, i.e., the bits used to identify the Xs, at a
certain clock cycle form a mask bit slice. The mask bit slice
masks an output bit slice, i.e., the scan chain outputs at a certain
clock cycle. Figure 2 presents the basic architecture.

 Scan Out 1

Compactor

+

+

+
Mask

Controller

Scan Out 2

Scan Out 3

Mask Bit 1

Mask Bit 2

Mask Bit 3

Figure 2. Basic Compression Architecture

Figure 3a presents example scan chain outputs. Figure 3b presents
the corresponding mask bits.

Clock Cycle
1 2 3 4

Scan Out 1 X 0 0 0
Scan Out 2 X X 1 X
Scan Out 3 1 1 X X
a) Example Scan Chain Outputs

Clock Cycle
1 2 3 4

Mask Bit 1 1 0 0 0
Mask Bit 2 1 1 0 1
Mask Bit 3 0 0 1 1

b) Mask Bits Corresponding to Example (a)
Figure 3. Example Scan Chain Outputs & Mask Bits

We are not the first ones proposing bit masking (e.g., [2, 4, 10,
12, 17, 20]). However, the previous techniques also mask non-X
responses.

In [10, 20] a technique was proposed, that masks unknown logic
values on-chip and encodes the mask bits using the LFSR
reseeding technique[5], see Fig. 4.

Compressed

Mask Data

 LFSR

Mask Bit 1

Mask Bit 2

Mask Bit 3

Phase
Shifter

Figure 4. Generating Mask Bits using LFSR Reseeding

The phase-shifter is designed to minimize the probability of linear
dependencies between the mask bits (see [1]).

The mask data compression algorithm computes the initial LFSR
state (also called the seed) such that the LFSR generates a ‘1’ for
each X. The seed calculation algorithm encodes the Xs as ‘1’ care
bits and the non-X’s as don’t care bits (d) (see [5]).

Fig. 5a presents how the mask bits will be encoded in a LFSR
seed. Fig. 5b presents the mask bits generated by the LFSR using
the seed.

 119

Clock Cycle

1 2 3 4
Mask Bit 1 1 d d d
Mask Bit 2 1 1 d 1
Mask Bit 3 d d 1 1

a) Encoding in Seeds (d=don’t care bit)
Clock Cycle

1 2 3 4

Mask Bit 1 1 1 0 0
Mask Bit 2 1 1 1 1
Mask Bit 3 0 1 1 1

b) Generated Mask Bits by the LFSR

Figure 5. Example Mask Bit Encoding using a LFSR
(Three Non-X Responses are Masked)

A major problem is the fact that the LFSR assigns the don’t care
bits (d) to ‘1’ with a probability of 50%. In other words, some
non-X test responses may be masked, causing test escapes. For
example, in 4b three non-X responses are masked out.

[10] reduces the probability of test escapes by generating
additional patterns to improve fault coverage. [17] selects the
non-X responses to be masked out intelligently using a stuck-at n-
detection metric, such that the impact of masking on the defect
coverage is reduced.

However, sole dependence on the SSF fault coverage may not be
justified because a very small percentage of all defects behave as
single stuck faults [7]. It was demonstrated in [18] that, in
response to a test pattern, a defect might create errors in only a
subset of flip-flops that are predicted to be erroneous by single
stuck-at or transition fault simulation.

Compared to previous work, our technique:
1. Enables a very high compression ratio without masking any

non-X responses.
2. Allows an even higher compression ratio by allowing

masking some non-X test responses.
3. Does not increase the number of test patterns.
4. Does not depend on the used fault model.

The next section presents the basic technique.

3. BASIC TECHNIQUE
Figure 6 presents the basic technique. A mask bit is generated by
the logical AND of multiple phase-shifter outputs, instead of only
by one phase shifter output (see Fig. 4). The compression
algorithm computes the seed such that all AND gate inputs are ‘1’
during the clock cycles where a ‘1’ mask bit is required.

The LFSR assigns the don’t care bits in the AND gate input to ‘1’
pseudo-randomly with a probability of 50%. However, since the
AND gate output is ‘1’ if and only if all AND inputs (n) are ‘1’,
the don’t care bits are assigned to ‘1’ pseudo-randomly with a
probability of only 2-n.

Compressed

Mask Data

 LFSR

Mask Bit 1

Mask Bit 2

Mask Bit 3

&

&

&

Phase
Shifter

 Figure 6. Generating Mask Bits using our Technique

For example, suppose we encode the mask bits presented in Fig.
3b using the new LFSR technique. The seed is computed by
encoding the ‘1’ mask bits by two ‘1’ care bits instead of by only
one care bit. Fig. 7 presents the mask bits generated by the LFSR
using the calculated seed: Instead of masking three non-X
responses (Fig. 5), the new technique masks no non-X responses!

Clock Cycle

1 2 3 4
Mask Bit 1 1 0 0 0
Mask Bit 2 1 1 0 1
Mask Bit 3 0 0 1 1

Figure 7. Mask Bits using new LFSR technique

The probability of masking a non-X response can be made
arbitrarily small by increasing the number of AND gate inputs (n).
In the rare occasion that the LFSR masks a non-X response, the
LFSR can be bypassed: The correct mask bit slice can be be
stored uncompressed in the ATE memory and downloaded to the
chip. Figure 8 presents an overview of the compression algorithm.

No

Mask Bitslice with
Non-X Masked?

Encode Remaining
Mask Bitslices in Seeds

Simulate LFSR Mask Bit Slice

Store Correct Mask
Bitslice in ATE

All Mask Bitslices
Simulated?

Store Frequent Mask Bitslices
in On-chip Register File

Yes

No

Yes

Figure 8. Compression Algorithm

 120

We have observed that the majority of Xs occur in only a few scan
chains (also see for example [4, 13, 14]). Hence, the same mask
bit slice can be used very often Therefore our technique stores a
few frequently used mask bit slices in a register file on-chip. The
majority of Xs are compressed by merely storing a pointer to the
register file instead of encoding each individual X (see Fig. 8).

The mask LFSR decompression circuitry can be combined with
the stimulus LFSR decompression circuitry, see Fig. 9.

Compressed

 Data

Mask

Bit 1

Mask

Bit 2

&

&

+Scan Chain 1

+Scan Chain 2

Phase
Shifter

X
Compact

LFSR

Figure 9. Combining Stimulus and Mask Decompression

The phase shifter can be designed with enough outputs to (1) shift
the decompressed stimulus patterns into the scan chains and (2)
supply the AND gate inputs with the mask data.

4. SIMULATION EXPERIMENTS
The response compaction techniques are applied to four industrial
designs, see Table 1.

Table 1. Industrial Devices used for Experiments

 Design
1

Design
2

Design
3

Design
4

Number of Scan
Chains 400 400 400 100

Total Number of
Uncompressed
Data Bits

1.5
Gbits

660
Mbits

150
Mbit

40
Mbits

Important metrics to evaluate response compaction techniques
are:

Number of Uncompressed Bits
Compression Ratio = Number of Compressed Bits

Number of Gates for Mask Decompression
Area Overhead = Total Number of Gates in Chip

Number of Masked Non-X Test Response Bits
Detection Loss = Total Number of Test Response Bits

Table 2 presents the compression ratio without using an LFSR,
but simply downloading the mask bit-slices from the ATE (if and
only if the output bit slice requires masking).

Table 2. Without LFSR
Compression Ratio [X]

MISR X-Compact

Design 1 9.3 46.4
Design 2 56.1 58.9
Design 3 6.9 28.9
Design 4 4.7 5.3

The table shows the compression ratio of using a MISR and a X-
compactor. The detection loss is 0% and the area overhead is
negligible for all designs (<0.04%).

Instead of storing a mask bit slice on the ATE, one could decide
to simply mask all responses (if and only if the bit slice requires
masking of at least one X). However, this approach would cause
a very high detection loss (up to 38% for Device 4).

Table 2 shows that Design 4 has the lowest compression ratio:
Therefore, we focus on Design 4. Figure 10 presents the
compression ratio as function of the number of AND gate inputs
when our LFSR technique is applied to Design 4.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12
Number of AND inputs

C
om

pr
es

si
on

 R
at

io
 [X

]

MISR
X-Compact

Figure 10. Our LFSR technique (Design 4)

Our LFSR technique with one AND gate input is equivalent to
using the conventional LFSR technique. Fig. 10 shows that the
conventional LFSR technique can only achieve a compression
ratio of about 6x, whereas our new LFSR technique achieves a
compression of 12x. Note that we did use the LFSR technique
presented in [19] instead of [5].

The results above have a detection loss of 0% (i.e., if and only if
the LFSR would mask a non-X response, then we simply
download the mask bit-slice from the ATE).

If a small detection loss is acceptable, the compression ratio can
be improved further. Figure 11 presents the compression ratio as
function of the allowable detection loss.

 121

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0 5 10 15 20 25 30 35 40
Compression Ratio

D
et

ec
tio

n
Lo

ss
 [%

]

MISR
X-Compact

Figure 11. Detection loss vs. Compression Ratio

 (Design 4)

Note that a very high compression ratio can be achieved (up to
40x), with only a minor impact on detection loss (<0.38%).

As discussed in Section 3, we have observed that the majority of
Xs occur in only a few scan chains. Hence, the same mask bit
slice can be used very often. Therefore, we can improve the
compression ratio by storing frequently used mask bit slices in a
register file on-chip.

Figure 12 represents how often each mask bit slice can be used:
Each dot represents a mask bit slice (Design 4). The graph
overlays 8 lines, i.e., for mask bit slices with respectively 1, 2, 3,
4, 5, 6, 7, and 8 Xs.

6
1

2

3

4

5

8

1

10

100

1000

10000

100000

Mask Bit Slices (Sorted according Frequency)

Fr
eq

ue
nc

y

7

Number of Xs in
Mask Bitslice

Figure 12. Mask Bit Slice Frequencies (Design 4)

Fig. 12 clearly shows that a few mask bit slices can be used for
many clock cycles (e.g., the mask bit slice with 6 Xs is used
30,000 times). The many Xs can be compressed by merely
storing a pointer to the register file instead of encoded each
individual X.

Table 3 presents the compression ratio and area overhead using
our LFSR technique as function of the number of on-chip stored
mask bit slices.

Table 3. Using Register File and LFSR (Design 4)

Compression Ratio [X] Stored
Bit

slices MISR X - Compact

Area
Overhead

None 10.0 11.8 0.58%
3 13.3 16.4 0.62%
7 14.7 21.3 0.70%

15 20.9 25.9 0.86%

Table 3 demonstrates that storing mask bit-slices on-chip can
improve the compression ratio to 25.9 (vs. 11.8 in case no bit-
slices are stored on-chip).

5. CONCLUSIONS
This paper describes a new test response compaction technique
with any number of unknown logic values (X’s) in the test
response bits by masking Xs that are not tolerated.

The concept of masking is not new. Compared to previous work,
the technique (1) enables a very high compression ratio without
masking non-X responses, (2) enables an even higher
compression ratio by allowing some detection loss, (3) does not
increase the number of test patterns, and (4) does not depending
on a fault model.

We applied the technique to four industrial designs and obtained
26-fold to 60-fold reduction in test response data volume with no
impact on test quality. We obtained a compression ratio of 80-fold
to 120-fold if a detection loss <0.38% is allowed. Compared to
using a conventional LFSR approach, our technique improves the
compression ratio by >4x (26x vs. 6x). The area overhead of the
technique is limited (<1%).

Our technique still depends on the ATE to supply data. Future
work will be focused on reducing the ATE data requirements
further.

6. ACKNOWLEDGEMENTS
This work is sponsored by Agilent Technologies.

7. REFERENCES
[1] Bardell, P.H., W. H. McAnney, J. Savir, “Built-in Test For

VLSI: Pseudo-random Techniques,” Wiley Inter-Science,
1987.

[2] Barnhart K., B. Keller, B. Koenemann, R. Walther,
“OPMISR: The Foundation for Compressed ATPG Vectors”,
Proc. Int. Test. Conf., 2001.

[3] Benowitz, N., D. Calhoun, G. Alderson, J. Bauer, C. Joeckel,
“An Advanced Fault Isolation System for Digital Logic”
IEEE Trans. Computers, Vol.24, No.5, pp. 489-497, 1975.

 122

[4] Chickermane, V., B. Foutz, B. Keller, “Channel Masking
Synthesis for Efficient On-Chip Test Compression,” Proc.
Int. Test. Conf., 2004.

[5] Koenemann, B., “LFSR-Coded Test Patterns for scan
Designs”, Proc. of European Test Conference, pp. 237-242,
1991.

[6] McCluskey, E.J., “Logic Design Principles with Emphasis on
Testable Semi-Custom Circuits,” Prentice Hall, Englewood
Cliffs, NJ, USA, 1986.

[7] McCluskey, E.J., C.W. Tseng, “Stuck-Fault Tests vs. Actual
Defects,” Proc. Intl. Test Conf., pp. 336-343, 2000.

[8] Mitra, S., K. S. Kim, “X-compact: An Efficient Response
Compaction for Test Cost Reduction,” Proc. of the
International Test Conference, 2002.

[9] Mitra, S., S. Lumetta, M. Mitzenmacher, “X-tolerant
Signature Analysis,” Proc. of the International Test
Conference, 2004.

[10] Naruse, M., I. Pomeranz, S.M. Reddy, S. Kundu, “On-chip
Compression of Output Responsoes with Unknown Values
using LFSR Reseeding,” Proc. Intl. Test Conf., 2003.

[11] Patel, J.H., S.S. Lumetta, S.M. Reddy, “Application of
Saluja-Karpovsky Compactors to Test Responses with Many
Unknowns,” Proc. IEEE VLSI Test Symp., 2003.

[12] Pomeranz, I. S. Kundu, S.M. Reddy, “On Output Response
Compression in the Presence of Unknown Output Values,”
Proc. Design Automation Conf. Pp. 255-258, 2002.

[13] Rajski, J, M. Kassab, N. Mukherjee, R. Thompson, H. Tasai,
A. Hertwig, N. Tamarapalli, J. Tyszer, “Embedded
Deterministic Test”, Proc. International Test Conference,
2002.

[14] Rajski, J., J. Tyszer, C. Wang, S.M. Reddy, “Convolution
Compaction of Test Responses,” Proc. Intl. Test Conf., 200.3

[15] Saxena, N.R., and E.J. McCluskey, “Parallel Signature
Analysis Design with Bounds on Aliasing” IEEE Trans.
Computers, Vol. 46, No.5, pp. 425-438, 1997.

[16] Sinanoglue, O., A. Orailoglu, “Compacting Test Responses
for Deeply Embbedded SOC Cores,” IEEE Design & Test of
Computers, Vol. 20, Issue 4, 2003.

[17] Tang, Y., H-J Wunderlich, H. Vranken, F. Hapke, M. Wittke,
P. Engelke, I. Polian, B. Becker, “X-Masking During Logic
BIST and Its Impact on Defect Coverage,” Proc.
International Test Conference, 2004.

[18] Tseng, C.W., and E.J. McCluskey, “Multiple-Output
Propagation Transition Fault Test,” Proc. Intl. Test Conf.,
pp. 358-366, 2001.

[19] Volkerink, E.H., S. Mitra, “Efficient LFSR reseeding,” Proc.
VLSI Test Symposium, 2003.

[20] Volkerink, E.H., S. Mitra, “Test Response Compression for
Any Number of Unknowns,” IEEE Intl. Workshop
Infrastructure IP, 2003.

[21] Wang, C., S.M. Reddy, I. Pomeranz, J. Rajski, J. Tyszer, “On
Compacting Test Response Data Containing Unknown
Values,” Proc. Intl. Conf. Computer-Aided Design, 2003.

[22] Wohl, P., J. Waicukauski, S. Patel, M. Amin, “X-Tolerant
Compression and Application of Scan ATPG patterns in a
BIST architecture”, Proc. Intl. Test Conf., 2003.

[23] Wohl, P., L. Huisman, “Analysis and Design of Optimal
Combinational Compactors,” Proc. IEEE VLSI Test Symp.,
2003.

