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ABSTRACT 
This paper presents a new test response compaction technique 
with any number of unknown logic values (X’s) in the test 
response bits. The technique leverages an X-tolerant response 
compactor (X-compact), and forces X’s that are not tolerated by 
X-Compact to known values. The data required to designate the 
X’s not tolerated by the X-compactor, also called mask data, is 
stored in a compressed format on the tester and decompressed on-
chip. We applied this technique to four industrial designs and 
obtained 26-fold to 60-fold reduction in test response data volume 
with no impact on test quality. 

Categories and Subject Descriptors 
B.8.1 [Integrated Circuits]: Reliability, Testing, and Fault 
Tolerance.  
General Terms 
Algorithms, Design, Economics, Reliability, Theory.  
Keywords 
VLSI Test, Compression, X-compact, LFSR, BIST. 

1. INTRODUCTION 
Boolean testing is performed by applying test patterns to an 
integrated circuit chip from the tester and observing the 
corresponding responses.  A logic simulator is used to simulate 
the fault free design to obtain the responses expected from a fault-
free chip for the applied test patterns.  The tested integrated circuit 
chip passes the test if and only if all observed test response bits 
match the simulated fault-free test response bits.  Unfortunately, 
for complex designs, logic simulators cannot accurately predict 
the logic values of all test response bits.  This is due to the 
presence of un-initialized and uncontrollable bistables, bus 
contention, floating busses, multiple clock domains or simply 
because the simulation model is inaccurate.  The test response bits 
whose logic values are not accurately predicted by the simulators 
are also called unknown test response bits or Xs.  

 
A major problem arises when test responses are compacted using 

on-chip hardware.  For example, classical signature analyzers 
such as Multiple Input Signature Registers (MISRs) [3, 5, 15] are 
probably the best response compactors.  The major problem with 
classical signature analysis is that the signature can be corrupted 
in the presence of Xs.  Figure 1 illustrates the problem.  The 
outputs of four scan chains are connected to the inputs of the 
MISR.  The initial MISR state is 0000.  The states of the MISR 
during the first four clock cycles are shown in Fig. 1.   

 
 

Scan Outputs MISR State Clock 
Cycle Output 

1 
Output

2 
Output

3 
Output 

4 
Bit 1 Bit 2 Bit 3 Bit 4 

1 1 0 0 0 1 0 0 0 
2 1 0 0 X 0 1 0 X 
3 0 0 X 1 X 0 X 1 
4 0 1 X 0 X X X X 
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Figure 1. Multiple Input Signature Register 
 

Xs appearing at scan chain outputs corrupt the MISR contents.  
After four clock cycles, the expected MISR signature obtained 
from fault-free simulation consists of all X’s.  Signature bits 
whose expected values are X’s are ignored during comparison of 
the expected signature with the actual signature.  In this example, 
no comparison can be made. 

 
This paper presents a technique to force the Xs to known values 
before compacting the test response data on-chip.  The data 
required to identify the Xs, also called the mask data, is 
compressed and stored in the tester memory, and decompressed 
using on-chip hardware.   
 
Application of this technique to four industrial designs results in 
26-fold to 60-fold reduction in test response data volume without 
impact on test quality. 

 
Section 2 presents previous work. Section 3 presents the basic 
technique. Section 4 presents the results.  The paper ends with the 
conclusions in Section 5. 
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2. PREVIOUS WORK 
Test response data can be compressed by generating signatures 
using signature analyzers such as MISRs (Multiple Input 
Signature Registers).  However, as discussed in Sec. 1, the major 
drawback of signature analysis is signature corruption in the 
presence of one or more Xs. Removal of all possible X sources 
through Design for Testability structures such as test points is not 
practical – often, the X sources cannot be identified until after the 
chips have already been manufactured. The other drawback of 
signature analysis is that the failing flipflops cannot be directly 
identified from the signature for diagnostics.   
 
The X-Compact technique [8, 9] is a response compaction 
technique that guarantees detection of any erroneous test response 
in the presence of a limited number of Xs, also called the 
tolerated Xs. The X-Compactor is a combinational circuit 
designed with XOR gates, and the number of tolerated Xs 
determines the compactor design and the number of compactor 
outputs.  Of course, the number of tolerated X’s needs to be 
known during design time. Several publications discuss design of 
X-Compactors and X-tolerant signature analyzers that can tolerate 
several Xs [9].  The techniques presented in [13, 14, 21, 22, 23] 
also use a compactor tree that tolerates Xs.  The techniques in [14, 
21] use the X tolerant compactor circuitry and reduce the number 
of bits to be observed at the expense of the number of X’s 
tolerated over multiple scan cycles.  The technique in [23] 
introduces a graph-theoretic formulation, in contrast with the 
matrix-theoretic formulation.  The response compaction technique 
in [16] uses a parity bit for every scan chain in addition to XOR-
trees – however, a single X in a scan chain will corrupt the parity 
bit.    The I-Compact technique [11] performs post-processing of 
compacted responses on the tester to identify defective parts.  
Although this is a promising approach, its application is limited 
by the number of Xs that can be handled, and the tester support 
required for post-processing of test responses. 

 
Our test response compression technique is used together with an 
X-Compactor or a MISR. The technique guarantees detection of 
any erroneous test response in the presence of any number of Xs, 
even if the number of Xs exceed the number of Xs that can be 
tolerated by the X-Compactor. The fundamental concept behind 
our technique is to mask Xs in the test response using on-chip 
hardware. The mask bits, i.e., the bits used to identify the Xs, at a 
certain clock cycle form a mask bit slice.   The mask bit slice 
masks an output bit slice, i.e., the scan chain outputs at a certain 
clock cycle.  Figure 2 presents the basic architecture. 
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Figure 2. Basic Compression Architecture  

Figure 3a presents example scan chain outputs. Figure 3b presents 
the corresponding mask bits.  
 

Clock Cycle  
1 2 3 4 

Scan Out 1 X 0 0 0 
Scan Out 2 X X 1 X 
Scan Out 3 1 1 X X 
a) Example Scan Chain Outputs 

Clock Cycle  
1 2 3 4 

Mask Bit 1 1 0 0 0 
Mask Bit 2 1 1 0 1 
Mask Bit 3 0 0 1 1 

b) Mask Bits Corresponding to Example (a) 
Figure 3. Example Scan Chain Outputs & Mask Bits 

 
We are not the first ones proposing bit masking (e.g., [2, 4, 10, 
12, 17, 20]). However, the previous techniques also mask non-X 
responses. 

 
In [10, 20] a technique was proposed, that masks unknown logic 
values on-chip and encodes the mask bits using the LFSR 
reseeding technique[5], see Fig. 4.  
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Figure 4. Generating Mask Bits using LFSR Reseeding 

 
The phase-shifter is designed to minimize the probability of linear 
dependencies between the mask bits (see [1]).   

 
The mask data compression algorithm computes the initial LFSR 
state (also called the seed) such that the LFSR generates a ‘1’ for 
each X. The seed calculation algorithm encodes the Xs as ‘1’ care 
bits and the non-X’s as don’t care bits (d) (see [5]).  

 
Fig. 5a presents how the mask bits will be encoded in a LFSR 
seed. Fig. 5b presents the mask bits generated by the LFSR using 
the seed. 
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Clock Cycle 
 

1 2 3 4 
Mask Bit 1 1 d d d 
Mask Bit 2 1 1 d 1 
Mask Bit 3 d d 1 1 

a) Encoding in Seeds (d=don’t care bit) 
Clock Cycle 

 
1 2 3 4 

Mask Bit 1 1 1 0 0 
Mask Bit 2 1 1 1 1 
Mask Bit 3 0 1 1 1 

b) Generated Mask Bits by the LFSR 

Figure 5. Example Mask Bit Encoding using a LFSR  
(Three Non-X Responses are Masked) 

 
A major problem is the fact that the LFSR assigns the don’t care 
bits (d) to ‘1’ with a probability of 50%.  In other words, some 
non-X test responses may be masked, causing test escapes. For 
example, in 4b three non-X responses are masked out.  

 
[10] reduces the probability of test escapes by generating 
additional patterns to improve fault coverage. [17] selects the 
non-X responses to be masked out intelligently using a stuck-at n-
detection metric, such that the impact of masking on the defect 
coverage is reduced. 
 
However, sole dependence on the SSF fault coverage may not be 
justified because a very small percentage of all defects behave as 
single stuck faults [7].  It was demonstrated in [18] that, in 
response to a test pattern, a defect might create errors in only a 
subset of flip-flops that are predicted to be erroneous by single 
stuck-at or transition fault simulation.   

 
Compared to previous work, our technique:  
1. Enables a very high compression ratio without masking any 

non-X responses.  
2. Allows an even higher compression ratio by allowing 

masking some non-X test responses.   
3. Does not increase the number of test patterns.  
4. Does not depend on the used fault model.  
 
The next section presents the basic technique.  

3. BASIC TECHNIQUE 
Figure 6 presents the basic technique. A mask bit is generated by 
the logical AND of multiple phase-shifter outputs, instead of only 
by one phase shifter output (see Fig. 4). The compression 
algorithm computes the seed such that all AND gate inputs are ‘1’ 
during the clock cycles where a ‘1’ mask bit is required.   
 
The LFSR assigns the don’t care bits in the AND gate input to ‘1’ 
pseudo-randomly with a probability of 50%.  However, since the 
AND gate output is ‘1’ if and only if all AND inputs (n) are ‘1’, 
the don’t care bits are assigned to ‘1’ pseudo-randomly with a 
probability of only 2-n. 
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 Figure 6. Generating Mask Bits using our Technique 
 
For example, suppose we encode the mask bits presented in Fig. 
3b using the new LFSR technique. The seed is computed by 
encoding the ‘1’ mask bits by two ‘1’ care bits instead of by only 
one care bit.  Fig. 7 presents the mask bits generated by the LFSR 
using the calculated seed: Instead of masking three non-X 
responses (Fig. 5), the new technique masks no non-X responses! 
 

Clock Cycle 
 

1 2 3 4 
Mask Bit 1 1 0 0 0 
Mask Bit 2 1 1 0 1 
Mask Bit 3 0 0 1 1 

 
Figure 7. Mask Bits using new LFSR technique 

 
The probability of masking a non-X response can be made 
arbitrarily small by increasing the number of AND gate inputs (n). 
In the rare occasion that the LFSR masks a non-X response, the 
LFSR can be bypassed: The correct mask bit slice can be be 
stored uncompressed in the ATE memory and downloaded to the 
chip. Figure 8 presents an overview of the compression algorithm. 

 
 

No 
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No
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Figure 8. Compression Algorithm 
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We have observed that the majority of Xs occur in only a few scan 
chains (also see for example [4, 13, 14]). Hence, the same mask 
bit slice can be used very often Therefore our technique stores a 
few frequently used mask bit slices in a register file on-chip. The 
majority of Xs are compressed by merely storing a pointer to the 
register file instead of encoding each individual X (see Fig. 8). 
 
The mask LFSR decompression circuitry can be combined with 
the stimulus LFSR decompression circuitry, see Fig. 9.   
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Figure 9. Combining Stimulus and Mask Decompression 

 
The phase shifter can be designed with enough outputs to (1) shift 
the decompressed stimulus patterns into the scan chains and (2) 
supply the AND gate inputs with the mask data. 

 
 

4. SIMULATION EXPERIMENTS 
The response compaction techniques are applied to four industrial 
designs, see Table 1. 
 

Table 1. Industrial Devices used for Experiments 

 Design 
1 

Design 
2 

Design 
3 

Design 
4 

Number of Scan 
Chains 400 400 400 100 

Total Number of 
Uncompressed 
Data Bits  

1.5 
Gbits 

660 
Mbits 

150 
Mbit 

40 
Mbits 

 
Important metrics to evaluate response compaction techniques 
are: 

Number of Uncompressed Bits 
Compression Ratio =  Number of Compressed Bits 
  

Number of Gates for Mask Decompression 
Area Overhead =  Total Number of Gates in Chip  
 

Number of Masked Non-X Test Response Bits  
Detection Loss =  Total Number of Test Response Bits  

 
Table 2 presents the compression ratio without using an LFSR, 
but simply downloading the mask bit-slices from the ATE (if and 
only if the output bit slice requires masking).  

 

Table 2. Without LFSR 
Compression Ratio [X] 

 
MISR X-Compact 

Design 1 9.3 46.4 
Design 2 56.1 58.9 
Design 3 6.9 28.9 
Design 4 4.7 5.3 

 
The table shows the compression ratio of using a MISR and a X-
compactor. The detection loss is 0% and the area overhead is 
negligible for all designs (<0.04%). 

 
Instead of storing a mask bit slice on the ATE, one could decide 
to simply mask all responses (if and only if the bit slice requires 
masking of at least one X).  However, this approach would cause 
a very high detection loss (up to 38% for Device 4). 

 
Table 2 shows that Design 4 has the lowest compression ratio:  
Therefore, we focus on Design 4.  Figure 10 presents the 
compression ratio as function of the number of AND gate inputs 
when our LFSR technique is applied to Design 4. 
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Figure 10. Our LFSR technique (Design 4) 

 
Our LFSR technique with one AND gate input is equivalent to 
using the conventional LFSR technique.  Fig. 10 shows that the 
conventional LFSR technique can only achieve a compression 
ratio of about 6x, whereas our new LFSR technique achieves a 
compression of 12x.  Note that we did use the LFSR technique 
presented in [19] instead of [5]. 

 
The results above have a detection loss of 0% (i.e., if and only if 
the LFSR would mask a non-X response, then we simply 
download the mask bit-slice from the ATE). 

 
If a small detection loss is acceptable, the compression ratio can 
be improved further. Figure 11 presents the compression ratio as 
function of the allowable detection loss. 
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Figure 11. Detection loss vs. Compression Ratio  

 (Design 4) 
 
Note that a very high compression ratio can be achieved (up to 
40x), with only a minor impact on detection loss (<0.38%). 

 
As discussed in Section 3, we have observed that the majority of 
Xs occur in only a few scan chains. Hence, the same mask bit 
slice can be used very often. Therefore, we can improve the 
compression ratio by storing frequently used mask bit slices in a 
register file on-chip. 

 
Figure 12 represents how often each mask bit slice can be used: 
Each dot represents a mask bit slice (Design 4).  The graph 
overlays 8 lines, i.e., for mask bit slices with respectively 1, 2, 3, 
4, 5, 6, 7, and 8 Xs.   
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Figure 12. Mask Bit Slice Frequencies (Design 4) 
 
Fig. 12 clearly shows that a few mask bit slices can be used for 
many clock cycles (e.g., the mask bit slice with 6 Xs is used 
30,000 times).  The many Xs can be compressed by merely 
storing a pointer to the register file instead of encoded each 
individual X. 
 
 
 

Table 3 presents the compression ratio and area overhead using 
our LFSR technique as function of the number of on-chip stored 
mask bit slices.   

 
Table 3. Using Register File and LFSR (Design 4) 

Compression Ratio [X] Stored 
Bit 

slices MISR X - Compact 

Area 
Overhead  

None 10.0 11.8 0.58% 
3 13.3 16.4 0.62% 
7 14.7 21.3 0.70% 

15 20.9 25.9 0.86% 
 
Table 3 demonstrates that storing mask bit-slices on-chip can 
improve the compression ratio to 25.9 (vs. 11.8 in case no bit-
slices are stored on-chip). 
 

5. CONCLUSIONS  
This paper describes a new test response compaction technique 
with any number of unknown logic values (X’s) in the test 
response bits by masking Xs that are not tolerated.  
 
The concept of masking is not new. Compared to previous work, 
the technique (1) enables a very high compression ratio without 
masking non-X responses, (2) enables an even higher 
compression ratio by allowing some detection loss, (3) does not 
increase the number of test patterns, and (4) does not depending 
on a fault model.  
 
We applied the technique to four industrial designs and obtained 
26-fold to 60-fold reduction in test response data volume with no 
impact on test quality. We obtained a compression ratio of 80-fold 
to 120-fold if a detection loss <0.38% is allowed.  Compared to 
using a conventional LFSR approach, our technique improves the 
compression ratio by >4x (26x vs. 6x).  The area overhead of the 
technique is limited (<1%). 
 
Our technique still depends on the ATE to supply data.  Future 
work will be focused on reducing the ATE data requirements 
further. 
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