
Automatic Scenario Detection for Improved WCET
Estimation

Stefan Valentin Gheorghita, Sander Stuijk, Twan Basten and Henk Corporaal
Eindhoven University of Technology, EE Department, Electronic System Group

{s.v.gheorghita, s.stuijk, a.a.basten, h.corporaal}@tue.nl

ABSTRACT
Modern embedded applications usually have real-time constraints
and they are implemented using heterogeneous multiprocessor sys-
tems-on-chip. Dimensioning a system requires accurate estima-
tions of the worst-case execution time (WCET). Overestimation
leads to over-dimensioning. This paper introduces a method for
automatic discovery of scenarios that incorporate correlations be-
tween different parts of applications. It is based on the application
parameters with a large impact on the execution time. We show
on a benchmark that, using scenarios, the estimated WCET may be
reduced with 16%.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems

General Terms: Algorithms, Performance, Design

Keywords: WCET, Real-Time, Scenarios

1. INTRODUCTION
Embedded systems usually consist of processors that execute

domain-specific programs. Many of their functionalities (tasks)
are implemented in software, which is running on one or multi-
ple generic processors, leaving only the high performance func-
tions implemented in hardware. Typical examples of embedded
systems include TV sets, cellular phones and printers. As many
of these systems have real-time constraints, to dimension them, ac-
curate estimations of the worst-case and best-case execution time
(WCET and BCET) of their tasks are required. More precisely, it is
required to tightly bound the execution times of all feasible paths of
the program. If the minimum and maximum duration of all these
executions are denoted by Tmin and Tmax, the actual bounds of
a program execution time are given by the interval [Tmin, Tmax].
The goal of the estimation is to find an interval [tmin, tmax] that
tightly encloses the actual bounds (see fig. 1) [9]. This interval rep-
resents the estimated bounds of the program execution time, and
respectively, tmin and tmax are the estimated BCET and WCET
of the program. Since estimation of WCET and of BCET are very
similar to each other and the techniques developed for one can be
easily adapted for the other, we focus only on WCET.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

���� ���� ���� ����

�	�����
������	

�����������	

����������	
���
�
	��������

��
�
	��������

����

Figure 1: Estimated vs. actual bounds.

To determine the estimated WCET of a program, all the factors
that affect the program execution time must be considered: the fea-
sible execution paths and the execution time of each instruction in
each path. In this paper, we discuss the first factor, which is plat-
form independent. The second one depends on architecture param-
eters, like number of cycles per instruction type, memory hierarchy
and pipelining. A micro-architecture model is needed to analyze it.

One of the problems in finding the estimated WCET of a pro-
gram is that the longest execution path is unknown in many cases.
If it can be determined, the problem is trivial to solve. Simula-
tion of all execution paths is clearly impractical as their number is
usually exponential in the program size. The results from the sim-
ulation of a subset of feasible execution paths are very likely to fall
strictly within the actual bounds of the program, even if the subset
was very carefully selected ([4]). This leads to an underestimation
of the bounds (see fig. 1). With some extensions, simulation-based
analysis can be used for designing soft real-time systems, but it
cannot be tolerated in analysis of hard real-time systems.

To avoid the explosion in the number of execution paths, many
approaches use a timing schema as the basis for estimating the
WCET. Such a timing schema is attributed to certain high-level lan-
guage constructs, and it is essentially a set of formulas for comput-
ing an upper bound on their execution time [17]. Nevertheless, the
timing schema cannot be directly applied to programs because not
all the needed information is contained in their source code. One of
the reasons is that programs contain non-manifest loops. In many
cases, the number of iterations of these loops cannot be determined
automatically as they may depend on input parameters. With only
a few exceptions (e.g. [16, 5]), all the existing techniques rely only
on the programmer to provide loop bounds.

Although by using a timing schema the explosion in the num-
ber of paths is avoided, often a large number of infeasible paths
is considered in WCET estimation, potentially introducing a big
overestimation (see fig. 1). This is because a timing schema does
not differentiate between infeasible and feasible paths, and the es-
timated WCET may be due to one of the infeasible paths.

In this paper, we propose an automatic method for reducing the
number of infeasible paths considered in a timing schema based

8.2

101

WCET estimation. We use static analysis to discover the correla-
tions between parts of an application. These correlations are used to
partition the application in different, so-called, scenarios. The ap-
plication estimated WCET is computed as the maximum estimated
WCET of these scenarios. Our method is platform independent
and can be applied on top of all existing WCET estimation meth-
ods based on timing schema.

The paper is organized as follows. Section 2 compares our work
with related approaches. Section 3 describes how a timing schema
works. Section 4 shows how scenarios can be used to estimate more
accurately the WCET for an application. In section 5, we introduce
an algorithm suitable for scenario discovery. The evaluation of our
approach on two test cases is presented in section 6. Our conclu-
sions and future plans are presented in section 7.

2. RELATED WORK
In this section, we compare our work with different approaches

for WCET overestimation reduction. Other areas where scenarios
are already used are also presented.

Many approaches to reduce the overestimation of WCET have
been studied. Some of them use C [14] or assembly [11] level
user annotations to describe the maximum number of executions
for different statements. On top of these approaches, in [13], a
mechanism that allows a user to specify the correlations between
parts of the application is added. However, all of these approaches
require correlation information added into the source code, which
is what we avoid in our work.

Another way to control the WCET overestimation is parametric
WCET. There are different methods to compute it, based on tim-
ing schema [6] and path enumeration [3]. Manual annotations for
constraints on loop counters and infeasible paths are needed. As
an extension, in [18], an iterative method to compute parametric
WCET bounds for simple loops has also been suggested. How-
ever, even for a fully automatic approach, which can find both loop
bounds and infeasible paths [10], there is a huge explosion in the
number of parameters. It is very hard to identify the most impor-
tant parameters only by the variables’ name. In our approach, we
introduce a method which helps in identifying the parameters that
influence the estimated WCET the most.

The scenario concept was first used [19] to capture the data-
dependent dynamic behavior inside a thread, in order to better sched-
ule a multi-thread application on a heterogenous multi-processor
architecture. In [12], the authors try to apply different source-to-
source transformations to each discovered scenario to improve the
overall application performance. To the best of our knowledge, we
are the first ones to present a technique for automatically detect-
ing scenarios and the first ones to use scenarios to reduce WCET
overestimation.

3. A SIMPLE TIMING SCHEMA
Before going into the depth of our method, we first present how

a timing schema works. All existing timing schema are based on
Shaw’s schema [17]. It estimates the program WCET in a bottom-
up manner, using the following rules, in which B, B1, B2 are blocks
of statements and n is the number of loop iterations:

WCET(B1; B2) = WCET(B1) + WCET(B2) (1)

WCET(if B then B1 else B2) =

WCET(B) + max(WCET(B1), WCET(B2))
(2)

WCET(while B do B1) =

(n + 1) ∗ WCET(B) + n ∗ WCET(B1)
(3)

Informally, the WCET of a sequence of two blocks of statements
is the sum of their WCETs (eq. 1). For an if-then-else state-
ment, the WCETs of then and else branches are compared and
the maximum is added to the WCET of the if condition (eq. 2).
For a while loop, the WCETs of the loop body and condition are
multiplied by the number of iterations, and the condition WCET is
added one more time because of the loop exit test (eq. 3). These
equations cover the entire ANSI C grammar (which is the most
used programming language for the embedded systems area), as all
other control constructs can be rewritten using these simple ones.

4. SHARPER UPPER BOUNDS USING SCE-
NARIOS

In order to refine the estimation of the WCET, we divide the ap-
plication in a set of scenarios. A scenario is defined as the applica-
tion behavior for a specific type of input data. The set of scenarios
must cover all possible input data. An example of a scenario for
the H.263 decoder [15] is the application behavior for any frame of
type P. Together with scenarios for frame types I and B, they cover
all possible behaviors.

For each scenario, those parts of the application source that are
never executed, are identified and removed, and the WCET is es-
timated using, for example, Shaw’s schema. Preserving the con-
servativeness of estimation, the WCET of the entire application is
then defined via the following equation:

WCET (app) = max
S∈Scenarios

(WCET (S)) (4)

To emphasize the possible benefit of scenarios in WCET com-
putation, fig. 2 presents an educational example. Note that only the
order in which functions f and g are executed differs, based on the
value of ct. Using only a timing schema, the estimated WCET is

2 · 8 · max(WCET (f),WCET (g)) + const.

where const represents the test and loop overhead. Considering
two scenarios defined on different values of variable ct (the first
scenario for ct = 1, and the second one for ct 6= 1), the WCET is

8 · (WCET (f) + WCET (g)) + const

If the WCETs of f and g are very different, then the use of scenar-
ios seriously reduces the overestimation compared to the approach
based only on timing schema.

Besides correlations between different parts of the code, as illus-
trated above, scenarios may also incorporate a different number of
loop iterations. For example, in one scenario, a loop iterates for
maximally 10 times, and in another scenario the same loop iterates
for maximally 5 times only. If the WCET for this code is computed
without considering scenarios, the maximum number of iterations
must be considered 10. In [7], a detailed example is presented.

Both the correlations between different parts of the source code
and the number of loop iterations are considered in our algorithm
for detecting scenarios.

5. AUTOMATIC SCENARIO DETECTION
Our approach is based on static analysis of the application source

code and it consists of five steps: (1) identify the parameters that
could potentially have an impact on the application execution time,
(2) compute the maximum possible impact of these parameters on
the WCET, (3) partition the application in scenarios considering
these parameters together with their impact, (4) generate source
code for each scenario and estimate their WCET using a timing
schema and (5) compute the application WCET using equation 4.

102

source code Influence coefficient for variable ct

1 if (ct == 1) IC(ct) = 2 · [max(8 · ICf (ct), 8 · ICg(ct)) + abs(8 · WCET (f) − 8 · WCET (g))]
2 for (y=0; y<8; y++) IC(ct) = 8 · ICf (ct)
3 f(&b[x*8+y]); IC(ct) = ICf (ct)
4 else /* ct!=1 */
5 for (y=7; y>-1; y--) IC(ct) = 8 · ICg(ct)
6 g(&b[x*8+y]); IC(ct) = ICg(ct)
7 if (ct != 1) IC(ct) = max(8 · ICf (ct), 8 · ICg(ct)) + abs(8 · WCET (f) − 8 · WCET (g))
8 for (y=0; y<8; y++) IC(ct) = 8 · ICf (ct)
9 f(&b[x*8+y]); IC(ct) = ICf (ct)

10 else /* ct=1 */
11 for (y=7; y>-1; y--) IC(ct) = 8 · ICg(ct)
12 g(&b[x*8+y]); IC(ct) = ICg(ct)

Figure 2: Educational example

1: The first step is based on the fact that usually a few parameters
have a significant impact on the application execution time (e.g. in
a video decoder: image size and type). Many of these parameters
are read at the beginning of the execution and remain constant for
the rest of it. Moreover, usually, there is only a small set of possible
values for them (e.g. for an H.263 decoder, there is one variable
which specifies the image type, with three possible values: I, B or
P). In a C source code, these parameters usually appear as variables
or fields of structures of integer or enumeration type. There is only
one statement for each parameter in the program that changes its
value (often it is set based on the program input data).

2: To identify from these parameters the ones that might influ-
ence the WCET the most, we first compute the application WCET
using a timing schema. Then, the possible impact on the WCET
of each variable or structure field (denoted by v) that respects the
above observations, is computed in the form of its so-called in-
fluence coefficient (IC(v)). The IC(v) represents the maximum
possible variation (in cycles) caused by the different values of v on
the WCET of the application.

To this end, the abstract syntax tree (AST) of the program is
traversed in a post-order manner and IC(v) is computed in each
statement s as a sum of its contribution and the maximum of IC(v)
computed for all its successors in the program (eq. 5).

ICs(v) = contribution(s) + max
x∈succesors(s)

(ICx(v)). (5)

A statement may have zero, one or multiple successors. The
last statement of a function or a loop body has no successors (e.g.
fig. 2, line 12). Control statements may have multiple possible next
statements (e.g. for if , the first statement of the then and the else

branches, as appears in the max factor of the IC(ct) from fig. 2,
line 7). The rest of the statements has only one successor. For each
statement, its successors are always already processed due to the
post-order traversal of the AST.

The contribution of a statement to IC(v) quantifies the max-
imum variation in execution time of the statement as caused by
different values of v. Depending on the statement type, the contri-
bution is:

• function call: the IC(v) computed in the first statement of
the called function f (e.g. fig. 2, line 12). If v is a parameter
of the function call, a renaming is done for computing the
IC(v) inside the function.

• loop: the IC(v) computed in the first statement of the loop
body multiplied by the maximum number of iterations (e.g.
fig. 2, line 11).

• if: if v appears in the if condition, and it is compared to a
constant,

abs(WCET (then)− WCET (else)), (6)

��

�� ��

��

��

��

�����

�����

�����

S1 : B1, B2, B4 S1 : B1, B2, Loop1(x) S1 : Loop1(s), Loop2(t)

S2 : B1, B3, B4 S2 : B1, Loop1(y) S2 : Loop1(u), Loop2(v)

(a) (b) (c)

Figure 3: Examples of good scenario selection (x < y, s < u,
t > v are the number of iterations for loops).

or else 0 (e.g. abs factor of IC(ct) from fig. 2, line 7).

• switch: if v appears in the switch condition,

max
B∈Branches

(WCET (B))− min
B∈Branches

(WCET (B)),

(7)
or else 0.

• the rest of statements: 0.

Equations 6 and 7 represent the only points where values differ-
ent from zero are injected in our algorithm. Scenarios can be used
for other purposes as well, such as memory usage estimation. The
same method can be applied but with different formulas for equa-
tions 6 and 7.

3: The first statement of the program will yield the ICs com-
puted for each possible parameter. To avoid an explosion in the
number of scenarios, different criteria to select which parameters
are used to define scenarios might be used. The selection may in-
corporate knowledge about the application combined with heuris-
tics based on the computed ICs. An example heuristic is to select
only those parameters with very big IC values. The best heuristic
is an open point for further research. The algorithm used in the se-
lection stage can almost always be automated and depends on what
the scenarios are used for.

For each selected parameter, the constants it is compared to in
the source code are collected. These constants, together with the
comparison operators, are used to split the set of possible values of
the parameter in subsets. A scenario is characterized in the end by
the possible values of the selected parameters.

Figure 2 shows how the IC for variable ct is computed for the
example presented in section 4. As it could already be seen in the
source code, we can automatically detect two scenarios based on
ct: ct = 1 and ct 6= 1.

At this point, we can refine our notion of a scenario to be a part
of the application source code with a specified maximum number of
loops iterations. The scenario’s set of execution paths consists of all
possible execution paths through it. In order to potentially obtain
a reduction for the estimated WCET using scenarios, a scenario

103

should not include all application execution paths. To avoid an
explosion in the number of generated and evaluated scenarios in
step 4 of our algorithm, scenarios that have the set of execution
paths included in another scenario’s set may be ignored. To fulfill
these two conditions, each pair of selected scenarios must fall in
one of the following cases:

• there must be at least one part of the source code which is
included in the first one and not in the second one, and vice
versa (e.g. scenarios S1 and S2 from fig. 3(a)).

• one of the scenarios includes a part of the code which is not
included in the other one and it executes a loop for a smaller
number of iterations (e.g. scenarios from fig. 3(b)).

• they have different maximum numbers of iterations for two
loops and for one loop the first scenario must iterate more
than the second scenario, and vice versa for the second loop
(e.g. scenarios from fig. 3(c)).

4: For each scenario, a modified version of the unreachable code
elimination compiler phase is used to remove code never executed
because of specific parameters values. The estimated WCET is
computed based on a timing schema, like Shaw’s one.

5: In the end, equation 4 is used to obtain the application WCET.

6. EVALUATION
All the presented steps were implemented on top of SUIF [2].

For our experiments, we used a micro-architecture model similar
to ARM7TDMI [1]. This processor does not have caches and the
pipeline effects were considered only inside basic blocks. For com-
puting the WCET of scenarios we use Shaw’s timing schema [17].
To determine the loop bounds, we use Rustagi’s approach [16]. In
the case when they cannot be automatically derived, we provided
them ourselves.

We tested our method on two multimedia applications, an MP3
decoder [8] and a restricted H.263 decoder [15] that supports only
I and P frames. The benchmarks structure and the steps of our
experiments are detailed in [7].

For the MP3 decoder, we first estimated its WCET based only on
the timing schema and computed the influence coefficient (IC) for
all possible parameters. The ones with relevant IC (bigger than 100
cycles) were used to define scenarios. By splitting the application
based on them, we obtain three possible scenarios (see table 1).
The estimated WCET for each discovered scenario is smaller than
the application WCET previously estimated. At the end, by using
equation 4, the application WCET is reduced with 16%. If the rules
from step 3 are relaxed, our tool generates 12 scenarios. However,
as we expected, the application WCET is not reduced furthermore.

For the H.263 decoder, we did not reduce the overall WCET
estimation. This is because the processing performed for an I-frame
is a true subset of the processing done for a P-frame. However,
relaxing the rules from step 3, two scenarios were discovered and
an improvement of 39% for one of them was obtained (see table 2).
Although based on scenarios the application estimated WCET is
not reduced, the fact that there are scenarios with different WCET
may be exploited in real-time systems design (e.g. use the spare
time for I-frames to save energy by voltage/frequency scaling).

7. CONCLUSIONS AND FUTURE WORK
We have presented an automatic method for detecting sharper

upper bounds on the estimated WCET of an application. It can
be applied on top of all WCET estimation approaches based on
timing schema. It is based on scenarios that incorporate both the

Table 1: MP3 Decoder scenarios (WCET = 2.405.968)
scenario block mixed WCET reduction
number type flag (cycles)

1 2 (short) 0 2.079.124 16%
2 2 (short) 1 1.984.816 18%
3 6= 2 (long) * 1.666.804 31%

Table 2: H.263 Decoder (WCET = 1.308.538)
Scenario WCET (cycles) Reduction

pict type = 1(Pframe) 1.308.538 0%
pict type = 0(Iframe) 794.350 39%

correlations between different parts of the application source code
and different numbers of iterations for the same loop. To discover
scenarios, we propose an algorithm based on static analysis of the
source code. A solution for preventing an explosion in the number
of scenarios was also proposed. Our method was tested on two
applications and, in one case, the estimated WCET was reduced
with 16%.

In the future, we plan to develop methods to dimension real-time
systems based on scenarios. We will consider that there are differ-
ent WCETs per scenario together with knowledge about possible
sequences of scenarios. We also want to extend our work in detect-
ing scenarios to multi-tasking applications. Furthermore, we are
investigating ways of detecting scenarios based on profiling.

8. REFERENCES
[1] ARM7TDMI datasheet.

http://www.arm.com/products/CPUs/ARM7TDMI.html.
[2] S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. An overview of the

SUIF compiler for scalable parallel machines. In Proc. of the 7th Conference
on Parallel Processing for Scientific Computing, San Francisco, CA, 1995.

[3] G. Bernat and A. Burns. An approach to symbolic worst-case execution time
analysis. In Proc. of 25th Workshop on Real-Time Programming, May 2000.

[4] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard
real-time systems. In Proc. of 23rd IEEE RTSS, pages 269–278, Dec. 2002.

[5] J. Blieberger. Discrete loops and worst case performance. Computer
Languages, 20(3):193–212, Aug 1994.

[6] A. Colin and G. Bernat. Scope-tree: A program representation for symbolic
worst-case execution time analysis. In Proc. of 14th IEEE ECRTS, pages
50–63, Vienna, Austria, June 2002. IEEE.

[7] S. V. Gheorghita, et al. Sharper WCET upper bounds using automatically
detected scenarios. Technical Report ESR-2005-04, TU/e, EE Dept.,
Electronic Systems Group, Eindhoven, Netherlands, Mar. 2005.

[8] K. Lagerström. Design and implementation of an MP3 decoder, May 2001.
M.Sc. thesis, Chalmers University of Technology, Sweden.

[9] Y.-T. S. Li and S. Malik. Performance Analysis of Real-Time Embedded
Software. Kluwer Academic Publishers, 1998.

[10] B. Lisper. Fully automatic, parametric worst-case execution time analysis. In
Proc. of 3rd Int. Workshop on WCET Analysis, pages 99–102, July 2003.

[11] A. K. Mok, et al. Evaluating tight execution time bounds of programs by
annotations. In Proc. of the 6th IEEE RTOSS, pages 74–80, May 1989.

[12] M. Palkovic, et al. Augmenting the exploration space for global loop
transformations by systematic preprocessing of data dependent constructs. In
Proc. of PA3CT Symposium, pages 33–36, Edegem, Belgium, Sep. 2004.

[13] C. Y. Park. Predicting Deterministic Execution Times of Real-Time Programs.
PhD thesis, University of Washington, Seattle, Aug. 1992.

[14] P. Puschner and C. Koza. Calculating the maximum execution time of
real-time programs. Journal of Real-Time Systems, 1(2):159–176, Sep. 1989.

[15] K. Rijkse. Video coding for narrow telecommunication channels at
<64kbits/s. Technical report, Telenor R&D, 1995.

[16] V. Rustagi and D. B. Whalley. Calculating minimum and maximum loop
iterations. Technical report, CS Dept., Florida State Univ., May 1994.

[17] A. C. Shaw. Reasoning about time in higher-level language software. IEEE
Transactions on Software Engineering, 15(7):875–889, July 1989.

[18] E. Vivancos, et al. Parametric timing analysis. In Proc. of the ACM
LCTES’2001, pages 88–93, Utah, June 2001.

[19] P. Yang, et al. Multi-Processor Systems on Chip, chapter Cost-efficient
mapping of dynamic concurrent tasks in embedded real-time multimedia
systems. Morgan Kaufmann, 2003.

104

