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1. ABSTRACT
The impact of parameter variations on timing due to pro-

cess and environmental variations has become significant in
recent years. With each new technology node this variabil-
ity is becoming more prominent. In this work, we present
a general Statistical Timing Analysis (STA) framework that
captures spatial correlations between gate delays. Our tech-
nique does not make any assumption about the distributions
of the parameter variations, gate delay and arrival times.
We propose a Taylor-series expansion based polynomial rep-
resentation of gate delays and arrival times which is able to
effectively capture the non-linear dependencies that arise due
to increasing parameter variations. In order to reduce the
computational complexity introduced due to polynomial mod-
eling during STA, we propose an efficient linear-modeling
driven polynomial STA scheme. On an average the degree-2
polynomial scheme had a 7.3x speedup as compared to Monte
Carlo with 0.049 units of rms error w.r.t Monte Carlo. Our
technique is generic and can be applied to arbitrary varia-
tions in the underlying parameters.

Categories and Subject Descriptors: B.8.2 [Hardware]:
Performance Analysis and Design Aids

General Terms: Algorithms, performance, verification

Keywords: Statistical timing, variability, correlation

2. INTRODUCTION AND MOTIVATION
Statistical Timing Analysis has become a widely researched

area with increasing impact of process and environmental
variations on deep-submicron designs. The growing sources
of variations along with the delay correlations they intro-
duce in the design make it increasingly hard to perform
fast and accurate timing analysis. Traditional design-corner
based static timing analysis has become inaccurate due to
pessimistic timing yield estimates. Monte-Carlo based sta-
tistical timing approaches become expensive in the presence
of such large number of sources of variability.

The central idea in STA is to capture the variability by
modeling delays as distributions and performing timing anal-
ysis statistically on these distributions while capturing pos-
sible correlations that could exist between gate delays.

A lot of recent work in statistical timing analysis tries
to consider the process and environmental variabilities in
performance analysis. Some approaches propose bounds on
the statistical timing information [3, 2, 11] which can be
computed efficiently for quick statistical timing estimation.
Other approaches explicitly compute the timing statistically,
making approximations at every step for curtailing the data
explosion and improving the runtime. The authors in [6]
propose a first order approximate delay model that takes
into account both the correlated and independent random-
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ness from different sources of variation. A similar strategy
is presented in [8], where the authors present an efficient
PERT-like traversal based statistical timing algorithm which
considers the effects of the correlations of intra-die parame-
ter variations by imposing an approximation similar to [6].
A moment based approach for capturing correlations is pre-
sented in [9].

In this paper we present a novel, general framework for
accurate STA. In our approach we model each gate delay
and arrival time distribution as a polynomial using Taylor-
series expansion on the underlying parameters. The degree
of the polynomial depends on the magnitude of the varia-
tions and the desired level of accuracy. Our technique also
calculates the arrival time at each gate as a polynomial in the
underlying parameters. As compared with running Monte-
Carlo simulations to generate such timing information at
each gate, we have significantly lower memory requirement
as well as lower runtime. We do not make any assumptions
about the distribution of the gate delays or arrival times in
the circuit. Any arbitrary distribution will work in our gen-
eral framework. In this paper we also present a strategy for
computing the MAX of arrival time signals represented as
polynomials. Using regression, we approximate the result
of MAX back to a polynomial with minimum impact on
error. Since all timing variables are approximated as poly-
nomials in global parameters, the correlations are inherently
considered. As the degree of the polynomial approximation
is increased, the computation complexity of STA can be-
come high. We also propose a novel linear-regression driven
polynomial-modeling STA scheme. The computational com-
plexity of this scheme is similar to that of the linear STA
scheme. Hence, efficient STA using higher order polynomi-
als can be done through our proposed approach. There are
several ways in which our approach is superior to existing
approaches.

1. The approaches in [6, 1, 8] model the dependence of
gate and arrival time delay at each node in the circuit
as a linear combination of global variations which are
taken to be gaussian in nature. It is quite clear that
this linear approximation can inject large amount of
error in statistical timing estimate especially when the
parametric variations become more significant. In our
approach we represent all delay and timing signals as
polynomials and therefore do not pay the penalty in
accuracy.

2. We approximate each timing signal to be a polynomial
in global variables. The approach of [6, 8] also assume
each timing signal to be a linear combination of global
variables. Their approach although will be valid only
if these variables have a gaussian distribution. Our
approach on the other hand is trivially generalizable
to any distribution of the underlying variables.

3. We explicitly evaluate the arrival time at the output
of each gate as a polynomial expression. This infor-
mation can be used to perform optimization on the
benchmark. As opposed to Monte-Carlo simulations,
we do not have a memory overhead to generate this
information at each gate.

Our experimental results have shown that the proposed
polynomial gate delay and arrival time modeling scheme has
on an average an rms error of 0.049 in the output CDF as
compared to 0.158 from linear gate delay and arrival time
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modeling (which is done by most existing STA schemes)
when compared with accurate Monte Carlo CDFs. This
clearly brings out the effectiveness of polynomial modeling
(assuming quadratic polynomials) of gate delays and arrival
times to better capture the variability in timing due to pa-
rameter variations. The average runtime speedups for the
polynomial scheme over Monte-Carlo was 7.3x, while that
from linear scheme was 7.5x.

The rest of the paper is organized as follows: Section 3
describes modeling scheme used for parameter variations,
correlation handling and gate delay computation. Section
4 contains the proposed STA framework along with the
error management strategy used in this work. Section 5
presents our novel linear modeling based STA driven poly-
nomial modeling STA scheme. Section 6 presents our exper-
imental results and section 7 presents the conclusions drawn
from this work.

3. MODELING PARAMETER VARIATIONS
AND SPATIAL CORRELATIONS

In this section we will discuss the methodology that we
impose for modeling the statistical correlations between the
gate delay variables. We assume that the gate delay is
dependent on a number of location-dependent parameters
which are assumed to be mutually independent random vari-
ables. Let Pi, Qi and Ri denote three such parameters (al-
though our approach is very general and can be trivially
extended to having more sources of variations also). There-
fore, the delay of a gate i can be modeled as a function of
these independent parameters as given by equation 1:

Di = F (Pi, Qi, Ri) (1)
We note here that F can be a non-linear function of the

parameters. Even if the underlying variables Pi, Qi, Ri are
gaussian distributions, the distribution in delay will not be
gaussian. Most state of the art techniques for statistical tim-
ing assume the node delays to be gaussian either directly or
indirectly. In our formulation we do not need to make any
such approximation on either the delay distribution or on
the distributions of Pi, Qi and Ri. As it has been indicated
in several other statistical timing techniques, spatial corre-
lation would exist between delay variables of different gates
due to spatial proximity. This occurs predominantly due
to the fact that the underlying variables Pi, Qi and Ri for
two gates in close spatial proximity would show correlated
behavior.

3.1 Spatial Correlation Modeling

Gate j

Gate i

P1 P2

P3 P4

R1
R2

R1’ R2’

R3’
R4’

R3

R4

Figure 1: Grid-Based Spatial Correlation Model

We now present a modeling strategy to capture the spatial
correlations between the parameter variables Pi, Qi and Ri

for each gate. Therefore, this technique captures the delay
correlation between gates. Let us suppose that we are given
a placed netlist as shown in figure 1. We impose a uniform
grid on the placement to partition the gates into spatial
regions. Let us now consider the parameter P and assume
that its variation can be represented as a linear combination
of four independent random components namely P1, P2, P3
and P4 that are zero mean and finite variance. These four
random variables correspond to the four corners of the chip
(as illustrated in figure 1). For any gate j, we model its
corresponding parameter Pj as given by equation 2:

Pj = a1P1 + a2P2 + a3P3 + a4P4 + a0 (2)
where a0 is the nominal value of parameter Pj . For any
gate j in the netlist, we can compute the grid-based radial

distance for the gate from the corners of the placement. This
is represented by R1, R2, R3 and R4 for gate j as shown
in the figure. The coefficients a1, a2, a3 and a4 can be
computed by using these radial distances. Depending on
the nature of the underlying variability parameter Pj (which
can be obtained by analyzing the actual variability data),
we can use an appropriate function H(R) to compute these
coefficients as follows:

a1 = H(R1); a2 = H(R2); a3 = H(R3); a4 = H(R4) (3)

The underlying random variables P1, P2, P3, P4 can have
any arbitrary distribution depending on the distribution of
the parameter Pj . Therefore, we can see that if two gates i
and j are far apart, they will get different contributions from
each of the four components P1, P2, P3 and P4 and will
have a weak correlation. If they are placed close together,
then their coefficients will be similar and strong correlation
will exist between them. In this way, we model spatial cor-
relations for each of the remaining parameters in the system
(Y and Z in this case).

Note that a similar strategy was proposed by [1] but the
number of underlying random variables that capture the cor-
relations was significantly higher. In our case we need only
four variables per parameter (Pi, Qietc.) to capture the spa-
tial closeness of two gates for capturing their correlations.

3.2 Gate Delay Modeling
We will now illustrate a gate delay model that incorpo-

rates the spatial correlation model described in the previous
sub-section. We have represented our gate delay as a func-
tion of the independent parameters as given by equation 1.
Each of Pi, Qi and Ri can be represented as a linear com-
bination of their underlying random components as given
by equation 2. Hence, we can represent our gate delay as a
function of these variables as:

Di = Gi(P1, P2, P3, P4, Q1, Q2, Q3, Q4, R1, R2, R3, R4)
(4)

For simplification in representation, let us represent these
variables as Y 1, Y 2, Y 3, Y 4, Y 5, Y 6, Y 7, Y 8, Y 9, Y 10,
Y 11 and Y 12 respectively. We can use Taylor-series expan-
sion about the mean values on this relation and obtain gate
delay Di as a sum of a series of multiple-order components
as given by equation 5. The nominal values for the gate
delay happens when all Yi variables are zero (essentially no
variance). Therefore Di(nominal) = Gi(0).

Gi = G(0) +
12∑

k=1

(Y k)G′(0) + 1/2!(
12∑

k=1

(Y k))2G′′(0)..... (5)

The approach in [8] presents a similar strategy in which
the delay for each gate is simplified according to Taylor se-
ries. Their approach however arbitrarily ignores the higher
order polynomial terms and simply represents each gate de-
lay as a a linear combination of the random variables (the
Yi terms in our case). Such a simplification is shown below

Di = c1Y 1 + c2Y 2 + c3Y 3 + c4Y 4 + c5Y 5 + c6Y 6 + c7Y 7

+ c8Y 8 + c9Y 9 + c10Y 10 + c11Y 11 + c12Y 12 + Gi(0) (6)

Typical gate delay models have terms which illustrate a
high degree of non linear sensitivity. Such a linear approx-
imation can inject a large amount of error in gate delay
modeling (and therefore the statistical timing estimate) it-
self. In this work we choose not to ignore the higher order
terms in the expanded Taylor series. Therefore, we model
the gate delays as a general polynomial in the global vari-
ables Yi. The order of this polynomial decides the degree of
accuracy in the delay estimate. Note that this polynomial
also has cross terms of the form YiYj etc. A general second
degree polynomial representing the gate delay would have
the following structure

Di = c1Y 1+c2Y 2+.....+c12Y 12+c13Y 12+.....+c24Y 122

+ 66 degree− 2 cross − terms + Gi(0) (7)
It can be seen that as we increase the degree of the ap-

proximating polynomial, the number of terms increase and
the error in approximation reduces. Therefore it could be
expected that there would be a tradeoff between runtime of
statistical timing analysis and its accuracy. This tradeoff
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could be generated by controlling the degree of the polyno-
mial used in representing the timing variables. Moreover, all
delay variables in the circuit would share the same global
variables Yi. This would enable effective capturing of the
correlations between them.

4. STATISTICAL TIMING ANALYSIS
FRAMEWORK

We will now describe our general STA framework. We use
a block-based STA approach that traverses the circuit topo-
logically from the primary inputs to the primary outputs.
There are two basic operations that are performed at each
gate during this traversal. We first perform a SUM oper-
ation on the arrival time at a fanin and the corresponding
gate delay. This SUM operation is repeated for each fanin
of the gate. We then perform the MAX operation on the
result of the already computed SUM operations. This gives
us the arrival time at the output of the gate. As described
in section 3, each gate delay is represented as a polynomial
in the independent/global parameters. Following a similar
strategy we would like to approximate each arrival time sig-
nal as a polynomial too. The approach in [6] proposes a
similar strategy for representing all arrival time signals as
linear combinations of global variables. At the end of the
topological traversal of the circuit, the STA data has been
generated. Let us now try to understand the two basic oper-
ations that are performed repeatedly in STA. Figure 2 shows
a typical gate in the circuit that has K fanins and a polyno-
mial gate delay representation D. The arrival time at fanin
i of the gate is denoted by Ai, which is also a polynomial
representation similar to D.

A 1

A
2

A K

1
2

K

O

D

A O

Figure 2: SUM and MAX Computation

D = poly(Y 1, Y 2, ......, Y 12) (8)

A1 = poly(Y 1, Y 2, ......, Y 12) (9)

A2 = poly(Y 1, Y 2, ......, Y 12) (10)

... ... ... ... (11)

AK = poly(Y 1, Y 2, ......, Y 12) (12)

4.1 SUM Operation
It is very simple to compute the result of the SUM opera-

tion. Since arrival time and gate delay are both polynomials
in the same independent parameters, the result of the SUM
operation is also a polynomial. The coefficient of each term
in the resulting polynomial is the sum of the coefficients of
the corresponding terms in Ai and D. For each fanin i, we
denote the result of the SUM operation by Aio:

A1o = A1 + D (13)

A2o = A2 + D (14)

... ... (15)

AKo = AK + D (16)
We note that this is an accurate computation and no ap-

proximation has been made at this step.

4.2 MAX Operation
We now compute the MAX operation in our proposed

framework. We perform a MAX of K polynomials to get
the arrival time signal Ao at the output of the gate. We
would like to represent Ao as a polynomial too. Since all
timing variables are represented as a polynomial in global
variables, the correlations are effectively captured.

Ao = MAX(A1o, A2o, ...., AKo) (17)

= poly(Y 1, Y 2, ......, Y 12) (18)

It is known that the MAX operation introduces the com-
plexity in STA. It is very hard to efficiently generate an accu-
rate result of the MAX operation. We propose a regression
based strategy to compute the resulting polynomial Ao by

performing least square fitting. Assuming we know the de-
gree of the polynomial that we want Ao to be approximated
in, least square fitting will try to find the best polynomial of
that degree that has the smallest error with the actual data
of the MAX operation. Let us suppose that we are trying to
approximate Ao with a degree two polynomial as indicated
in equation 19. We need to evaluate all coefficients such that
the resulting polynomial has smallest error when compared
with the actual MAX data.

Ao = c1Y 1+c2Y 2+.....+c12Y 12+c13Y 12+.....+c24Y 122

+ 66 degree 2 crossterms + c91 (19)
Now we will formalize the regression strategy that is used

to compute these coefficients. Let us assume that we are
given a set of n sampling vectors for the parameters (Y1,....,Y12)
(these n samples will not be a very large set). We can eval-
uate the exact value of the MAX result at these n sampling
vectors. This could be done by evaluating all the polyno-
mials Aio and calculating their MAX. Let the ith value be
represented by zi. We can define a residual R for least square
fitting as

R2 =
n∑

i=1

[
zi − (c1Y 1i + ..... + c12Y 12i + c13Y 12

i + .....+

c24Y 122
i + 66 degree 2 cross terms + c91)

]2

(20)

This residue essentially is the root mean square error be-
tween the actual data of MAX zi and the one predicted
by the polynomial. In order of minimize the residual, we
evaluate the partial derivative wrt. each coefficient in the
polynomial and equate the result to zero. This can be rep-
resented as :

∂(R2)

∂c1
= −2

n∑
i=1

[
zi − (c1Y 1i + .....)

]
Y 1 = 0 (21)

∂(R2)

∂c2
= −2

n∑
i=1

[
zi − (c1Y 1i + .....)

]
Y 2 = 0 (22)

.... = .... (23)

∂(R2)

∂c13
= −2

n∑
i=1

[
zi − (c1Y 1i + .....)

]
Y 12 = 0 (24)

.... = .... (25)

∂(R2)

∂c91
= −2

n∑
i=1

[
zi − (c1Y 1i + .....)

]
1 = 0 (26)

We can re-organize these to get equations :

c1

n∑
i=1

Y 1iY 1i +c2

n∑
i=1

Y 2iY 1i + .....+c13

n∑
i=1

Y 12
i Y 1i + ....

+ c91

n∑
i=1

Y 1i =
n∑

i=1

ziY 1i (27)

c1

n∑
i=1

Y 1iY 2i +c2

n∑
i=1

Y 2iY 2i + .....+c13

n∑
i=1

Y 12
i Y 2i + ....

+ c91

n∑
i=1

Y 2i =
n∑

i=1

ziY 2i (28)

....... ....... ....... .......

c1

n∑
i=1

Y 1iY 12
i +c2

n∑
i=1

Y 2iY 12
i +.....+c13

n∑
i=1

Y 12
i Y 12

i +....

+ c91

n∑
i=1

Y 12
i =

n∑
i=1

ziY 12
i (29)

....... ....... ....... .......

c1

n∑
i=1

Y 1i + c2

n∑
i=1

Y 2i + ..... + c13

n∑
i=1

Y 12
i + ....

+ c91n =
n∑

i=1

zi (30)
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We can combine these equations to give a more compact
matrix representation as:




∑n
i=1 Y 1iY 1i . . .

∑n
i=1 Y 12

i Y 1i . . .
∑n

i=1 Y 1i

...
. . .

...
. . .

...∑n
i=1 Y 1iY 12

i . . .
∑n

i=1 Y 12
i Y 12

i . . .
∑n

i=1 Y 12
i

...
. . .

...
. . .

...∑n
i=1 Y 1i . . .

∑n
i=1 Y 12

i . . . n




×




c1

. . .
c13

. . .
c91


 =




∑n
i=1 ziY 1i

. . .∑n
i=1 ziY 12

i
. . .∑n
i=1 zi




Essentially, we have represented the polynomial regression
as the system Y C = Z where we need to solve for the C
matrix. There are several well known techniques for solving
such a system of matrix, any of which could be used. This
approach essentially selects the coefficients in such a way
that the polynomial approximation of Ao has minimum error
with the real data set zi. This polynomial re-approximation
is performed every time a MAX operation is computed.

The regression strategy used in MAX operation has two
sources of complexity. The first one is the size n of the sam-
pling values. Increasing the number of samples at each MAX
operation increases the computational cost of this operation
but improves the accuracy of the polynomial fit. Also, we
note that as we increase the degree of polynomial approx-
imation, the dimensions of matrix Y also increases. For
first order linear regression, this matrix is a 13×13 matrix
while for degree two approximation, this is a 91×91 ma-
trix. Thus, we can clearly see a trade-off between accuracy
and computation runtime through the order of polynomial
approximation used.

We also point out here that the generality of our STA ap-
proach to handle all kinds of parameter variation distribu-
tions, gate delay distributions and arrival time distributions
is made possible by not making any distribution based ap-
proximation in the MAX operation. Polynomial regression
can be applied to any arbitrary distribution of the parameter
variables Yi and the accuracy controlled through the degree
of the polynomial and the number of sampling vectors used.

After the topological traversal of the circuit, the arrival
time at the primary output is represented as a polynomial
in global variables. It can be seen that we have presented
a generic statistical timing methodology that is not con-
strained by any assumptions on underlying distribution.

5. REDUCING COMPLEXITY IN
POLYNOMIAL REGRESSION

We note that the computational complexity in polynomial
STA comes primarily from the MAX operation as described
in section 4.2. The size of the polynomial regression matrix
formed in this step is grows exponentially with the degree
of the polynomial approximation used. Hence, this step be-
comes the run-time determining step of the STA scheme.
Ideally, we would like to maintain the accuracy obtained
from using a higher degree polynomial (chosen to be degree
2 in this paper) while keeping a runtime that is comparable
to an STA scheme with linear delay/arrival time models.
The advantage of using regression is the generality in the
scheme to handle timing distributions of any nature (not
gaussian only) and the mathematical accuracy inherent in
regression. In order to achieve the desired level of accuracy
as well as runtime behavior, we propose a scheme that uses
linear-modeling based STA to drive the polynomial STA.

5.1 Linear Regression Driven Polynomial STA
Polynomial modeling based STA is more accurate in gen-

erating the PDF/CDF of arrival time distribution because of
two primary reasons: firstly, because polynomial gate delay
modeling is better able to capture the nature of distribution
due to the underlying parameter variation and secondly, be-
cause polynomial arrival time modeling is able to represent
the PDF/CDF more accurately than linear modeling. How-
ever, the mean and variance of the arrival time distributions

are captured with reasonable accuracy in the linear model-
ing based STA. We will now propose a polynomial modeling
based STA technique that is driven by linear modeling based
STA (which has lower runtime).

OUTG

X

Y

Ax

Ay

Delay = D

Aout

Figure 3: STA technique at Gate G

We traverse the circuit topologically and at each gate,
we run linear STA and then use linear STA results to drive
polynomial STA. Linear STA corresponds to performing lin-
ear regression assuming a linear model for arrival time and
gate delay. Thus, we generate and store both linearly and
polynomially modeled timing values at each gate. Let us
suppose we are evaluating the arrival time at output of gate
G with two fanins (X and Y ) as shown in figure 3. For each
input X and Y , we are given both linear and polynomial
modeling values for the signal arrival times Ax and Ay re-
spectively. Let us denote the linear arrival times as Al

x and
Al

y respectively and the polynomial arrival times as Ap
x and

Ap
y respectively. The linear and polynomial models for gate

delays are given as Dl and Dp respectively.
The linear arrival time Al

out at the output of gate G is
given by:

Al
out = MAX(Al

x + Dl, Al
y + Dl) (31)

During linear STA we perform regression based MAX op-
eration based on linear gate delay and arrival time models
as given by equation 31. In section 4, we have discussed
the details of the proposed regression based STA scheme.
This enables the time consuming regression in the MAX
step (section 4.2) to be much faster than the polynomial
case (degree 2 or higher). The linear regression output gives
us the arrival time (Al

out) at the output of gate G as a linear
combination of parameters:

Al
out = c0 + c1Y 1 + c2Y 2 + ..... + c12Y 12 (32)

where Y1, Y2,......., Y12 are the independent parameter
variables as discussed in section 3. We know the distribution
of these random variables and hence can calculate the mean
and the variance of the arrival time Al

out as:

Mean(Al
out) = c0 + c1 ∗Mean(Y 1)+ .....+ c12 ∗Mean(Y 12)

(33)

V ar(Al
out) = c2

1∗V ar(Y 1)+c2
2∗V ar(Y 2)+.....+c2

12∗V ar(Y 12)
(34)

We will now assume that the mean and variance of the
output arrival time after linear regression is accurate. We
will run polynomial STA by matching the mean and variance
(first two moments) of the polynomial arrival time with the
linear regression output. Let us now understand the scheme
in more detail.

The polynomial arrival time at the output of gate G (say
Ap

out) is given by:

Ap
out = MAX(Ap

x + Dp, Ap
y + Dp) (35)

where Ap
x and Ap

y are the signal arrival times at the input-
pins X and Y respectively and Dp is the polynomial gate
delay. Now let us suppose that we know the probability p
such that arrival time (Ap

x + Dp) ≥ arrival time (Ap
y + Dp).

We can calculate the probability p = Prob(Ap
x + Dp ≥

Ap
y + Dp) during the linear STA run at gate G.
We can run polynomial STA on gate G by utilizing this

probability p to generate an output polynomial Ap
out, which

will then be scaled to match its first two moments to the val-
ues evaluated from linear regression based STA as given by
equations 33 and 34. Let the output arrival time polynomial
Ap

out be generated as follows:
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Ap
out = p ∗ (Ap

x + Dp) + (1 − p) ∗ (Ap
y + Dp) (36)

where Ap
x and Ap

y are the polynomial arrival times of the
signal at the fanin pins X and Y (which have already been
calculated previously). After this step, we need to match
the variance of Ap

out to the variance of Al
out from linear re-

gression. For simplicity of understanding, we will keep this
discussion limited to Ap

out being a polynomial of degree 2 as
given by:

Ap
out = c0+c1Y 1+c2Y 2+.....+c12Y 12+c13Y 12+.....+c24Y 122

+ 66 degree− 2 cross − terms (37)

But the analysis that follows can trivially be extended to
higher order polynomial modeling as well. Since we know
the distribution of each underlying parameter variation (Y 1
to Y 12), we know their mean and variance values. We can
evaluate the mean and variance of Ap

out as follows:

Mean(Ap
out) = c0+c1∗Mean(Y 1)+.....+c12∗Mean(Y 12)

+ c13 ∗ Mean(Y 12) + ...... other terms (38)

V ar(Ap
out) = c2

1 ∗ V ar(Y 1) + ..... + c2
12 ∗ V ar(Y 12)

+ c2
13 ∗ V ar(Y 12) + ....... + c2

24 ∗ V ar(Y 122)

+ c2
25 ∗ V ar(Y 1 ∗ Y 2) + .... other cross terms

+ 2c1c2 ∗ Cov(Y 1, Y 2) + 2c1c3 ∗ Cov(Y 1, Y 3)

+ ..... all other covariance terms (39)

We will first match the variance of Ap
out (from equation

39) with that of Al
out (from equation 34) by scaling Ap

out
with a factor α such that:

α2 = V ar(Al
out)/V ar(Ap

out) (40)

Ap′
out = α ∗ Ap

out (41)
The mean of the new scaled polynomial will be:

Mean(Ap′
out) = α ∗ Mean(Ap

out) (42)
Hence, to match the mean of the polynomial arrival time

expression with that obtained from linear regression (equa-
tion 33), we can add a constant factor β to the constant

term c0 of Ap′
out such that:

β = Mean(Al
out) − Mean(Ap′

out) (43)

c′0 = c0 + β (44)
Hence the final polynomial arrival time at the output of

gate G can be given by Apoly
out :

Apoly
out = α ∗ Ap

out + β (45)
This completes our linear regression driven polynomial

STA technique. We have avoided the complexity of solving
a large polynomial regression problem at each gate (during
the MAX operation) by solving a smaller linear regression
problem and then performing moment matching (first two
moments) as explained in this section. The runtime com-
plexity of this scheme will be of the order of the runtime for
linear regression.

5.2 Gaussian Approximation
The linear regression based technique discussed earlier in

this section is applicable to any given gate delay distribu-
tion. If the gate delay distributions are known to be gaus-
sian, then we could avoid the generic regression based linear
STA, and use faster techniques (under the gaussian approx-
imation) to drive the polynomial STA. In [6], the authors
have proposed a first order approximate delay model based
STA under the assumption that all underlying parameters

have a gaussian distribution. Their scheme approximates
the arrival time distribution after the MAX operation to be
gaussian as well. For brevity, we do not go into the details
of their scheme. As explained in the previous subsection, to
drive polynomial STA using linear STA, we need to evaluate
three quantities for each MAX operation: the probability p
that one arrival time is larger than the other, the mean of the
output arrival time distribution and the variance of the out-
put arrival time distribution. In our generic scheme we use
linear regression to get these quantities. Under the gaussian
assumption, the authors in [6] use the results from [5, 10]
to perform the MAX operation. They represent each arrival
time as a linear combination of gaussian random variables
(representing the underlying parameter variations). The dis-
tribution of the timing signal after the MAX operation is re-
approximated back as a linear combination of the underlying
gaussian variables (to maintain the gaussian form). Analyt-
ical expression proposed in [5, 10] are used to evaluate the
mean and variance of the result of performing the MAX op-
eration on two jointly gaussian arrival time distributions.
They use the probability p of one arrival time being larger
than the other to generate an expression for the resulting
linear arrival time. Using the variance value obtained from
the analytical expression, they match the variance of the
resulting output arrival time to get the final output arrival
time expression as a linear combination of the underlying
parameter variations.

We can utilize the scheme presented in [6] to drive our
polynomial STA under the assumption that underlying pa-
rameters are gaussian and by imposing a first order ap-
proximation on gate delay. This is a faster technique than
performing our more generic regression based STA to drive
polynomial STA and can be used when the underlying pa-
rameters are given to be gaussian in nature.

6. EXPERIMENTAL RESULTS
The proposed STA framework was implemented in sis [7]

assuming three underlying parameters. For the gate delay
model in equation 46, we assumed the parameters supply
voltage (Vdd), threshold voltage (Vth) and the velocity sat-
uration index for short channel effects (α) as the underly-
ing sources of variability. We used an academic placement
tool (CAPO [4]) to get a valid placement for each bench-
mark. This placement information was used to generate the
Vdd, Vth, α variations at each gate as indicated in equation
2. This automatically captures correlations due to spatial
proximity. We imposed 10%, 20% and 7% variability on
corresponding mean values of 1.8V , 0.5V and 1.3 respec-
tively. Furthermore, each of these parameters were assumed
to have a uniform distribution to see the effects of relax-
ing the gaussian distribution assumption to consider a more
general approach.

Di ∝ CLVdd

(Vdd − Vth)α
(46)

In section 4, we have presented the general regression
based STA scheme. As the degree of the polynomial ap-
proximation is increased, the computation complexity of re-
gression makes this scheme impractical. In section 5, we
have proposed a novel linear regression driven polynomial
STA scheme. The computational complexity of this scheme
is similar to that of linear regression. Hence, efficient STA
using higher order polynomials can be done through this
scheme. We assumed the gate delays were a second order
polynomial of the parameters. This second order polynomial
for each gate delay was generated using best fit regression
with Monte Carlo data for gate delay. The Monte Carlo data
for the gate delay was calculated using the delay model in-
dicated in equation 46 with different parameter instances.
We generated accurate timing CDFs for each benchmark
using equation 46 for gate delays through Monte Carlo sim-
ulations. All runtimes and error comparisons are are made
with Monte Carlo.

We experimented with the following cases:

1. Using linear gate delay and arrival time models, we
performed regression based STA (as described in sec-
tion 4). This approach is similar to the one proposed
by state of the art STA techniques like [6, 8] where all
delay and arrival time variables are assumed to be lin-
ear approximations of underlying global parameters.
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Benchmark Monte Carlo Linear-Modeling STA Linear-Driven Polynomial Modeling
Runtime Runtime Speedup rms Error Runtime Speedup rms Error

C432 3152 1461 2.2X 0.147 1495 2.1X 0.053
C499 10421 3114 3.4X 0.164 3157 3.3X 0.057
C880 8687 2566 3.4X 0.136 2586 3.4X 0.035
C1355 10381 3081 3.4X 0.175 3099 3.4X 0.033
C1908 13649 3220 4.2X 0.155 3237 4.2X 0.042
C3540 68204 7834 8.7X 0.153 7916 8.6X 0.047
C5315 148053 10414 14.2X 0.170 11735 12.6X 0.093
C6288 381245 18601 20.5X 0.165 18635 20.5X 0.035

Average 7.5X 0.158 7.3X 0.049

Table 1: Runtime and rms Error Comparison

2. We performed polynomial STA using our proposed lin-
ear regression driven polynomial STA scheme (as de-
scribed in section 5). All gate delays as well as arrival
times in the STA were represented as degree two poly-
nomials.

Table 1 presents the experimental results. All runtime
and error comparisons are made wrt. Monte Carlo results.
Columns 2, 3 and 6 present the runtime values for Monte
Carlo, linear regression based STA and linear regression
driven - polynomial STA respectively. The corresponding
speedups wrt. Monte Carlo are given in columns 4 and 7
respectively. On an average, we get 7.5x and 7.3x speedup
compared with Monte Carlo runtime from the two schemes
respectively. On an average, there is 0.158 and 0.049 units
of rms error in the output CDFs from the two schemes re-
spectively as compared with the accurate CDFs from Monte
Carlo. These results point out the superiority of polyno-
mial STA as compared to linear STA. Polynomial gate de-
lay and arrival time models are better able to capture the
distribution as compared to linear models. We also note
that the runtime from the linear regression driven polyno-
mial STA are comparable to that of pure linear regression
based STA. Our proposed scheme is a fast technique to per-
form higher order polynomial approximations during STA.
With increasing variability in underlying parameters, such
a scheme would be very useful.

From the runtime speedups reported in table 1, we can
see that as the benchmark size is increasing (listed in order
of increasing number of total gates) the speedup as com-
pared with Monte-Carlo also increases. We note here that
we perform regression and Monte-Carlo simulations at the
same number of samples to make a fair comparison. Addi-
tionally, as pointed out earlier in the paper, we generate a
polynomial expression for arrival time at each gate which can
be used for performing optimization. In order to generate
this information using Monte-Carlo simulations, we would
require a very high memory overhead to save the results at
each gate. These are the advantages of using our regression
based scheme over Monte-Carlo based simulations.

Even though the rms error numbers are small in magni-
tude, they can make a significant impact on the CDF. For
example, the average rms error in linear regression scheme is
0.158 units, so if we are looking at the 50 percentile point on
the accurate CDF, the predicted CDF potentially be show-
ing a value of either 0.342 or 0.658, which is a very signifi-
cant difference from the actual value of 0.5. The impact of
this inaccuracy on decisions made on the design using these
CDFs could be very drastic.

Figure 4 depicts the CDF at the output of benchmark
C880. We can see that the linear regression driven polyno-
mial STA gives us a more accurate CDF as compared to the
linear regression based STA scheme. This clearly brings out
the superiority of polynomial STA over linear STA.

7. CONCLUSION AND FUTURE WORK
In this work we have proposed a general framework for ac-

curate STA. Our scheme is independent of the distributions
of the variations, gate delay and arrival times. We consider
the impact of intra-die parameter variations on gate delays
and also consider the spatial correlations that can exist be-
tween them. We have proposed a polynomial gate delay
modeling scheme where the order of the polynomial can be
decided by the desired accuracy as well as the magnitude of
the underlying variations. We have presented a regression
based MAX computation technique that can be used to rep-
resent each arrival time as a polynomial in the underlying
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Figure 4: CDF Result for C880

parameters. However, since the computational complexity
of this regression increases significantly with the degree of
the polynomial, we have proposed a novel linear regression
driven polynomial STA scheme. Our results show the ad-
vantage of using polynomial modeling over linear modeling
as done in the existing literature.

Future work would be to develop fast techniques for poly-
nomial MAX operation in STA. As the impact of the pa-
rameter variations increases, non-linearity creeps in and we
need to develop higher order approximation schemes which
are accurate but at the same time efficient in computation.
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