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ABSTRACT 
Variability of process parameters makes prediction of digital 
circuit timing characteristics an important and challenging 
problem in modern chip design. Recently, statistical static timing 
analysis (statistical STA) has been proposed as a solution. 
Unfortunately, the existing approaches either do not consider 
explicit gate delay dependence on process parameters [3] - [6] or 
restrict analysis to linear Gaussian parameters only [1, [2]. Here 
we extend the capabilities of parameterized block-based statistical 
STA [1] to handle nonlinear function of delays and non-Gaussian 
parameters, while retaining maximum efficiency of processing 
linear Gaussian parameters. Our novel technique improves 
accuracy in predicting circuit timing characteristics and retains 
such benefits of parameterized block-based statistical STA as an 
incremental mode of operation, computation of criticality 
probabilities and sensitivities to process parameter variations. We 
implemented our technique in an industrial statistical timing 
analysis tool. Our experiments with large digital blocks showed 
both efficiency and accuracy of the proposed technique. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance analysis and 
design aids 

General Terms 
Algorithms, performance, design. 

1. INTRODUCTION 
Electrical characteristics of transistors and interconnects are not 
the same for different chips and even for the same chip at different 
locations and time moments [1-7]. Variation of electrical 
characteristics is due to variation of process parameters, changing 
of environmental conditions and even chips aging (lithography, 
CMP, temperature, HCI, NBTI, etc). Variation of electrical 
characteristics results in variation of timing characteristics of gates 
and wires. The traditional way to treat variations is to consider 
process corners at which the gates and wires have the worst 
combinations of delays. Then chips are designed so that they can 
properly function at all these process corners assuming that as a 
result they will function at any other combination of gate and wire 
delays.  

Unfortunately, as the number of sources of variations increases, 
the corner-based method becomes computational expensive. 
Moreover, with decreasing size of transistors and interconnect 

width, the variation of electrical characteristics is getting 
proportionally higher. The process corner approach, which used to 
work well, now results in overly conservative and suboptimal 
designs, wherein much effort is expended in closing timing at 
extremely low-probability process corners. An alternative 
approach is to consider the actual statistics of process parameters 
and use them to compute statistical characteristics of the designed 
circuit to achieve less pessimistic results in efficient run-times. 
This approach is known as statistical static timing analysis 
(statistical STA). There are many varieties of this technique [1-7]. 
One of the most useful approaches for circuit analysis and 
optimization is parameterized statistical STA [1, 2]. This 
technique considers gates or wires delays D as functions of 
process parameters Xi’s:  

),,( 21 "XXDD = EQ 1 
Using this representation, parameterized statistical STA 

computes circuit timing characteristics A (arrival and required 
arrival times, delay, timing slack) as functions of the same process 
parameters:  

),,( 21 "XXAA = EQ 2 
Knowing explicit dependencies of circuit timing 

characteristics on process parameters has two advantages. First, 
combining this information with the statistical characteristics of 
process parameters, we can compute probability distributions of 
circuit delay and predict manufacturing yield. Second, this 
information is useful for circuit optimization, improving 
robustness of the design, and manufacturing line tailoring. Non-
parameterized statistical STA [3-7] is less attractive because it 
does not compute relations between circuit characteristics and 
process parameters.   

Statistical STA can be either path-based or block-based. A 
path-based statistical STA requires enumeration of signal 
propagation paths and integration over parameter space. A more 
efficient technique is parameterized block-based statistical STA. It 
computes signal arrival times as functions of process parameters 
similarly to propagating arrival times by a deterministic STA. 
Parameterized statistical STA in [1, 2] assumes that all the 
parameters have independent normal Gaussian probability 
distributions and affect gate delays linearly. The independence can 
be achieved by principal component analysis. According to this 
assumption, gate delays are represented in first-order canonical 
form: 
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where: 
• a0 is the mean or nominal delay; 
• 

iii XXX ˆ−=∆ is the variation of parameter Xi, centralized 

by subtracting its mean value 
iX̂ ; 

• ai is the sensitivity of gate delay to process parameter Xi ; 
• 

aR∆ is the variation of an uncorrelated parameter Ra; 
• an+1 is the delay sensitivity to uncorrelated variations. 
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The first two terms of the canonical form represent the part of 
delay predicted by linear approximation. The last term 

an Ra ∆+1
 

represents uncorrelated variation. Figure 1 shows graphically a 
canonical form for one process parameter. The solid line is a linear 
approximation of the delay. The dashed lines show the σ3  region 
of the uncorrelated variation. In the case of multiple process 
parameters, the canonical form is represented by a hyper-plane 
defining delay as a linear function of process parameters and two 
parallel hyper-planes bounding the σ3  region of uncertainty of 
uncorrelated variation. Using the canonical form of gate delays, 
parameterized statistical STA approximates signal arrival times in 
the same first-order canonical form, i.e., theoretically predicts the 
results of a linear regression. 

The assumption about the linear Gaussian nature of process 
parameters is very convenient for statistical STA. It allows the use 
of analytical formulas for computing canonical forms of arrival 
times which make statistical timing analysis efficient. 
Unfortunately, some process parameters have significantly non-
Gaussian probability distributions. For example, via resistance is 
known to have an asymmetric probability distribution. The linear 
approximation is justified by the assumption that variations are 
small. However, with reduction of critical feature size, process 
variation is getting larger and linear approximation is not accurate 
enough. For instance, delay dependence on transistor channel 
length (Leff) is essentially nonlinear, and assuming linear 
dependency can result in substantially inaccurate results [9]. 

 
Here we focus on block-based parameterized statistical STA. 

We present a novel technique for handling process parameters that 
have non-Gaussian distributions and/or affect gate delay 
nonlinearly (For conciseness, in the remaining of the paper, we 
will use the term “nonlinear parameter” to refer to parameters with 
nonlinear effect on delays). The obvious way to handle such 
inconveniences is to apply a numerical technique. However, it 
results in losing the desired computational efficiency. We present 
a combined approach, which processes linear Gaussian parameters 
analytically and uses a numerical technique only for nonlinear and 
non-Gaussian parameters. It is efficient for the cases where linear 
Gaussian approximation is accurate enough for most of the 
parameters and only a few of them demonstrate complex nonlinear 
and/or non-Gaussian behaviors. Our experiments show that the 
latter is the most common practical case. We generalize the first- 
order canonical form to include non-Gaussian distributions and 
nonlinear functions. The proposed technique is an extension of the 
original parameterized block-based statistical STA [1] [2] and 
fully compatible with it. We implemented our technique to extend 
the statistical STA tool [1] to be able to process mixture of a linear 
and nonlinear, Gaussian and non-Gaussian parameters. Our 
experiments on industrial circuits show that the proposed 
technique does not reduce efficiency of the original statistical STA 
tool for handling linear Gaussian parameters and can handle 
additionally up to 7-8 nonlinear and/or non-Gaussian parameters. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of parameterized block-based statistical STA. In Section 
3, we present our technique of handling non-Gaussian and 
nonlinear parameters. We limit our discussion to computing the 
latest arrival time. However, using obvious symmetry between 
minimum and maximum functions, it is easy to extend the 
proposed technique to computing the earliest arrival time as well 
as required arrival time and timing slack. Section 4 describes our 
implementation of the proposed technique in the industrial 
statistical timing analysis tool EinsStat [1] and presents 
experimental results to show the accuracy and performance of the 
proposed technique. Finally, conclusions are drawn in Section 5. 

2. PARAMETERIZED STATISTICAL STA 
A parameterized block-based statistical STA models a digital 
circuit with timing graph G=(N,E,ns,nf), where: N is a set of nodes, 
E is a set of edges, ns is a source node, nf is a sink node. Each edge 
is weighted by its delay. The circuit timing characteristics are 
computed by propagating signals from the source node to the sink. 
Parameterized block-based statistical STA represents the delays 
and signal arrival times in first-order canonical form. It uses two 
basic operations: propagation of arrival time through a timing edge 
and computation of the latest arrival time at a node. The first 
operation is basically to compute C=A+B, where A and B are in 
canonical forms. The resulting sum C is also in canonical form 
and the parameters of C are computed as follows: 
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The second operation requires computation of C=max(A,B), 
where A and B are in canonical form. The maximum is a nonlinear 
function. Therefore, the maximum of two canonical forms cannot 
be expressed exactly by a canonical form. The work in [1] 
proposes the following algorithm for computing statistical 
approximation Cappr of the maximum of two arrival times A and B: 

Algorithm 1: 
1. Compute variances and covariance of A and B: 
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2. Compute tightness probability TA=P(A>B), i.e., the 
probability that arrival time A is larger than B: 
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3. Compute mean c0, second moment m2C and variance 2
cσ  of 

C=max(A,B) using the results from Clark’s work [8]:  
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using TA, θ  and )(xφ , computed in step 2. 
4. Compute sensitivity coefficients ci of Cappr for ni ≤≤1  

Figure 1. Graphical representation of a canonical form 
aRaXaaA ∆+∆+= 210
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iAiAi bTaTc )1( −+=  EQ 8 
5. Compute sensitivity coefficient cn+1 of canonical form Cappr to 

make the variance of Cappr equal to the variance of 
C=max(A,B). 
Algorithm 1 uses only analytic expressions and is therefore 

very efficient. Also, it approximates the maximum of two 
canonical forms by minimizing the expected value of squared 
error (proof is not included here). The approximation here has 
statistical sense, meaning that minimizing the high probability 
error is more important than the lower probability one. This 
approximation matches the mean and variance of the exact 
maximum. The use of tightness probabilities TA and TB=(1-TA) as 
weighting coefficients is justified by the reasoning that the larger 
the tightness probability TA , the more likely that  max(A,B) equals 
A.  

Figure 2 shows the approximation of the maximum of two 
canonical forms A and B depending on one parameter X∆ . 
Canonical forms A and B are shown with thick dashed lines. The 
exact maximum is a piecewise linear function C=max(A,B) 
consisting of two  pieces shown with bold solid lines. The 
approximate canonical form Cappr is a line with a slope more than 
the slope of line A and less than the slope of line B. The line Cappr 
is closer to line A than to line B, because the probability of A>B is 
larger than the probability of A<B. This is obvious from 
comparing the interval where A>B to the interval of 6 σ  
parameter variation. In the case of multiple process parameters, we 
have a similar picture but with hyper-planes instead of lines. In 
this work, we will extend parameterized statistical STA to non-
Gaussian and nonlinear parameters using the same ideas of 
statistical approximation and tightness probabilities that were 
described in this section for the linear Gaussian case.  

 

3. HANDLING NON-GAUSSIAN AND 
NONLINEAR PARAMETERS 

It is known that by applying variable transformation, we can 
convert non-Gaussian distributions into Gaussian ones and 
nonlinear dependence into linear ones. However, in the general 
case, if we have nonlinear function y=f(x) depending on the 
random variable x with non-Gaussian probability distribution, 
there is no transformation z=g(x) such that z has a Gaussian 
distribution and y is a linear function of z. We can convert a non-
Gaussian distribution into a Gaussian one, but as a result the 
function of interest will be nonlinear. On the other hand, we can 
transform a nonlinear function into a linear one, but as a result the 
random variable will be non-Gaussian. Therefore, it may appear 
attractive to extend statistical STA to handling either only non-
Gaussian or nonlinear parameters. Then we can apply variable 
transformation to reduce the general case of having both non-

Gaussian and nonlinear parameters into the special one with only 
either non-Gaussian or nonlinear parameters. However, for 
statistical STA it is not a convenient solution. A parameter has the 
same probability distribution for all the delays, but different delays 
may depend on the same parameter differently, which means 
different nonlinear functions. On the other hand, we show below 
that using our approach it is not difficult to handle both nonlinear 
and non-Gaussian parameters simultaneously and even nonlinear 
parameters with non-Gaussian probability distributions. 

In order to extend parameterized statistical STA to non-
Gaussian and nonlinear parameters, we generalize the first-order 
canonical form ( EQ 3) to non-Gaussian and nonlinear 
parameters. Then we construct a statistical approximation for the 
maximum of two generalized canonical forms by applying the 
same ideas as in the linear Gaussian case: we build a linear 
approximation using tightness probabilities as weighting factors, 
and compute the exact mean and variance values of the maximum 
of two generalized canonical forms. 

3.1. Canonical Form with Nonlinear and Non-
Gaussian Parameters 

We generalize the first-order canonical form  EQ 3 as follows: 
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where: 
• a0 is the mean value of A; 
• 

iLGX ,∆  are linear Gaussian parameters; 

• 
iLGa ,
 is the sensitivity to parameter 

iLGX ,∆ ; 

• ),,( 2,1, …NNN XXX ∆∆=∆  is a vector of nonlinear and/or 

non-Gaussian parameters; 
• nLG is the number of linear Gaussian parameters; 
• fA is a function describing the dependence on nonlinear and 

non-Gaussian parameters. It can be a cross-term of 
parameters. It should have 0 mean value; 

• 
aR∆  is a normalized Gaussian parameter responsible for 

uncorrelated variation. 
• an+1 is the sensitivity to the uncorrelated random variable. 
The generalization of the first-order canonical form differs 

from the original one only by term )( NA Xf ∆  that describes 
dependencies of A on nonlinear and non-Gaussian parameters. We 
do not impose any specific restrictions on the type of function f

A
. 

For numerical computations, this function can be specified by a 
table. We even do not require mutual independence of nonlinear 
and non-Gaussian parameters. We only require that they are 
independent with respect to all the linear Gaussian parameters. 
This is a rather valid assumption: correlated random variables tend 
to have similar distributions, and if a linear parameter is correlated 
with a nonlinear one, independence can be achieved by orthogonal 
transformation techniques such as principal component analysis. 
Of course, specific restrictions on nonlinear function f

A
 or on the 

probability density function of nonlinear parameters can simplify 
numerical computations. For example, if  
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then instead of a multidimensional table for function f
A
 we can use 

several one-dimensional tables to define functions fA,i, which is 

XbbB ∆+= 10

X∆
XccCappr ∆+= 10
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C=max(A,B) 

Interval of σ6 variation 

Interval where A>B 

Figure 2. Linear approximation of maximum of two 
canonical forms A and B 
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more efficient. Similar simplification is possible if the nonlinear 
parameters are independent.  

Propagation of arrival time in generalized canonical form 
through a timing edge with delay in the same form is similar to the 
pure linear Gaussian case. The only difference is the summation of 
nonlinear functions of the arrival time and the delay, which can be 
performed numerically by summing tables describing the 
nonlinear functions of the arrival time and the delay.  

3.2. Computing the Maximum Function 
For approximation of the maximum of two canonical forms, we 
use the same concept of tightness probability and computational 
approach as for the linear Gaussian case, so that the correlation of 
delays or arrival times can be easily preserved. The parameters of 
the canonical form Cappr approximating the maximum of two 
generalized canonical forms A and B are computed by the 
following formulas: 
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where T
A
=P(A>B) is tightness probability, i.e., the probability that 

arrival time A is larger than B. 
The sensitivity coefficient c

n+1
 to uncorrelated variation is 

computed so as to make the standard deviation of the 
approximation Cappr equal to the standard deviation of the exact 
maximum C=max(A,B). Similar to the linear Gaussian case, this 
approximation of the maximum of two generalized canonical 
forms is linear: the coefficients ci and function fC are computed as 
linear combinations of coefficients ai and bi, and functions fA and 
fB, correspondingly. Figure 3 graphically shows the meaning of a 
linear approximation for generalized canonical forms that depend 
only on one nonlinear parameter. Canonical forms A and B are 
shown with thick dashed curves. The exact maximum 
C=max(A,B) is shown with a bold solid curve. The approximation 
of the maximum Cappr is shown with a solid thin curve. The curve 
of the approximate maximum is closer to curve A, because, as we 
can see in Figure 3, max(A,B) is more often equal to A than to B. 

 
This approximation of the maximum of two generalized 

canonical forms requires the computation of the tightness 
probability TA, the mean and the second moment of max(A,B), 
since the standard deviation is expressed through the mean and the 
second moment as follows: 

222 )]),[max((]),[max( BAEBAEC −=σ  EQ 12 
There are two equivalent ways of deriving the required 

formulas. One uses transformation of the integrals defining 
tightness probability, mean and the second moment. The other is 
based on conditional probability and conditional moments. We use 
here the second approach as it is more concise and intuitive. 

Considering nonlinear and non-Gaussian parameter variations 
fixed, we rewrite the expression for the generalized canonical 
form by combining the term )( NA Xf ∆  and the mean value a0: 
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This expression can be considered as a canonical form ACond 
with a mean value )(0 NA Xfa ∆+  and linear Gaussian parameters. 
All the linear sensitivities in this form are the same as in the 
original generalized canonical form ( EQ 9). Now we consider 
two generalized canonical forms A and B represented in the form 
of  EQ 13. The conditional tightness probability, conditional mean 
and second moments of max(A,B) at the condition that all the 
nonlinear and non-Gaussian parameters have fixed values 

NX∆  
are functions of the nonlinear and non-Gaussian parameters 

NX∆ : 
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The linear Gaussian parameters are independent of the nonlinear 
and non-Gaussian ones. Therefore, the joint conditional 
probability density function of the linear Gaussian parameters at 
the condition of frozen values of nonlinear and non-Gaussian 
parameters is simply a joint probability density function of the 
linear Gaussian parameters. 

)()( LGNLG XpXXp ∆=∆∆  EQ 15 

Thus, we can use Algorithm 1 for computing the conditional 
tightness probability, mean and second moments for the maximum 
of two generalized canonical forms at the condition that all 
nonlinear and non-Gaussian parameters are frozen. In Algorithm 
1, we substitute )(0 NA Xfa ∆+  and  )(0 NB Xfb ∆+  for a0 and b0.. 
Since Algorithm 1 uses only analytical formulas, the required 
values can all be computed efficiently. The unconditional tightness 
probability, mean, and second moment of max(A,B) can be 
computed by integrating the conditional tightness probability, 
mean and second moment over the space of nonlinear and non-
Gaussian parameters with their joint probability density function: 
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Having the tightness probability, mean and the second 
moment, we compute the standard deviation of max(A,B) by  EQ 
12 and then all the parameters of the approximate generalized 
canonical form C by formulas  EQ 11. 

The integration in  EQ 16 can be implemented numerically by 
any technique. In the simplest case, it is performed by integrating 
numerically in the orthogonal discretized regions of the nonlinear 
and non-Gaussian parameters 

NX∆ . For each grid cell, we 
compute the conditional tightness probability, mean and second 
moment by formulas  EQ 14.  Then the integrals of  EQ 16 can be 
computed approximately as sums over all the cells of the 
discretization grid. For example the numerical formula for 
tightness probability is as follows: 

)(0 XfaA A ∆+=

)(0 XfbB B ∆+=  

cCappr XfcC )(0 ∆+=  
C=max(A,B)

Figure 3.  Approximation of maximum of two 
generalized canonical forms 
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where: 
• TA,Cond,k is the conditional tightness probability that A>B at 

the condition that the nonlinear and non-Gaussian 
parameters have values inside the k-th grid cell; 

• )( Nk Xp ∆  is the value of the joint probability density 
function of the nonlinear and non-Gaussian parameters in k-
th grid cell; 

• Vk is volume of the k-th grid cell. 
For numerical integration by discretizing the integration 

region, the computational complexity is exponential with respect 
to the number of nonlinear and non-Gaussian parameters. Our 
experiments show that for reasonable accuracy it is enough to 
have as little as 5-7 discrete points of each variable. This approach 
is applicable for cases with up to 7-8 nonlinear and non-Gaussian 
variables. For higher dimensions the integrals can be computed by 
a Monte-Carlo integration technique.  

4. IMPLEMENTATION AND RESULTS 
The proposed methodology was implemented on the top of 
EinsStat [1], an industrial statistical timing analysis tool. In our 
implementation, a global source of variation can have a non-
Gaussian distribution and delay dependence on a parameter can be 
a nonlinear function. They are both specified by tables using 
proper discretization. The integrals of EQ16 are computed by 
numerical integration. 

We tested our implementation on computing max(A,B) of two 
first-order canonical forms A and B with non-Gaussian 
parameters1: 
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where ∆X1 and ∆X2 are random variables with lognormal 
probability distributions, ∆Ra and ∆Rb are Gaussian random 
variables for the uncorrelated randomness. Figure 4(a) shows the 
probability density function (PDF) of max(A,B) computed by the 
proposed technique, by the original parameterized statistical STA 
technique of [1], where non-Gaussian distributions are 
approximated with  Gaussian ones having the same mean and 
standard deviation, and by Monte-Carlo simulation. The PDF 
computed by the proposed technique matches the Monte-Carlo 
results much closer than the PDF computed by the original 
technique. The proposed technique and Monte-Carlo simulation 
both predict asymmetric PDFs with similar trends especially at the 
tails of PDFs. The PDF computed by the original technique has a 
symmetric shape and substantially under-estimates the worst-case 
value. 

We tested our technique on max(A,B) with nonlinear (cubic) 
functions of Gaussian parameters: 
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Figure 4(b) compares the PDFs computed by the original 
technique, by the proposed technique and by Monte-Carlo 
simulation. The original technique uses linear approximation of 

                                                 
1 Note that the asserted constant sensitivities is only a simplified mode in 
EinsStat for testing and experiments. EinsStat also has a mode using finite 
differencing to compute internally all sensitivities accurately handling all 
interdependences on gate input slew, load capacitance, operating 
conditions.  

nonlinear functions that passes through the same -3sigma and 
+3sigma points. The proposed technique predicts the same result 
as Monte-Carlo, while the original technique significantly over-
estimates the standard deviation. 
 

 
 

To choose the number of discretizition points providing a 
good tradeoff between accuracy and run-time, we ran tests on a 
small industrial design A (3,042 gates and 17,579 timing arcs). 
Table 1 shows the CPU-time of our technique for different 
numbers of non-Gaussian parameters, for 5 and 10 discretization 
points. The run time was measured on a single processor IBM 
Risc System 6000 model 43P-681. It is observed that processing 3 
non-Gaussian parameters with 10 discretized points is about 40 
times longer than handling all the parameters as Gaussian ones. 
However for 5 discretization points the run-time is only about 3 
times longer. Meanwhile, the PDF plots for design A are provided 
in Figure 5 for when 5, 10 and 20 discretized points are used. We 
observe that as the difference between PDF curves for 10 and 20 
points is almost undistinguishable, the 5 points one also gives 
accurate enough result. For nonlinear functions, we saw similar 
dependence of run-time on the number of discretization points. 
Therefore, for other experiments, we used only 5 discretized 
points. 
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We performed statistical timing analysis of the same design A 
with 3 linear lognormally distributed global sources of parameters 
variations and a linear Gaussian uncorrelated variation. The 
average values of delay sensitivities to global parameters and 
uncorrelated variation were set to 2% and 6% of the corresponding 
nominal delay values respectively. Figure 6 shows the probability 
density functions of the latest arrival time computed by three 
different techniques. The proposed technique gives a close match 
to the Monte-Carlo result. In contrast, the PDF computed by the 
original technique [1] deviates substantially from the Monte-Carlo 
result. Firstly, the PDF computed by Monte-Carlo simulation is 
not Gaussian, but closer to lognormal because all three global 
sources of variation have lognormal distributions. However, since 
the technique of [1] approximates all delays with a Gaussian 

# Non-Gaussians 3 2 1 0 
10 points 69.17 7.53 2.14 1.38 CPU - 

time (s) 5 points 3.82 1.54 1.40 1.38 
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Figure 4. PDFs for maximum of two random 
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Figure 5. Comparison with different #discretized points 
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distribution, it is hard to obtain a reasonably good estimate.  
Secondly, Monte-Carlo predicts the 0.1% and 99.9% confidence 
points of path delays as 19.4 ns and 32.0 ns. The proposed 
algorithm estimates similar values of 19.6 ns and 31.5 ns, while 
original technique computes 17.8 ns and 27.0 ns. 
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In the second set of experiments, the 3 global sources of 
variation had Gaussian distributions but the delays of circuit gates 
and wires were cubic functions of these parameters. The values of 
delay sensitivities to global parameters and uncorrelated variation 
were set to 2% and 6% of the corresponding nominal delay values 
respectively. Figure 7 shows PDFs and CDFs of the circuit delay 
computed by three different techniques. The proposed technique 
computes the same mean value as Monte-Carlo, while the original 
technique overestimates it. The original technique computes the 
99.9% confidence point as 22.7 ns vs. Monte-Carlo’s 22.9 ns, 
while the original technique over-estimates it as 23.7 ns.  

Thus, we can conclude that when parameter variations have 
non-Gaussian distributions, or gate and wire delay depends on 
parameters nonlinearly, the proposed technique is essential to 
correctly predict circuit delay distribution and manufacturing yield. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2 shows run time of statistical timing analysis for five 

industrial designs for different numbers of non-Gaussian 
parameters. The size of the designs varies from 3,042 up to 
1,085,034 gates. We see that, as the number of non-Gaussian 
parameters increases to 3, the run-time is only about 3 to 5 times 
longer compared to the case without any non-Gaussian 

parameters. For the largest design E, the run-time is only about 35 
minutes. In contrast, for the smallest design A, the run-time of 
Monte-Carlo simulation is about 5 hours. However, due to the 
large size of designs, Monte-Carlo simulations are too unrealistic 
to finish and thus the run-times are not provided in the table. 
Statistical timing analysis with nonlinear parameters has 
approximately the same run time. 

5. CONCLUSIONS 
In this paper, we presented a novel and efficient technique for 
handling arbitrary non-Gaussian and nonlinear parameter 
variations in parameterized block-based statistical timing analysis. 
Our approach is based on an extension of the first-order canonical 
form for representing delay and arrival time variations. Therefore 
this technique is fully compatible with the original parameterized 
statistical STA and preserves its computational efficiency in 
processing linear Gaussian parameters. The experimental results 
showed that the probability distributions of circuit delays 
computed by the new technique are closer to the results of Monte-
Carlo simulations than the original parameterized statistical STA 
approximating non-Gaussian distributions with Gaussian ones and 
nonlinear functions with linear ones, especially at the 99.9 
confidence level. Our experiments also showed that in many cases 
non-Gaussian distributions of parameter variations can be 
approximated with Gaussian ones with reasonable accuracy. Only 
significantly asymmetric distributions required handling as non-
Gaussian. This conclusion is very important in practice because it 
justifies approximating most parameter distributions by Gaussian 
ones. 

The limitation of the algorithm is that its run-time is 
exponential to the number of non-Gaussian and/or nonlinear 
parameters. However, in practice, as the number of nonlinear 
and/or non-Gaussian is not big, the algorithm is very efficient and 
provides a general framework for statistical STA handling non-
Gaussian parameters and nonlinear functions of delays. The 
method can be used to validate the linear Gaussian approximation 
of parameters, and then selectively model crucial parameters as 
nonlinear or non-Gaussian ones. The method is also important for 
sign-off timing analysis. 
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CPU-time (s) vs. #Non-Gaussians 
Ckt Gates Timing 

arcs 3 2 1 0 

A 3,042 17,579 3.8 1.5 1.4 1.4 

B 11,937 57,151 12.3 5.53 4.3 3.07 

C 53,317 392,097 79.1 35.8 27.3 18.7 

D 70,216 363,537 93.3 41.3 30.5 19.7 

E 1,085,034 5,799,545 2,083.1 982.0 788.5 703.6 

Figure 6. Arrival time PDFs of design A with 
lognormally distributed parameters  
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Figure 7. Arrival time PDFs and CDFs of design A 
with nonlinear parameters 

Table 2. Run-time results on industrial designs 
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