
6.1

 1

ESL: Tales from the Trenches
Organizer:

Francine Bacchini
Thinkbold Corporate Communications, San Jose, CA

+1-408-267-6602
francine@thinkbold.com

Chair:
David Maliniak

Electronic Design, Paramus, NJ
+1.201.845.2434

dmaliniak@penton.com

Terry Doherty
Emulex

Bothell, WA
Peter McShane
Northrop Grumman

Redondo Beach, California

Suhas A. Pai
Qualcomm

San Diego, CA
Sriram Sundararajan
Texas Instruments Inc.

Dallas, TX

Dr. Soo-Kwan Eo
ST Microelectronics

SEOUL, Korea
Pascal Urard

ST Microelectronics
The Netherlands

PANEL SUMMARY
Electronic System-Level design has arrived - but can ESL
provide the bridge from systems to silicon? Comprised of real
world designers, this DAC ESL panel will examine and debate
what works, what doesn’t, and what the gaps are in the
methodology and tool offerings. Panelists from a variety of
industry segments, including Military/aerospace, storage area
networks (SAN), wireless communications and consumer
electronics, will share their experiences, lessons learned and
further needs.
Does ESL bridge the gap between systems to silicon? Hear
from designers about their real world experience with ESL.
What worked according to expectations? What didn’t? What are
the gaps in the methodology and tool offerings that need to be
filled, and why?

This panel of ESL design methodology users will give us a
“reality check” that will enable potential users to make an
adoption decision, and enable ESL design tool suppliers to
evaluate their product strategies against “big picture”
requirements.

Panelists will address primary areas of concern, such as:

Methodology Usage: What do you use ESL design for? Is it for
algorithm development alone? Are you using it for
hardware/software partitioning? Have you used it for embedded
system architecture development for performance optimization
and/or for SoC platform development? Are you using ESL for
embedded software development, using the system architecture
model as a development platform? Are you doing any high-
level synthesis of RTL? Did ESL help you with your system
testbench development or HW/SW co-verification?

Industry-Level Initiatives: How has language standardization,
such as SystemC, impacted your design efforts? What other
industry-level initiatives would be of use - standard TLM
methodology, or other?

Tools: Do you use commercial tools or open source software?
What was your selection criteria? Do you use domain-specific

tools for algorithm development and implementation? Did you
develop your own tools - if so, why? Do your proprietary tools
have specific attributes that you think can be incorporated into
commercial tools? How do ESL tools compare with your
original expectations?

ROI: What was your overall payback in terms of time, effort
and money consumption, re-usability, risk management and
overall success? How do these compare with your original
expectations?

Categories and Subject Descriptors
C.3 Special purpose and application-based systems
C.4 Performance of systems
I.6 Simulation and modeling
J.7 Computers in other systems

General Terms: Algorithms

Keywords: Electronic system-level design

1. PANELISTS VIEWPOINTS
Terry Doherty, Emulex
Emulex develops and sells Fibre Channel Host Bus Adapters
and Switches for Storage Area Networks. At Emulex we
develop Transaction Level Models with SystemC for
architecture exploration, algorithm development and large
configuration evaluation. Solving traffic congestion problems is
a primary concern for large SANs. ESL has helped Emulex
develop proprietary traffic shaping algorithms that will allow
customers to grow their storage networks to unprecedented
levels. In addition, ESL allows Emulex to simulate and
characterize large configurations which are cost prohibitive to
build in a lab environment. System Architect from Summit
Design, along with home grown tools, have been instrumental in
evaluating and debugging models. However, further commercial
tools are needed to ease debugging.

Peter McShane, Northrop Grumman
NGC is using ESL for performance analysis of a weather
satellite. ESL models are used to study effects of changing
parameters on system performance. We run multiple simulations Copyright is held by the author/owner(s).

DAC 2005, June 13–17, 2005, Anaheim, California, USA.
ACM 1-59593-058-2/05/0006.

69

 70

(on the order of thousands) to see patterns and trends of
performance as parameters are varied. We need to understand
the sensitivity of system to parameter variations. We use the
models to communicate with subcontractors the system
architecture and how each subsystem relates to the overall
system. The economic reward - much easier and faster system-
level design process, reduced system integration problems, as
well as reduced project delays.

Suhas A. Pai., Qualcomm
ESL is mostly a language and methodology-based approach.
The language offers features and the methodology defines the
way that the features will be used in a standardized way. Our
conclusion was that the standardization is far more important to
our ESL design strategy because it is directly tied to the
productivity. We use the Open SystemC Initiative’s SystemC
library for architecture characterization, SystemC-wrapped
processor models in RTL and software verification, SCV for TL
co-emulation, and TLM lib to improve our modeling style.
Unless ESL tools lead to a cookie-cutter approach in using the
language, we won't see the impact on design cycles we had
hoped to see. This is also true for the virtual software platforms
where standardization in debug, monitoring/profiling, and API
integration calls for higher priority.

Sriram Sundararajan, Texas Instruments Inc.
Bridging the gap between system and silicon has, of course,
been the holy grail of EDA. The successful strides that have
been made in ESL have been in the areas of modeling,
performance analysis, and co-simulation. The areas that have
floundered are behavioral synthesis, synthesis from pure
algorithmic descriptions in languages such as C, and automatic
approaches to system partitioning. The reasons for this are
varied and complex: An optimal algorithm/application to
architecture mapping often requires intimate knowledge of the
application; designers use an intuitive sense of what functions
need to be kept flexible and hence must be mapped to software;
legacy intellectual property also plays a part in driving system
partitioning. All these issues make automatic architecture
synthesis well nigh impossible. Where ESL can help is to
provide a designer some tools as the designer wades through the
maze of possible choices, and help him/her identify pitfalls and
hotspots. In my group at TI, we are responsible for translating
high-level standards documents as well as customer specified
performance requirements into cellular base station SOC
architectures. We have used multiple tools for performance
analysis ranging from Matlab/SPW for algorithm simulations to
SystemC (open source) based Transaction Level Modeling to get
a feel for data flows in the system and to identify potential
bottlenecks. We have also used co-simulation (Mentor
Seamless) to validate our chosen HW/SW partition, ascertain
performance, and test out interfaces. Thus our approach has
been to mix and match commercial tools with a home grown
ESL design/verification methodology.

Dr. Soo-Kwan Eo, Samsung
I believe that ESL bridges the economic gap between systems
and silicon. We were able to set-up a Virtual Platform design
technology in the last two years and have been applying it to
various applications, including pre-silicon eSW design and
debugging, optimum architecture exploration, performance
analysis, and cost estimation for HW/SW partitioning.
However, there are several gaps in today’s ESL design
methodology. TLM sign-off, behavioral synthesis, formal
verification of the system specification, and top-down/bottom-
up design constraints annotations are a few examples. At the
same time, simulation speed, equivalence checking among
behavioral C, TLM and RTL, power estimation and
optimization, and software design are the gaps in the ESL tool.
On the other hand, the huge modeling effort with expensive tool
cost causes the low ROI, heightening the threshold of ESL
methodology-in.

Pascal Urard, ST Microelectronics
Five years ago, we developed an in-house Matlab-to-RTL flow
based on generic IP libraries, to bridge the gap between
algorithm and RTL. This flow included some formal proof
techniques (theorem proving) to guarantee equivalence between
generic views. Despite the fact that this flow is not automated, it
has been used to produce high complexity chips and is still used
currently (ISSCC’04-23.4, ISSCC’05-24.3). We started to drive
EDA vendors in 2001 to have commercial tools doing High
Level Synthesis (HLS) for datapath oriented ASICs starting
from a C-based language (we defined a subset of C/C++ with
only a few parts of SystemC), in the way we want. We produced
silicon with an HLS tool last year. We now work to enhance this
flow with formal techniques (verification flow). The benefit is
real for area/power by extensive architecture explorations.

2. ESL: DELIVERING THE BRIDGE
FOR SYSTEMS TO SILICON
While the press and analysts have dedicated much publication
space and conference discussion time to ESL, it’s the tales of
real world users that will help to reveal whether ESL will be
able to deliver the promised bridge for systems to silicon.
Having used ESL modeling, design & verification on actual
designs now in working silicon, our panelists of successful real
world users of ESL methodologies, tools and technologies, will
share their experiences, discuss their flows, review the industry
initiatives, examine their productivity gains, and define their
missing pieces and future needs from EDA.
Join us to hear how panelists from six different companies are
finding the necessary solutions to their engineering challenges
by operating above the register transfer level, using ESL to build
the bridge from Systems to Silicon.

