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ABSTRACT
The need to reuse the performance macromodels of an analog cir-
cuit topology challenges existing regression based modeling tech-
niques. A model of good reusability should have a number of inde-
pendent design parameters and each parameter can vary in a large
numeric range. On the other hand, these requirements can cause
a large percentage of functionally incorrect designs in the design
space and thus results in a sparse feasible design space. They also
complicate the mathematical relationship between the performance
parameters and the design parameters. In order to tackle these chal-
lenges, this paper presents a combined feasibility and performance
macromodel based on Support Vector Machines (SVMs). The fea-
sibility model identifies the feasible designs that satisfy the design
constraints. The performance macromodel is valid for feasible de-
signs. Feasibility macromodeling is formulated as a classification
problem while performance macromeling as a regression problem.
An active learning scheme [5] has been applied to improve the ac-
curacy of the feasibility model much faster than only using uni-
formly distributed designs in the entire design space. Our experi-
ment shows that the performance macromodels in the feasible de-
sign space are more accurate and faster to construct and evaluate
than performance macromodels in the entire design space without
functional or performance constraints considered.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; I.6.5 [Simulation and
Modeling]: Model Development

General Terms
Algorithms, Design, Performance
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1. INTRODUCTION
Performance macromodels are mathematical models that approx-

imate the relationship between controllable design parameters and
performance parameters. One major characteristic of performance
macromodels is their short evaluation time compared to a circuit
level simulator. Hence, they usually replace the circuit level simu-
lator both to enhance early design space exploration [6], [1], [12]
and to accelerate circuit sizing [7], [9]. The other characteristic is
reusability. Performance macromodels for a certain circuit topol-
ogy can be used to size the same circuit for various applications to
meet different performance specifications. Short evaluation time
and good reusability are also the requirements for performance
macromodels.

Previous work in performance macromodeling mainly falls into
three categories:

• Knowledge based approach relies on manual derivation of
mathematical equations by expert designers.

• Symbolic analysis techniques generate system transfer func-
tions automatically. Symbolic equations for performance pa-
rameters need to be further generated. Either knowledge
based approach or symbolic approach requires the numerical
values of the small signal parameters that appear in the equa-
tions and thus a simple device model such as SPICE Level
1 model or a circuit level simulator is needed. Furthermore,
symbolic approach is not readily to be applied in large signal
behavior of the circuits.

• Regression techniques have gained more and more research
interest lately, including artificial neural networks [13], fit-
ting approach to generate symbolic equations [3] and least
squares support vector machines [8]. The common strategy
involves using a regressor and samples of performance pa-
rameters from simulations to fit the regressor. The modeling
process is somewhat automated and reusability of the gen-
erated models mainly depends on the design space in which
these models are applicable. Performance macromodels gen-
erated by regression techniques are, however, valid only in
the design space defined during model generation. In most
previous work [13], [3], designers manually define the de-
sign space by selecting the design variables and constraining
them between lower and upper bounds.

S. Zazala, J. Eckmuller and H. Grab [14] appear to be the first to
define and calculate the feasible design space. They define feasible
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design space as a multidimensional space in which every design
satisfies certain design constraints. They calculated the feasible de-
sign space by linear approximation. Furthermore, they reduced the
complexity of their representation of the feasible design space by
eliminating approximately collinear constraints. The major con-
tribution of their work is that they provide a hierarchical way of
posing function and robustness constraints on a circuit topology,
primarily opamps. It is the first systematic attempt to address the
feasible design space of performance macromodels, although the
approximation is somewhat poor, resulting in 70% overall accu-
racy. Stehr et al. [10] further approximated this feasible design
space via maximum volume ellipsoid algorithm and applied it as an
initial sizing algorithm and used as sizing constraints in later siz-
ing. The approximation might be poorer than the original polytope
approximation because it is a further approximation of the original
approximation.

This paper will present a combined feasibility and performance
macromodel of much higher accuracy. Similar to [14], the feasi-
bility model identifies the feasible design space. The performance
models are defined and valid in the feasible design space. In con-
trast to [14], feasible design space identification problem is treated
as a two class classification problem and an active learning scheme
[5] using Support Vector Machines (SVMs) is used to tackle the
sparsity of the feasible designs. Experimental results will show
that our feasibility model has an overall accuracy of 99%. We then
build performance macromodels using simulation data for feasible
designs. Our performance models are highly accurate even in the
worst case in terms of the maximum modeling error on the training
and validation data set.

The rest of the paper is organized as follows. Section 2 defines
the feasible design space identification problem and performance
macromodeling. Section 3 gives a brief overview of SVM classifier
and regressor. In Section 4, we give a brief overview of the active
learning scheme [5] for feasibility modeling. Section 5 shows the
experimental results of the proposed methodology. Section 6 and
Section 7 discusses the applications and the limitations of the pro-
posed methodology respectively. Section 8 concludes this paper.

2. PROBLEM DEFINITION

2.1 Feasibility Design Space
As mentioned in Section 1, feasible design space is multidimen-

sional and determined by certain design constraints. Given a circuit
topology, we can pose three types of constraints [7], [5].

• Geometry constraints, Cg, are posed directly on the designer
controllable parameters. Only one design variable is assigned
to the matched devices. After matching is taken into account,
the design parameters are abstracted into a vector of inde-
pendent design variables X = {X1, · · · ,Xn} ∈ Rn. The con-
straints on the design variables usually are given in the form
of lower and upper bounds.

Cg = {lbi ≤ Xi ≤ ubi, i = 1 · · ·n} (1)

• Functional constraints, Cf , ensure the functionally correct
behavior of the given circuit topology. They are posed on
the nodal voltages v and branch currents i in analytic form.
A circuit level simulator is required to obtain these values in
order to check functional constraints.

• Performance constraints, Cp, are posed on the performance
measurements p based on the applications.

Cp =
{

lbi ≤ pi ≤ ubi, i = 1 · · ·Np
}

(2)

While these three types of constraints are widely used in ana-
log circuit sizing, their importance in the scenario of performance
macromodeling deserves the attention. Device size ranges and func-
tional constraints are useful in defining the feasible design space
for they ensure the correct behavior of certain circuit [14]. While
performance constraints have never been applied in performance
macromodel development, we are enabled to do so by formulating
the feasibility modeling problem into a classification problem and
thus to handle arbitrary constraints. Take phase margin as an ex-
ample, in most applications an opamp is to have a minimum phase
margin of 45◦. We only need to build a macromodel valid for phase
margin greater than 45◦. Posing performance constraints can fur-
ther lead to design space reduction and possible complexity and
accuracy improvement of the performance macromodels.

The feasible design space I ⊆ Rn is defined in Equation 3. Note
that X is a vector of all design variables.

I = {X |C,X ∈ R
n}, C = Cg ∪Cf ∪Cp (3)

Since some constraints are not directly posed on the design vari-
ables, I is not in an analytic form but on implicit electrical values.
We thus define a feasibility function y(X) whose output only takes
two values {+1,−1} depending on whether X ∈ I [5].

y(X) =
{

+1 if X ∈ I
−1 if x /∈ I (4)

2.2 Performance Macromodels
We restrict our discussion to regression techniques for perfor-

mance macromodeling in the following discussion. For this type
of technique, it is usually hard to build a performance macromodel
valid in the entire design space defined by the geometry constraints.
There are several reasons for this. Firstly, the simulator is some-
times unable to measure certain performance parameters when the
circuit is not biased correctly. Secondly, even when the simulator
is able to measure performance parameters, the circuit can still be
biased incorrectly. For example, when Hspice finds the AC perfor-
mance parameters such as gain or phase margin, the simulation is
performed on the linearized circuit instead of the original circuit.
We can find a design with good performance parameters but the
transistors are in cutoff region! Thirdly, it is possible that the cir-
cuit performance parameters are highly nonlinear with respect to
the design variables. On the other hand, we want to start with a
large design space defined by the geometry constraints. The larger
this design space is, the more reusable the performance macromod-
els will be. We pose constraints to make sure that simulation data of
the functionally incorrect designs is not used to build performance
models. We also pose constraints on performance parameters to
further reduce the design space so that accurate performance mod-
els can be built. Our intention is to build accurate performance
macromodels for a reduced design space rather than have inaccu-
rate models even for a large design space. Our performance macro-
models are thus defined in the feasible design space I .

In this paper, we use Vapnik [11] proposed SVMs as our regres-
sor. The original SVM regressor uses a ε-insensitive loss function
which is equivalent to minimizing the maximum error. Often the
loss function of sum of squares fails to detect large errors. We want
to make sure the models will perform well even in the worst case.
Thus minimizing the maximum error is favored here. Another ad-
vantage of SVM regressor is that it does not require a regular data
format required by many Design of Experiments (DoE) techniques.
The shape of feasible design space is unknown in the design pa-
rameter space to our knowledge. Thus techniques from DoE are
not applicable here.
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3. SUPPORT VECTOR MACHINES
Support Vector Machines (SVMs) were initially proposed by

Vapnik [11] to solve the learning problem of “finding a desired
dependence using a limited number of observations”in 1992 . Let
x denote the vector in the input space Rn and y denoted the output
value generated by the unknown dependence, a set of l observa-
tions (x1,y1) , . . . ,(xl ,yl) is called training data. Two main learn-
ing problems are classification and regression. In the classification
problem, y takes only two values y = {+1,−1}. In the regression
problem, y takes a real value.

The following brief overview of SVMs as classifiers is adapted
from [11].

3.1 SVM Classifier
The SVMs map the training input vectors xi into a high dimen-

sional feature space via nonlinear mapping and construct the gen-
eralized optimal hyperplane in that feature space, chosen a prior.
The generalized optimal hyperplane is constructed by solving the
optimization problem in Equation 5.

min
w,b,ξi

1
2

(w ·w)+C

(
l

∑
i=1

ξi

)
(5)

subject to yi [(xi ·w)+b] ≥ 1−ξi, i = 1, . . . , l
ξi ≥ 0

C is the penalty term for the nonseparable vectors.
This mapping does not need to be considered in explicit form

since only the inner product in this feature space has to be calcu-
lated. Given the fact that the inner product in the feature space can
be directly calculated as

(
zi · z j

)
= K

(
xi,x j

)
, it is sufficient to solve

the optimization problem of Equation 6, where the αi are Lagrange
multipliers.

max
α

l

∑
i=1

αi − 1
2

l

∑
i=1

l

∑
j=1

αiα jyiy jK
(
xi,x j

)
(6)

subject to 0 ≤ αi ≤C, i = 1, · · · , l
l
∑

i=1
yiαi = 0

Only support vectors can have nonzero coefficients αi.The deci-
sion function is

f (x) = sign

(
∑
sv

yiαiK (xi,x)−b

)
(7)

Mostly used learning machines include polynomial learning ma-
chines, two layer neural networks and radial basis functions ma-
chines. We select radial basis function defined in Equation 8 in our
experiment because of the little knowledge we have on the proper-
ties of the design space.

K (x,xi) = e−γ|x−xi|2 (8)

3.2 SVM Regressor
The support vector type approximation to regression finds the

best approximation of the form

f (x;v,β) =
N

∑
i=1

βiK(x,vi)+b (9)

where K(·, ·) is a kernel function, scalar βi is the weight for each
kernel function and vi is a parameter of the kernel function, by min-
imizing the ε-insensitive loss function in Equation 10.

|y− f (x)|ε =
{

ε, if |y− f (x)|ε ≤ ε
|y− f (x)| , otherwise (10)

When ε is set to 0, it is equivalent to minimize the maximum train-
ing error.

4. ACTIVE LEARNING SCHEME
Our experimental results show that the feasible designs are very

sparse in the entire design space defined by the geometry con-
straints. If the designs are uniformly distributed, the feasible de-
signs are only 2% of all the sampled designs for the OTA opamp
shown in Section 5. The sparsity of the feasible design space poses
a challenge in feasible design space modeling in the sense that even
if the model has a good overall accuracy, the approximated feasible
design space can deviate from the true feasible design space to an
unacceptable extent. The error metrics defined in [5] are used here.

• Overall accuracy Pt

Pt =
Number of correctly classified samples
Number of samples in the validation set

(11)

• Percentage of false negative samples relative to all the posi-
tive samples.

Pf n =
Number of false negatives

Number of positives in the validation set
(12)

• Percentage of false positive samples relative to all the posi-
tive samples predicted by the feasibility classifier.

Pf p =
Number of false positives

Number of predicted positives
(13)

The active learning scheme [5] is able to improve these three
accuracy metrics with much fewer samples compared to uniform
random sampling. The idea of the active learning scheme is to find
the feasible design space and its neighboring space and only sample
this space. A committee of classifiers is used to accomplish this: we
predict the classes of a large number of designs using each classifier
in the committee and apply a voting mechanism such that instances
voted as positive by at least one of the classifiers are sampled and
instances unanimously voted as negative are not sampled. We add
the new sampled instances to the training data set and repeat the
same process until some stopping criteria is met. The number of
classifiers in the committee is chosen such that training data set can
be split into equal-sized sets.

5. EXPERIMENTAL RESULTS
We show two opamps as our illustrative examples. Our exper-

iments are conducted on a Sun Blade 1000 machine and compu-
tational time is CPU time. The technology is AMI 0.5µm CMOS
process and supply voltage is 5V. We use Hspice to simulate the
circuit and extract performance parameters.

We will show the accuracy improvement of the feasibility classi-
fiers constructed by the proposed active learning scheme compared
to those constructed by a passive learning scheme. In the passive
learning scheme, the training data set is generated by uniform ran-
dom sampling. We construct the feasibility classifiers using the
two learning schemes. The classifiers are both trained with 100%
accuracy on the training set using the software called libsvm [2] on
equal-sized training data sets. We then calculate the three accuracy
metrics defined in Section 4 using a validation data set of 30,000
uniform random samples.

5.1 OTA Opamp
The OTA opamp is shown in Figure 1. We fix the lengths of all

the transistors to 1.2µm and set the load capacitor to 1pF. It results
in six free design variables by further considering transistor match-
ing. The design variables and geometry constraints are shown in
Table 1. Other constraints are shown in Table 2. The functional
constraints ensure all the transistors are on and in saturation region
with some margin. We also make sure that input offset voltage Vos
is sufficiently small.
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Vout
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Figure 1: OTA opamp

Table 1: Design variables of OTA op-amp
Design variables Geometry constraints

W1 = W2 [6µm, 200µm]
W3 = W4 [6µm, 200µm]
W5 = W6 [6µm, 200µm]
W7 = W8 [6µm, 200µm]
W9 = W10 [6µm, 100µm]

Ibias [6µA, 100µA]

5.1.1 Feasibility Model
We set the number of classifiers in the committee to 16 in all it-

erations. Figure 2 shows the three accuracy metrics of feasibility
classifiers constructed by two learning schemes. We constructed a
series of classifiers using training data sets of various sizes to show
that the active learning scheme is consistently better than the pas-
sive learning scheme. Each marker in these figures corresponds to
one classifier constructed by all the sampled data when that itera-
tion is completed and its accuracy metric. The results show that the
active learning scheme improves the accuracy metrics at a much
faster rate compared to the passive learning scheme.

The active learning scheme starts from 10,000 uniform random
samples. With 8,000 more samples, the active learner is able to
build a more accurate feasibility model than a passive learner that
uses 50,000 random samples. The computational time for the ac-
tive learning scheme to generate the feasibility model is 2862.9s
while it takes the passive learning scheme 6445.6s to generate a less
accurate feasibility model. The active learning scheme saves com-
putational time by more than 56% compared to the passive learn-
ing scheme. It takes several milliseconds to evaluate the feasibility
model.

5.1.2 Performance Macromodels
We further generate the performance macromodels of three per-

formance parameters: open loop gain (Gain), unity gain frequency
(UGF) and phase margin (PM). They can be obtained by running
one AC analysis. During the feasibility model generation, the ac-
tive learning scheme has to call Hspice and post processing the
simulation data to get performance parameters and check if per-
formance constraints are met. This data is reused here to generate
and validate the performance macromodels. The active learning
scheme has sampled 14,101 feasible designs, among which 7,000

Table 2: Design constraints of OTA opamp
Functional constraints Vgs −Vth ≥ 0.1V

Vds ≥Vgs −Vth +0.1V
Vos ≤ 0.01V

Performance constraints Phase Margin ≥ 45◦

are used as training data and the rest of 7,101 are used as validation
data. The feasible designs are essentially randomly sampled by the
active learning scheme.

Let p′ be the estimated performance parameter and p be the ac-
tual performance parameter, we calculate the error of models for
Gain and PM as

e = p′ − p (14)

and the error of UGF as

e =
p′ − p

p
(15)

that has a unit percentage (%).
We also define MAX, the maximum of the absolute values of

training errors or validation errors, in Equation 16.

MAX = max{|e|} (16)

MAX denotes the worst case performance of the generated perfor-
mance model. Table 3 shows root mean squared error (RMS) and
MAX (Equation 16) on the training data set and validation data
set. Parameter ε is defined in Equation 10 and γ is the parameter
of radial basis function defined in Equation 8. Cost C, defined in
Equation 5, is set to 100 times γ.

The experimental results show that even MAX is considerably
small. Hence, we are able to build very accurate performance
macromodels only using simulation data for feasible designs. It
takes a reasonable time to train the models and the models are very
fast to evaluate.

Table 3: Statistics of performance macromodels of OTA opamp
in feasible design space

ε γ Training set Validation set Teval Ttrain
RMS MAX RMS MAX (s) (s)

Gain(db) 0.1 0.7 0.048 0.215 0.049 0.227 1.0e-4 27.9
UGF(%) 1.16 0.6 0.55 1.27 0.57 2.41 1.2e-4 48.2
PM(◦) 0.1 3.0 0.062 0.357 0.080 0.917 6.6e-4 2929
We also generate performance models for Gain, UGF and PM

using 7,000 samples and validate it using 7,101 samples but don’t
pose functional or performance constraints. As shown in Table 4,
these models are less accurate, take much longer time to train and
evaluate.

Table 4: Statistics of performance macromodels of OTA opamp
in the entire design space (no functional or performance con-
straints

ε γ Training set Validation set Teval Ttrain
RMS MAX RMS MAX (s) (s)

Gain(db) 0.1 1.2 0.053 0.777 0.058 0.618 2.6e-4 101.1
UGF(%) 1.16 0.6 0.87 5.1 0.94 6.8 9.8e-4 5688
PM(◦) 0.1 3.0 0.37 2.41 0.53 2.89 3.1e-3 6hours

5.2 Two Stage Opamp
We show a two stage opamp as our second example. The circuit

diagram is shown in Figure 3. Load capacitor CL, is set to 1pF.
We only apply basic matching knowledge, such as same width and
length for transistors in the differential pair, same transistor length
for transistors in a current mirror or current mirror bank. This re-
sults in 12 independent variables, as shown in Table 5. The design
constraints for this two stage opamp are listed in Table 6.

5.2.1 Feasibility Model
In this example, we use two different strategies to choose v: one

is to fix v at 20; the other is to decrease v in an annealing like
manner, with v set to 20, 20, 10, 10, 10, 5, 5, 5, 4, 4 in each iteration.
While we can not tell which strategy is more efficient, they both
beat the passive learning scheme as shown in Figure 4.
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Figure 2: Accuracy metrics of OTA opamp feasibility models using two learning schemes
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Figure 4: Accuracy metrics of two stage opamp feasibility models using two learning schemes
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Figure 3: Two stage opamp

Table 5: Design variables of two stage opamp
Design variables Geometry constraints

L1 = L2 [1.2µm, 20µm]
L3 = L4 [1.2µm, 20µm]

L5 = L6 = L7 [1.2µm, 20µm]
L8 [1.2µm, 20µm]

W1 = W2 [6µm, 200µm]
W3 = W4 [6µm, 200µm]

W5 [6µm, 200µm]
W6 [6µm, 200µm]
W7 [6µm, 200µm]
Ibias [1µA, 100µA]
Cc [0.1pF, 10pF]

Table 6: Design constraints of two stage opamp
Functional constraints Vgs −Vth ≥ 0.1V

Vds ≥Vgs −Vth +0.1V
Vos ≤ 0.001V

Performance constraints Phase Margin ≥ 45◦

5.2.2 Performance Macromodels
We use the samples generated by the active learning scheme in

which v is decreased in each iteration to train and validate three
performance macromodels (this strategy generates more feasible
designs in total). The training set has 10,000 samples and the vali-
dation set has 3,756 samples.

Table 7: Statistics of performance macromodels of two stage
opamp in feasible design space

ε γ Training set Validation set Teval Ttrain
RMS MAX RMS MAX (s) (s)

Gain(db) 0.50 0.52 0.269 1.64 0.290 1.66 8.6e-4 144.0
UGF(%) 4.71 0.10 2.12 10.2 2.18 10.1 4.0e-4 100.2
PM(◦) 0.05 1.80 0.200 2.41 0.911 5.52 8.8e-3 7625

The experimental results show that even in this relatively difficult
example, we are still able to build relatively accurate performance
macromodels, shown by MAX in Table 7.

6. APPLICATIONS AND RESTRICTIONS

6.1 Design Space Reduction
The feasibility models can reduce the design space, such that per-

formance macromodels in the feasible design space can be highly
accurate. We show the design space reduction by posing design
constraints in Table 8. Let the design space determined by the ge-
ometry constraints Cg be 1, the third column shows the size of the

67



Table 8: Reduced design space with design constraints
Circuit Cg Cg ∪Cf C

OTA opamp 1 12.9% 2.32%

Two stage opamp 1 11.1% 1.24%

reduced design space relative to the original design space after pos-
ing the geometry and functional constraints and the fourth column
shows the size of reduced design space relative to the original de-
sign space after posing all the constraints.

6.2 Analog Synthesis
The combined model can be used to replace the performance

parameter acquisition through simulation to speed up analog circuit
sizing. The sizing tool will first query if a design is feasible. The
performance parameter estimation is only needed by the sizer when
the design is predicted feasible. The cost function can be designed
with a large penalty term to indicate infeasibility.

6.3 Topology Selection And Design Space Ex-
ploration

Since analog sizing can be sped up by a factor of at least one
hundred due to the short evaluation time of the performance macro-
models compared to transistor level simulation, topology selection
is much easier. We can simply size various topologies and pick the
most suitable one.

To approximate the design space boundary, numerous designs
have to be sized [4]. With the aid of analog performance macro-
models the design space boundary of a circuit can be found much
more efficiently.

7. LIMITATIONS
The feasibility model could mislead a sizing tool in two possi-

ble ways: false convergence caused by the predicted feasible de-
signs being actually infeasible and no convergence caused by the
predicted infeasible designs being feasible. The two possible situ-
ations have to be studied by using the models in actual sizing.

Another drawback is that the computational time is relative long
especially when the input design space is in higher dimension. the
improvement of the feasibility model accuracy needs to be further
accelerated by using few samples.

This active learning algorithm also needs a set of random sam-
ples to start with and requires at least some feasible designs in this
set. This might be problematic as the dimension of the design space
increases. However, it works well for a medium range of dimen-
sion, between six and twelve in our experiments.

8. CONCLUSION
We present a combined feasibility and performance macromodel

for analog circuits. The generated model is composed of one fea-
sibility model and a set of performance macromodels. The fea-
sibility model identifies the feasible designs in the entire design
space while the performance macromodels approximate the perfor-
mance parameters. We treated he feasible design space identifica-
tion problem as a two class classification problem so that advanced
classification algorithm SVMs can be applied. We also applied an
active learning scheme to tackle the sparsity of the feasible designs.
Thus we are able to build accurate performance macromodels. Ex-
perimental results show that it is an efficient approach to analog
circuit performance macromodeling. The applications of analog
performance macromodels include fast analog sizing, design space

exploration and topology selection. The limitations of the proposed
methodology is also discussed.
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