
ABSTRACT
Minimizing power consumption is one of the most
important objectives in IC design. Resizing gates and
assigning different Vt’s are common ways to meet power
and timing budgets. We propose an automatic
implementation of both these techniques using a mixed-
integer linear programming model called MLP-exact,
which minimizes a circuit’s total active-mode power
consumption. Unlike previous linear programming
methods which only consider local optimality, MLP-exact
can find a true global optimum. An efficient, non-optimal
way to solve the MLP model, called MLP-fast, is also
described. We present a set of benchmark experiments
which show that MLP-fast is much faster than MLP-
exact, while obtaining designs with only slightly higher
power consumption. Furthermore, the designs generated
by MLP-fast consume 30% less power than those
obtained by conventional, sensitivity-based methods.
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B.6.3 Design aids  

General Terms
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1. INTRODUCTION
Battery-powered, hand-held devices have become the
biggest markets for integrated circuits (ICs). For such
devices, low power consumption is perhaps the most
important design objective. Various approaches have
been proposed that aim at minimizing total power
consumption; these include sensitivity-based methods [1]
[13], linear programming [2][12], and genetic algorithms
[10]. These methods typically employ power-reducing

design techniques at the circuit level, especially dual
threshold voltage assignment and gate sizing. 

Earlier work on gate sizing such as TILOS [6] focuses
on delay rather than power optimization. It sizes the gates
on critical paths based on the sensitivity of the circuit
delay to gate size. A similar technique targeting power
optimization using gate sizing and dual Vt assignment is
proposed by Pant et al. [13]. Although such techniques
are usually fast, their optimality is hard to determine.

Nguyen et al. [12] propose an iterative technique that
employs a linear programming (LP) model for slack
distribution based on the power delay sensitivity of each
gate. However, the linearization technique used for the
LP model is only accurate within a small range of delay.
The optimization process hence has to be iterated, where
the power delay sensitivities are re-computed. The
optimality of the final solution remains hard to evaluate.

The major difficulty in constructing a successful LP
model for delay-constrained power optimization lies in
the fact that gate delay as a function of gate size and load
capacitance, is hard to linearize. Specifically, the delay t
of gate G with size S and load capacitance C is given by

t = a + b C/S (1)

Berkelaar et al. [2] attempt to linearize C/S with
piecewise linear functions of the form c C + d S. As in
[12], this approximation is only valid over a very small
range of values of S and C. Therefore, this application of
the LP model only explores a limited range of cell sizes.
An optimal way of exploring the design space while
considering a large range of cell sizes provided by a cell
library is still an open question.

In this paper, we propose to model the problem of
total power optimization via gate sizing and Vt
assignment as a mixed-integer linear program (MLP).
However, we adopt a new way to linearize the delay
function (1), which makes exploration of the entire design
space possible. The proposed MLP model is able to
obtain true global optima, and is hence named MLP-
exact. We also modify MLP-exact to obtain a much faster
approximate MLP model, referred to as MLP-fast. We
present experimental results which show that MLP-fast is
usually one or two orders of magnitude faster than MLP-
exact while incurring just 3% power overhead in the
designs obtained. Furthermore, the designs obtained
using MLP-fast’s consume 30% less power than their
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counterparts obtained with a TILOS-like [6] sensitivity-
based method.

The paper is organized as follows. In Section 2, we
present the delay and power consumption model, as well
as our technique for linearizing the delay function. The
exact MLP model for simultaneous gate sizing and Vt
assignment, and the faster approximate model are
described in Section 3. The experimental results are
analyzed in Section 4, and Section 5 concludes this paper.

2. PRELIMINARIES
We start by defining our notation and describing our
power and delay models. We assume a cell-based design
flow with a given cell library, whose available Vt’s are
determined by the process technology. We assume that
there is a basic unit cell for each cell type in the given cell
(gate) library, and use G to denote the unit cell of the
same type as cell G. The size S(G) of G is the ratio of G
and G’s physical sizes. Let Il(G), Cg(G), and D(G) denote
the leakage current, gate capacitance, and gate delay,
respectively, of G. Neglecting high-order effects, we
assume that Il(G) = Il(G)S(G) and Cp(G)=Cp(G)S(G).
Power consumption model. Since the switching time of
a gate is much smaller than the system clock period, we
assume that a gate stays in a stable state and keeps
leaking for most of a cycle, no matter whether or not it
switches during that cycle. Let Il(G,I) be G’s leakage
current under input pattern I. The transition probability
TP(G) is the probability that G’s output switches, while
the signal probability SP(G,I) is the probability that input
pattern I is applied to G. These probabilities can be
calculated using BDD-based [8] or simulation-based [4]
approaches. We resort to the latter approach because of
its simplicity.

The average leakage power dissipation Pl(G) of G can
be expressed as the product of the average leakage
current and power supply voltage VDD. 

Pl(G) = VDD

         = [ ]S(G)VDD (2)
The dynamic power dissipated in a cycle by G depends on
its transition probability TP(G), load capacitance CL(G),
and VDD. The load capacitance consists of the wire
capacitances Cw(G) and the gate capacitances of G’s
fanout gates U:

CL(G) = Cw(G) + . 

As shown in [9], local wire delays scale with gate delays.
We hence ignore the impact of local connections.
Assuming a clock cycle tc, we calculate the dynamic
power dissipation of G as 

Pd(G) = TP(G) VDD
2/(2tc) (3)

The short-circuit power is usually controlled to a small
percentage of the total power consumption, and the
percentage is insensitive to load capacitance. We hence

ignore this power component [5], and calculate the total
power consumption of G as

Ptotal(G) = [ ]S(G)VDD 

                +TP(G) VDD
2/(2tc) (4)

Delay model. We assume a conventional RC delay
model. The gate delay D(G) is hence linear in the ratio of
load capacitance to cell size CL(G)/S(G) [16], so 

D(G) = Dp(G) + Dl(G) CL(G)/S(G)
where Dp(G) is the parasitic delay and Dl(G) is the load
delay coefficient, both of which are independent of G’s
size. The delay function of gate G is then

Dp(G) + Dl(G) /S(G) (5)

We assume that two Vt’s are available for each cell.
We therefore define a binary variable Vt(G) to represent
G’s Vt selection, where Vt(G) = 1 for  and Vt(G) = 0
for . Accordingly, we augment the Vt-dependent
variables Dp(G), Dl(G) and Il(G, I) with a new parameter
Vt(G), and obtain Dp(G, Vt(G)), Dl(G, Vt(G)) and Il(G, I,
Vt(G)). Linearization of these functions with respect to
Vt(G) will be considered during the MLP model
construction in Section 3. Also note that for a given Vt
selection, the above parameters can be measured
beforehand for each gate type and will hence appear as
constant coefficients in the MLP model. In fact, we can
easily extend the model to k > 2 threshold voltage levels
by specifying Vt(G) as an integer between 0 and k – 1.

While higher-order delay and leakage models will be
more accurate, the first-order estimation is still very
accurate in the majority of cases [14]. Our Spice
simulation data also justify this claim. For example, a
comparison of our delay model with Spice simulation
appears in Figure 1. Here we show the delay of an
inverter of size 1 to 4 driving another inverter of size 1 to
5. The label Spice-Si refers to the delay from Spice
simulation with a driving inverter of size i, where i = 1, 2,
3, 4. Similarly, Modeled-Si is the delay from the delay
model in this paper. The figure shows that the delay
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calculated using our model follows the Spice simulation
very closely. In addition, we also neglect Cg(G)’s
dependence on Vt(G), which is negligible. Of course, the
depedency can be linearized like the other Vt-related
terms, if necessary.
Linearization of delay function. The delay function
shown in Equation (5) is nonlinear in S(G). We now
consider the linearization of S(U)/S(G). The technique
given in [2] uses a set of linear functions defined on a
number of subranges of S(G) as follows.

S(U)/S(G) ≥ a1 + a2 S(U) + a3 S(G) (6)
Coefficients ai, i∈[1,3] are determined by the subranges
of S(G). The error introduced by a3S(G) can hence be
controlled by adjusting the subrange size of S(G).
However, for a given subrange of S(G), the error
introduced by a2S(U) still increases with S(U). Since
S(U) depends on the total size range of U, this method is
only capable of exploring a limited range of S(U) values
to limit the modeling error.

The disadvantage of the above method results from
the fact that the coefficient of S(U) depends on S(G)
instead of S(U). Similar to [7], we solve this problem by
defining two variables x and y such that S(U) = 2x and
S(G) = 2y. S(U)/S(G) is thus transformed to 2x–y. Piece-
wise linearization can then be applied to this exponential
function. We use the lines determined by points (m, 2m)
and (n, 2n) for this purpose:

S(U)/S(G) ≥ ((2n − 2m)/(n − m))(x − y) 
                    + (n2m − m2n)/(n −  m) (7)

which is linear in x and y. Note that if we choose m as
integers and n = m + 1, the above equation simplifies to 

S(U)/S(G) ≥ 2m (x − y) + 2m (1 − m) (8)
All coefficients in this linearization method depend on

both S(U) and S(G). The accuracy of this piecewise linear
approximation is therefore completely determined by the
subranges of x − y, i.e., by the choice of m and n.
Consequently, the constraint on cell size ranges where
such approximation is applicable is eliminated, enabling
optimization over the full range of gate sizes. Note that
the base of the exponential functions does not have to be
two. Any positive number larger than one is a valid
candidate. We discuss how to choose the base in the next
section.

3. ILP MODEL
Using the assumptions and linearization techniques
presented in the preceding section, we now construct an

MLP model for simultaneous Vt selection and gate sizing.
We assume that two threshold voltages are available, but
extension to more voltage levels is straightforward.
Objective function. We use the sum of power dissipation
of each gate as in Equation (4), as the objective function
to be minimized. Note that Il(G,I) is Vt-dependent. Taking
the threshold voltage Vt(G) into consideration, we
represent the leakage current by

Il(G,Vt(G)) = S(G)Vt(G) 

                     + S(G)Vt(G) (9)

Since Vt(G) is a binary variable, we can hence replace
Equation (9) with

Il(G,Vt(G)) =  2rl(G)Vt(G)S(G) (10)
where  =  for k = 0, 1 and rl(G)

= log2( / ).

Note that Equation (10) is equivalent to Equation (9) for
Vt(G) = 0 or 1 only. Now our objective function can be
expressed in the following form:

2rl(G)Vt(G)S(G)VDD
+ TP(G) VDD

2/(2tc) (11)

Constraints. There are two classes of constraints in the
MLP model: performance and linearization. The
performance constraints guarantee that the performance

Figure 2. A circuit fragment
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target is met for the size and Vt selection in the model.
Non-linear terms appearing in the objective function and
performance constraints are replaced with linear
inequalities, which are the linearization constraints. 

First consider the performance constraints. Let real
variable Ta(G) be the arrival time of G’s output signal.
For convenience, we insert a virtual gate GI driving all
primary inputs, and a virtual gate Go driven by all
primary outputs. Both virtual gates have zero delay. To
satisfy the overall circuit delay Dmax, we use constraints
Ta(Go) ≤ Dmax, and Ta(GI) = 0. We then derive
constraints to relate the arrival times of G’s fanin gates to
that of G. Consider the circuit fragment in Figure 2,
where G1 has two inputs driven by G2 and G3. The arrival
time of G1’s output signal satisfies 

Ta(G’) + D(G1, Vt(G1)) ≤ Ta(G1)
where G’ ∈ {G2,G3}. 

We calculate D(G, Vt(G)) using linear functions as
follows. Let Dp(G, V) be the parasitic delay of G with
threshold voltage selection Vt(G). and  = Dp(G, 1)
− Dp(G, 0). Then, we can rewrite Dp(G, Vt(G)) as

Dp(G, 0)  + Dp(G,1) Vt(G)
= Dp(G, 0) + (Dp(G, 1) − Dp(G, 0)) Vt(G)                       
= Dp(G, 0) + Vt(G) (12)

On the other hand, we represent Dl(G, Vt(G)) similarly to
Il(G,Vt(G)):

Dl(G, 0)2rd(G)Vt(G) (13)
where rd(G)=log2(Dl(G, 1)/Dl(G, 0)). Therefore, the total
delay D(G, Vt(G)) of G is
D(G,Vt(G)) = + Vt(G)

                 +Dl(G, 0)2r(G)Vt(G) /S(G) (14)

As discussed in Section 2, we define variable p(G) for
each gate, where S(G) = 2p(G). Therefore, we obtain 

S(U)/S(G) = 2p(U) − p(G) (15)
The delay function D(G,Vt(G)) becomes
D(G,Vt(G)) = + Vt(G)

                +Dl(G, 0)  (16)

where SVR(U,G) = 2rd(G)Vt(G)+p(U)−p(G). We can now
simply apply piecewise linear approximation to the
exponential function SVR(U,G), and obtain linearized
relations between G’s delay and size. Furthermore, the
accuracy of the approximation is totally controlled by
how we choose the piecewise linear functions. 
Linearized objective function. Since we define p(G) =
log2S(G) for each gate, the objective function is
transformed accordingly to

SV(G)VDD+TP(G) VDD
2/(2tc) (17)

where SV(G) = 2rl(G)Vt(G)+p(G) and S(G) = 2p(G). We also
apply the foregoing linearization technique to these two
exponential functions in the objective function.

MLP-exact. The final MLP model for the circuit in
Figure 2 is presented in Figure 3. The objective function
is the sum of total power consumption for each gate,
given in the form of Equation (17), where S(G) and SV(G)
are viewed as variables and determined by linearization
constraints. The performance constraints relate gate
arrival times to gate delays, and guarantee the
performance target will be met. Similarly to S(G) and
SV(G), the SVR(U,G)’s are also calculated using
linearization constraints. Such MLP models can readily
be imported to LP solvers such as cplex [11]. 

The exponential function base does not have to be
two. For example, if the cell sizes are in a certain ratio s
to one another, e.g. 1, s2, s3,..., we should use exponential
functions with base s. Adding the constraints that p(G)’s
are integers, we are able to obtain the exact solution using
the MLP model. On the other hand, if there is no such
relation between cell sizes, we can solve the MLP model
with the p(G)’s being real variables, and use the smallest
available cell size that is larger than the calculated value
as the cell size assignment. The error caused by the cell
size approximation is also controlled by carefully
choosing the piecewise linear functions.

MLP-fast. We can solve the MLP model much faster if
we are willing to pay some price in optimality. This is
done using a two-step approach. First, we view the
Vt(G)’s as real variables between 0 and 1 and solve the
resulting linear programming model. Second, we fix the
p(G)’s at the values obtained in the first step. The MLP
model, with only Vt(G)’s as integer variables, is then
solved as a new MLP problem. Intuitively, this MLP
model has far fewer variables and so is much easier to
solve. Our experimental data will justify this claim.

4. EXPERIMENTAL RESULTS
We performed experiments with the proposed methods
using an extensive set of ISCAS and MCNC benchmark
circuits. We used a small cell library with INV, AND2,
NAND2, NAND3, NADN4, OR2, NOR2, NOR3, and
NOR4. The maximum cell sizes for each cell type is 16X.
The cell library uses 70nm CMOS technology, and was
obtained using the Berkeley predictive technology model
[3]. The higher Vt’s for PMOS and NMOS are 220mV
and 200mV, respectively. The lower ones for PMOS and
NMOS are 190mV and 160mV, respectively. The low-Vt
transistors have on-current which is ten times that of the
high-Vt ones.

Runtime of MLP-exact. We first examine the runtime of
MLP-exact. Usually cell sizes of powers of two are
available in a library. We consider the special case where
all cell sizes are powers of two. Consequently, we use
base two in the exponential functions, and add the
constraints that p(G) are integers. 
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We linearize the exponential functions in question to
guarantee accuracy when p(G) are integers. Consider the
linearization of 2p(G) as an example. We use the
following inequalities which are determined by (k, 2k)
and (k + 1, 2k+1):

S(G)≥ 2k p(G) + (1− k)2k, where k = 0, 2, 4, ... (18)
Therefore, S(G) is at least 2p(G) when p(G) is an integer.
Furthermore, since we are trying to minimize the
objective function (17), S(G) will be assigned the
minimum possible value. We can hence conclude that
S(G) = 2p(G) in any valid solution. Other exponential
functions can be linearized similarly to guarantee their
accuracy. Hence, we do not sacrifice any optimality in
linearizing the objective function and performance
constraints, provided the p(G)’s are integers. 

For each circuit, we first perform optimization using a
TILOS-like sensitivity-based method (SBM) [6], and
obtain the fastest design reachable with all low-Vt cells.
We then set the target delay to 10% longer than the fastest
design, and run MLP-fast. We stop the LP solver cplex
after searching 10,000 nodes if no optimal solution is
found. In fact, the solutions found are within 1% of the
estimated optimal ones for all our MLP models. Since the
LP solver spends the majority of its time improving the
estimated lower bounds instead of improving the
solution, the solutions obtained here are very close to, if
not exactly, the optimal ones. 

In addition to the power consumption of the designs
obtained using MLP-exact, the corresponding runtime is
shown in the MLP-exact column of Figure 4. Here we
focus on runtime and leave the power reduction capability
for later discussion. For most of the circuits, MLP-exact
can produce optimal solutions quickly. The runtimes vary
from 60 seconds (for c880) to 3,000 seconds (for c3540).

The runtime for larger circuits such as c6288 and c7552 is
much longer due to the complexity of their MLP models. 
Comparison of MLP-exact and MLP-fast. We examine
the effectiveness of MLP-fast by comparing it with MLP-
exact with the same performance constraints. The data for
MLP-fast are presented in the MLP-fast column in
Figure 4. MLP-fast achieves significant speedup over
MLP-exact. In all except three of the benchmark circuits,
MLP-fast is one or two orders of magnitude faster than
MLP-exact. However, the designs from MLP-fast
consume just 3% more power than those from MLP-exact
on average. If the cell library provides more cell sizes in
addition to powers of two, MLP-fast will provide even
better solutions since it is able to choose cell sizes closer
to their optimal values. We conclude that MLP-fast is a
fast and accurate approximation to MLP-exact. 

We next present results to show the effectiveness of
the MLP approaches. Since MLP-exact and MLP-fast
produces designs with very similar power consumption,
we only compare MLP-fast with SBM and show its
superiority in terms of power optimization capability.
Comparison of MLP-fast and SBM. We also re-ran SBM
using all high-Vt and all low-Vt cells; we refer to these
models as SBM-H and SBM-L, respectively. We collected
the total power consumption of all resulting designs, and
compared them with those of MLP-fast. In addition, we
ran SBM assuming all-integer cell sizes of each type and
all cells with low-Vt; this model is referred to as SBM-I.
The experimental results are presented in Figure 5. For
each design, we show the power consumption obtained
using SBM-L, MLP-fast, SBM-I, and SBM-H. The first
three designs meet the specified performance target while
the latter one usually cannot. Therefore, the delays of
designs of SBM-H are compared with their SBM-L
counterparts. 

A comparison between SBM-L and MLP-fast shows
that MLP-fast usually generates designs requiring 20% to
50% less power than their SBM-L counterparts under the
same performance constraints. On average, MLP-fast
delivers 30% less power than SBM-L. This is not
surprising since MLP-fast yields near-optimal designs, as
shown earlier. The results also demonstrate that the all
high-Vt designs usually are not able to achieve the same
performance as the low-Vt designs by simply resizing the
cells. They are on average 12% slower although
consuming similar amounts of power as the SBM-L
designs. In fact, most of the SBM-H designs consume the
same amount of power as the MLP-fast designs.
However, there are a few cases where the SBM-H designs
consume much more power. This is because we have to
oversize some gates to satisfy the timing requirement,
resulting in high dynamic power.

Even when provided with a library having more cell
sizes, SBM still produces designs with much higher power
consumption than those from MLP-fast. In fact, the
designs from SBM-I have slightly smaller power
consumption that the SBM-L ones. As discussed

Figure 4.  Power consumption and runtime comparison 
between MLP-exact and MLP-fast

      MLP-exact               MLP-fast
Circuits Power Runtime Power Power ratio Runtime Speedup

P1 (mW) T1 (sec) P2 (mW) P1/P2 T2 (sec) T1/T2
c432 0.15 297.90 0.16 0.95 2.01 148
c880 0.34 60.75 0.36 0.96 3.97 15
dalu 0.60 2708.51 0.60 1.00 15.33 177
rot 0.53 389.97 0.54 0.97 9.25 42
x3 0.90 1125.85 0.92 0.98 9.04 125
vda 0.41 1377.60 0.44 0.95 115.88 12
alu4 0.51 1950.03 0.53 0.98 199.90 10
apex6 0.98 1141.21 1.01 0.97 23.30 49
frg2 0.64 1405.73 0.64 1.00 31.55 45
I6 1.14 790.51 1.19 0.95 4.28 185
I7 0.92 1119.32 0.94 0.97 60.82 18
I10 0.80 445.03 0.80 1.00 81.56 5
c1908 0.35 1144.77 0.36 0.96 177.16 6
c2670 0.95 1630.37 0.96 0.99 110.90 15
c1355 0.46 1354.88 0.52 0.90 106.60 13
c3540 0.71 3072.73 0.72 0.98 238.99 13
c6288 N/A N/A 1.98 N/A 1548.56 N/A
c7552 N/A N/A 2.47 N/A 560.42 N/A
Average 0.97 55
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previously, if provided with a library with more cell
sizes, we expect MLP-fast to perform no worse, if not
better than MLP-fast with power-of-two cell sizes.
Consequently, when provided with a library having all-
integer cell sizes, MLP-fast is also capable of obtaining
designs with around 30% less power than SBM.

5. CONCLUSIONS
We have proposed an optimal MLP model (MLP-exact)
for total power reduction during runtime under
performance constraints. Unlike previous work where
optimality can only be explored locally, a new approach
to linearizing the delay function is proposed to enable
exploration of the true global optima. An efficient way of
finding near-optimal solutions (MLP-fast) is also
proposed, which exhibits one or two orders of magnitude
speedup for most benchmark circuits, with 3% power
overhead. Compared with a sensitivity-based heuristic
approach, the proposed methods can reduce the total
power by almost 30%. The model can be readily extended
to handle more threshold voltages and multiple VDD
levels.

Acknowledgement
This research was supported by National Science
Foundation under Grant No. CCR-0073406.

6. REFERENCES
[1] S. Augsburger et al., “Reducing Power with Dual Supply,

Dual Threshold and Transistor Sizing”, Proc. ICCD, 2002.

[2] M. R. C. M. Berkelaar et al., “Gate Sizing in MOS Digital Cir-
cuits with Linear Programming”, Proc. DATE, 1990.

[3] Berkeley Predictive Technology Model, http://www-
device.eecs.berkeley.edu/~ptm/.

[4] R. Burch et al., “A Monte Carlo Approach for Power Estima-
tion”, IEEE Trans. on VLSI, 1993. 

[5] A. Chatterjee et al., “An Investigation of the Impact of Tech-
nology Scaling on Power Wasted as Short-Circuit Current in
Low Voltage Static CMOS”, Proc. ISLPED, 1996.

[6] J. P. Fishburn, and A. E. Dunlop, “TILOS: A Posynomial Pro-
gramming Approach to Transistor Sizing”, Proc. ICCAD,
1985. 

[7] F. Gao and J. P. Hayes, “Gate Sizing and Vt Assignment for
Active-Mode Leakage Power Reduction”, Proc. ICCD, 2004.

[8] A. Ghosh et al., “Estimation of Average Switching Activity in
Combinational and Sequential Circuits”, Proc. DAC, 1992. 

[9] R. Ho et al., “The Future of Wires”, IEEE Proceedings, 2001.
[10] W. Hung et al., “Total Power Optimization through Simulta-

neously Multiple-Vdd Multiple-Vth Assignment and Device
Sizing with Stack Forcing”, Proc. ISLPED, 2004.

[11] ILOG cplex. http://www.ilog.com/products/cplex/.
[12] D. Nguyen et al., “Minimization of Dynamic and Static Power

Through Joint Assignment of Threshold Voltages and Sizing
Optimization”, Proc. ISLPED, 2003.

[13] P. Pant et al., “Dual-threshold Voltage Assignment with Tran-
sistor Sizing for Low Power CMOS Circuits”, IEEE Trans. on
VLSI, 2001.

[14] T. Pering, T. Burd, and R. Broderson, “Voltage Scheduling in
the IpARM Micorprocessor System”, Proc. ISLPED, 2000.

[15] A. Srivastava et al., “Concurrent Sizing, Vdd and Vth Assign-
ment for Low-Power Design”, Proc. DATE, 2004.

[16] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI
Design: A Systems Perspective, Addison-Wesley, 1993.

Figure 5. Power and delay comparison of SBM-L, MLP-fast, SBM-H and SBM-I

       SBM-L     MLP-fast                        SBM-H          SBM-I
Circuits Delay Power Power Power ratio Delay Delay ratio Power Power ratio Power Power ratio

D1 (ps) P3 (mW) P2 (mW) P2/P3 D4 (ps) D4/D1 P4 (mW) P4/P3 P5 (mW) P5/P3

c432 545.31 0.19 0.16 0.85 605.93 1.11 0.44 2.33 0.19 1.00
c880 449.42 0.49 0.36 0.72 497.07 1.11 0.34 0.68 0.49 0.99
dalu 474.75 0.98 0.60 0.61 534.24 1.13 0.56 0.57 0.95 0.96
rot 443.86 0.77 0.54 0.71 496.50 1.12 0.60 0.78 0.76 0.99
x3 221.24 1.13 0.92 0.81 254.87 1.15 0.80 0.71 1.12 0.99
vda 284.98 0.64 0.44 0.69 312.15 1.10 0.46 0.72 0.61 0.97
alu4 632.97 0.72 0.53 0.73 719.38 1.14 0.48 0.67 0.73 1.01
apex6 220.91 1.27 1.01 0.80 248.52 1.12 0.96 0.76 1.27 1.00
frg2 322.44 0.88 0.64 0.73 321.70 1.00 0.70 0.80 0.88 1.00
I6 125.98 1.35 1.19 0.88 143.59 1.14 1.21 0.89 1.32 0.97
I7 156.63 1.15 0.94 0.82 177.83 1.14 1.11 0.96 1.14 0.99
I10 906.54 1.52 0.80 0.52 1018.66 1.12 0.76 0.50 1.52 1.00
c1908 684.30 0.55 0.36 0.66 772.34 1.13 0.39 0.71 0.53 0.96
c2670 344.70 1.27 0.96 0.76 392.97 1.14 0.88 0.70 1.26 1.00
c1355 519.34 0.61 0.52 0.85 582.16 1.12 1.48 2.43 0.61 1.00
c3540 717.97 1.07 0.72 0.68 826.53 1.15 0.68 0.64 1.06 0.99
c6288 1291.00 3.16 1.98 0.63 1518.74 1.18 6.31 2.00 3.16 1.00
c7552 527.32 3.37 2.47 0.73 585.62 1.11 2.47 0.73 3.36 1.00
Average 0.73 1.12 0.98 0.99
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