
Hybrid Simulation for Embedded Software Energy
Estimation

Anish Muttreja†, Anand Raghunathan‡, Srivaths Ravi‡ and Niraj K. Jha†

†Dept. of Electrical Engineering, Princeton University, NJ 08544
‡NEC Labs, Princeton, NJ 08540

Abstract
Software energy estimation is a critical step in the design of energy-
efficient embedded systems. Instruction-level simulation techniques,
despite several advances, remain too slow for iterative use in system-
level exploration. In this paper, we propose a methodology called
hybrid simulation, which combines instruction set simulation with
selective native execution (execution of some parts of the pro-
gram directly on the simulation host computer), thereby overcom-
ing the disadvantages of instruction-level simulation (low speed) and
pure native execution (estimation accuracy, inapplicability to target-
dependent code), while exploiting their advantages. Previously de-
veloped techniques for software energy macromodeling are utilized
to estimate energy consumption for natively executed sub-programs.
We identify and address the main challenges involved in hybrid sim-
ulation, and present an automatic tool flow for it, which analyzes a
given program and selects functions for native execution in order to
achieve maximum estimation efficiency while limiting estimation er-
ror. We have applied the proposed hybrid simulation methodology
to a variety of embedded software programs, resulting in an average
speed-up of 70% and estimation error of at most 6%, compared to
one of the fastest publicly-available instruction set simulators.
Categories and Subject Descriptors: I.6.8 Computing Methodolo-
gies: - Types of Simulation - Combined
General Terms: Design, Measurement
Keywords: Embedded Software, Energy Estimation, Energy Macro-
models, Hybrid Simulation, Pointer Analysis

1. INTRODUCTION
The most widely used technique for embedded system energy esti-

mation is to simulate the execution of embedded software on a model
of the underlying hardware platform. Due to rapid growth in the com-
plexity of embedded software (average software content is estimated
to double every 10 to 12 months, i.e., faster than Moore’s law [1]),
software simulation is becoming the bottleneck in efficient system
simulation. In spite of significant research effort over the last decade,
software simulation is still very time-consuming for systems of real-
istic complexity, limiting the scope for architectural optimization and
design space exploration.

We propose hybrid simulation, which combines instruction set
simulation with native execution of judiciously selected parts of the
program, as an approach to significantly improve energy estimation
efficiency. Native execution, which refers to execution of a program
directly on a simulation host computer, is commonly used for func-
tional verification (without timing or energy estimation) during the
early phase of the software design process. Native execution is typi-
cally much (one or more orders of magnitude) faster than instruction
set simulation. However, it cannot be applied to programs that con-
tain target-dependent code (e.g., assembly code). Also, native execu-
tion by itself cannot provide estimates of energy or execution time.

Our work attempts to combine the advantages of instruction set
simulation, such as applicability to arbitrary programs and accurate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

estimation, with the speed of native execution. In order to realize this
objective, several challenges need to addressed. The basic challenges
include how to perform energy estimation for code that is natively ex-
ecuted during simulation, and how to synchronize and communicate
between the two domains to maintain functional correctness. These
are significant challenges in the presence of pointers, complex data
structures, and dynamic memory allocation. In addition, natively ex-
ecuted code can lead to estimation errors, as well as simulation over-
heads due to control/data transfers between domains and due to the
evaluation of energy macromodels. Hence, in order to realize the po-
tential benefits of hybrid simulation (maximal simulation speed with
minimal estimation error), it is necessary to optimize the partitioning
of the program between the instruction set simulator (ISS) and native
execution domains while considering the tradeoffs involved. Finally,
the steps involved in hybrid simulation should be automated so that
little or no additional manual effort is involved.

1.1 Paper Contributions and Related Work
Next, we review related work in the areas of instruction set simu-

lation and software macromodeling.
A large body of work deals with improving the efficiency of in-

struction set simulation, a detailed review of which is outside the
scope of this paper. Some notable developments include compiled
simulation [2], techniques that combine compiled and interpreted
simulation [3, 4], and automatic generation of optimized ISS compo-
nents for steps such as instruction execution and instruction decod-
ing [5, 6]. The proposed work is largely complementary to, and can
be combined with, the above techniques for instruction set simula-
tion. Techniques for profitably identifying regions of a program that
are selectively simulated in detail, while fast-forwarding over other
portions have also been reported [7, 8].

In the proposed technique, unlike the aforementioned efforts, fast-
forwarded code is directly compiled to host binary and executed with-
out any details about the target processor state being maintained,
which leads us to expect considerable speed-ups. However, our ap-
proach requires the use of macromodels to estimate energy consump-
tion in natively executed code.

Previous work on software macromodeling [9, 10] has mostly fo-
cused on generation of macromodels for pre-identified parts of a pro-
grams, without addressing the question of how to identify parts of a
program that may be profitably macromodeled. Moreover, a major
drawback of native execution, its inapplicability to target-dependent
software, has also not been addressed. Our work addresses these
issues by providing a generally applicable methodology to leverage
native execution and macromodels. The two extreme scenarios of hy-
brid simulation, where the entire application is simulated in the ISS,
and the entire application is natively executed, correspond to the cur-
rent state-of-the-art. Our contribution is in enabling the spectrum of
possibilities that lie in between these two extremes.

2. MOTIVATION
In this section, we present the key challenges involved in hybrid

simulation, which can be broadly classified into the following two
types: challenges in ensuring that the program is simulated correctly,
and challenges in minimizing run-time overheads involved in switch-
ing between native and emulated modes of simulation and in eval-
uating macromodels. Ensuring functional correctness is a challenge
that arises at run-time due to the interaction between simulated and
natively executed code. On the other hand, overheads involved in
hybrid simulation are determined to a large extent by the “mix” of
functions simulated in native and emulated modes. We demonstrate
in Section 3.3 that these overheads can be predicted statistically and
bounded at compile time, i.e., before the hybrid simulation begins.

3.3

23

In the remainder of this section, we illustrate challenges related to
ensuring functional correctness.

Natively simulated functions (native functions for short) operate
in a different execution environment from functions executed in the
simulator (emulated functions). The execution environment includes
the processor and memory state, and operating system (OS) services
and data structures (such as open file descriptors, sockets, etc.). Na-
tive functions execute directly on the simulation host processor, and
use the host memory space (as part of the simulator). Emulated func-
tions, on the other hand, see models of the processor state and mem-
ory that are maintained by the ISS. Run-time interaction of native and
simulated functions leads to two distinct challenges:

1 T gvar;
2 T *gpointer;
3 main (){
4 T a[10]
5 f1 (a, 10);
6 }
7 f1(T a[], int n){
8 T d, b[8];
9 gpointer = (T*)malloc (n * sizeof(T));

10 gvar = a[i];
11 gvar = b[i];
12 if (n > 1)
13 gpointer = b;
14 else
15 gpointer =a;
16 d = **gpointer; }

Figure 1: Example showing challenges in hybrid simulation

Control/data transfer between simulated and native functions:
In our hybrid simulation methodology, control transfer between na-
tive and simulated functions is restricted to occur at function call
boundaries. Thus, a function that is simulated in the ISS may call a
native function, or vice-versa. Function calls also involve data trans-
fer in the form of function arguments and return values. Function
arguments and return values might be complex data structures that
use composite types (e.g., union/struct/array in C), or may
employ pointers. For real-world applications, a hybrid simulation
methodology needs to support automatic transfer of complex data
types. For example, consider the simple program shown in Figure 1.
Suppose that we want to natively execute function f1, while simu-
lating the rest of the program in the ISS. The code shown in Figure 1
is cross-compiled and the target architecture binary made available to
the hybrid simulator. In addition, the code for function f1 is com-
piled to the host computer, and linked with the simulator for native
execution. When function main calls f1, the ISS must recognize
that it needs to transfer control to the native version of f1, and pass
to it the appropriate values for arguments a and n. Since argument a
is an array, and may be passed as a pointer, it is necessary to ensure
that the natively executed code is able to understand and de-reference
the pointer to access elements of a.

Memory synchronization: Native and emulated functions can
also interact indirectly by accessing/modifying shared program vari-
ables, or by making OS calls that can affect the program environment.
Program correctness requires that any modifications to the environ-
ment be visible to both native and emulated functions. As an exam-
ple of indirect interaction, let us again consider the native execution
of function f1 shown in Figure 1. Consider line 10 in function f1,
which assigns array element a[i] to variable gvar. This simple
operation illustrates the following challenges:

1) Global variable gvar is not available directly to the native im-
plementation of f1. Any access to a global variable during program
execution is accomplished using a virtual address assigned statically
by the compiler, or dynamically by the loader if the variable is de-
clared in a shared library. In our example, f1 has not been compiled
against code that declares gvar. Therefore, gvar must be made
available to f1 by special instrumentation at compile time. More-
over, the virtual address of gvar is not a valid virtual address in
the address space of the simulation host. It is actually an index into
the virtual memory model maintained by the simulator, and must be
explicitly used as such during the native execution of f1. An ISS
typically provides a function to translate target virtual addresses into

host addresses. These translated addresses might then be treated as
normal pointer variables in the native execution domain, and used to
access ISS-modeled target memory. We refer to the problem of man-
aging accesses from two different virtual address spaces as memory
synchronization.

2) Memory synchronization is also a challenge when pointers are
used. In function f1 of Figure 1, the array access a[i] (or equiv-
alently the pointer access *(a+i)) accesses memory at a simulated
virtual address. Therefore, pointer *(a+i) must be explicitly trans-
lated before it is de-referenced. However, pointers pose another prob-
lem that is not encountered with global variables. Some pointers may
be local to the native execution domain, e.g., local variables in native
functions. For example, pointer b used in line 11 of Figure 1 does not
point to a simulated virtual address, and explicit translation should
not be performed. Thus, with pointers, it is necessary to distinguish
between host and simulated target addresses at compile time. This is
a variant of the well-studied problem of pointer analysis [11]. Com-
plete resolution of pointer targets at compile-time may be impossible,
but, in our context, this only limits the set of candidate functions that
can be considered for native execution.

3) An important case of the memory synchronization problem oc-
curs due to the use of dynamic memory allocation. Consider the call
to malloc in function f1 of Figure 1. This call, if executed directly
in the native domain, will allocate memory space in the simulation
host processor’s address space, causing memory de-synchronization
when the simulation returns from f1 - pointer gpointer now
points to a memory location in the host address space, and cannot
be accessed in the emulated domain. One solution to this problem
is to force malloc to always trigger a switch to the ISS domain, at
the cost of limiting the speed-up achieved due to native execution.
A better solution, which we adopt, is to ensure that malloc calls
from native functions are executed natively, but co-ordinate with the
emulated malloc to work in the target memory space.

3. METHODOLOGY
Figure 2 presents an overview of the proposed hybrid simulation

methodology. The methodology consists of two phases - a character-
ization phase, which involves constructing macromodels and is per-
formed only once for a given program, and a simulation phase, which
consists of native function selection, code instrumentation, compila-
tion, and execution, and is executed for each simulation run. The
focus of this paper is on the second phase.

Macromodels are constructed using the methodology presented
in [12]. Given the function source code, and a set of training input
instances, the methodology automatically generates the macromodel
along with mean and variance statistics for expected model error.

The second phase of the methodology consists of profiling, instru-
mentation, and compilation in order to select native functions and
integrate them with the ISS. The target application is profiled on the
simulation host computer to obtain execution time statistics and a dy-
namic function call graph. These are then used in conjunction with
macromodel error statistics to guide optimum selection of functions
for native execution. Based on this selection, two different versions
of the program are automatically generated for cross-compilation and
native compilation, respectively. In the cross-compiled version of
the program, native functions are replaced in the source code by
automatically-generated place-holders called stubs. Stubs encapsu-
late the control and data transfer necessary to invoke a native func-
tion. The natively compiled version of the program consists of drop-
in replacement functions (or simply drop-ins) for each function that
was selected for native execution. A drop-in is functionally equiva-
lent to the function from which it is derived, but contains additional
code that ensures memory synchronization when it is executed na-
tively. Drop-ins and energy macromodels for native functions are
compiled and statically linked with the executable of the ISS itself to
obtain the hybrid simulator.

Figure 2 depicts as rectangles the three main tools involved in the
second phase, viz. Stubgen, Native Drop-in Generator and Native
Function Selector. Next, we examine each of these tools in detail,
and discuss their roles in enabling hybrid simulation.

3.1 Stubgen
Calling native functions from emulated code is accomplished using

a mechanism similar to remote procedure calls. The tool stubgen

24

Training Input

Macrogen

M ac ro m o d e l s
=Macromodel

L i b rary

Te s tb e nc h

N at i v e
D rop -i n

G enerat or

S i mi t -A R M
I n st ru ct i on

S et S i mu lat or

Hybrid
I n s t ru c t io n

S e t S im u l a t o r

Targe t A ppl ic atio n
S o urc e C o d e

N at i v e
D rop -i n s

N at i v e
F u nct i on
S el ect or

C and id ate
F unc tio nsE mu lat ed
F u n ct i on s

A p p l ic a t io n
B in a ry

once

� � � � � � � ��� � 	�

� � � � � � � � �

� � � � � � � ��� � 	�

� � � � � � � � �

C all G rap hC all G rap h

Macromodels

once for each testbench

A p p li cat i on
S i de S t u b s

S i mu lat ed
F u n ct i on sN at i v e
F u n ct i on s

N at i v e P rof i le

S i mu lat i on
H ost

S t u b gen

�� � � � 	�� �
 �
� � � � � � � � �

�� � � � 	�� �
 �
� � � � � � � � �

A p p li cat i on
S i de S t u b s

A p p li cat i on
S i de S t u b sS i mu lat or
S i de S t u b s N at i v e

D rop -i n s

MacromodelsX-gcc
gcc

Figure 2: Complete hybrid simulation tool flow

parses application source code to generate two stubs for each native
function, an application side stub and a simulator side stub. It is
the job of the stubs to transfer function arguments and return values
between native and emulated functions. The application side stub is a
place-holder function that is compiled with the target application and
is used by the simulator at run-time and at initialization.

At run-time, the application side stub simply transfers control to
the simulator side stub whenever it is called. Control transfer is ac-
complished using a special system call that we created for this pur-
pose, called switchNative. switchNative expects one argu-
ment, a number which enables system-call handling code in the sim-
ulator to identify the correct simulator side stub to invoke.

The application side stub of a native function exports the same
interface as the corresponding native function. This enables the
cross-compiler to insert debugging information identifying the reg-
ister/memory locations used to pass function arguments. This infor-
mation, present in the application binary, is used by the hybrid sim-
ulator to discover function argument addresses when the program is
first loaded into the simulator.

The simulator side stub is code that is complied with the ISS, and
uses argument addresses discovered at load time to pass arguments to
the native drop-in. The simulator side stub also writes back the value
returned by the drop-in function so that it is available to the call-
ing function once control has been returned to the emulation domain.
Through the mechanisms described above, stubgen enables transpar-
ent control and data transfer between emulated and native functions.

3.2 Native Drop-in Generator
Application functions cannot be simulated directly in native mode

due to the problems of memory de-synchronization and unknown
pointer targets. The native drop-in generator instruments application
functions to make them suitable for native simulation.

The drop-in generator performs two tasks. We illustrate these us-
ing the function f1 dropin in Figure 3 that was generated by the
drop-in generator from function f1 in Figure 1. It is worth noting
that every drop-in is passed a reference to an ISS [13] object, which
is a C++ data structure that encapsulates all the simulator functions
that the drop-in needs to call.

Resolving global variables: The drop-in generator detects use of
global variables in the analyzed function, such as gvar in Figure 1.
As we saw earlier, native functions are not aware of such global vari-
ables since they have not been linked against code containing them.
For each such global variable of type T, found in any native func-
tion, the drop-in generator inserts a declaration of a pointer of type
extern T* in the simulator side stub. The ISS uses debugging
information at program load time to initialize these global variable
pointers to proper addresses. Since these pointers refer to the simu-
lated memory space, the drop-in generator also needs to insert code
to explicitly translate them prior to de-references, as described next.

Pointer analysis: A pointer that points to a location in simulated
memory cannot be de-referenced directly. Instead, as Figure 3 shows,
the drop-in utilizes the macro TRANSLATE, which can use pointer
values to access the simulated memory model maintained by the ISS.
Simulated memory is maintained as a data structure in host memory
and the value returned by ISS function TRANSLATE is a host mem-

ory pointer that is equivalent to a location in the simulated memory.
The translated pointer may be typecast and de-referenced directly by
native code. Figure 3 illustrates this process with a few examples.

1 extern T* gvar; /* resolved at program load by ISS */
2 extern T** gpointer;
3 #define TRANSLATE(x,t)
4 reinterpret cast <t> (emu−>mem−>translate (x))
5 f1 dropin (T a [], int n, emulator *emu){
6 T d, b[8]; /* local array declaration*/
7 *(TRANSLATE (gpointer, T**))

= (T*)Hysim malloc (n*sizeof (T));
8 *(TRANSLATE (gvar, T*)) = b[1];
9 *(TRANSLATE (gvar, T*))

= *(TRANSLATE (&a[1], T));
10 if (n > 1)
11 *(TRANSLATE (gpointer, T**)) = b;
12 else
13 *(TRANSLATE (gpointer, T**))

= (TRANSLATE (a, T*));
14 d = **gpointer; /* **gpointer cannot

be resolved at compile time */ }

Figure 3: Example drop-in function
Note that array access b[1] in Figure 3 does not use the translation

step, since it is a local variable in the native function. The drop-
in generator needs to distinguish at compile time between pointers
that require explicit translation and those which do not, based on the
possible memory locations that the pointer may point to.

The set of memory locations pointed to by a C pointer or array
variable, called its range, may be represented abstractly [11] using
an integer interval domain and a set Loc of abstract representatives
of locations, or objects defined in the program to which a pointer may
legally point.
Definition 1 Loc = {v| v is a variable in the program} ∪
{malloci| i is a program point where malloc is called}.

As an example, variable b[1] is associated with integer domain {1}
and has Locb[1] = {*b}. Range Loc**gpointer for the variable as-
signed in line 13 of Figure 3 is {∗a, ∗b}. This abstract representation
can be used to state the following test to determine the need for ad-
dress translation.
Theorem 1 Define for native function f the set NATIV Ef =
LOCALf ∪ NATIVE -ARGf where LOCALf is the set of all
local variables in f and NATIVE -ARGf is the set of all function
arguments of f that do not need to be translated. Then a pointer vari-
able p in f does not need to be translated if Locp ⊂ NATIV Ef .
p should be translated if Locp ∩ NATIV Ef = Φ. If none of these
conditions holds, it is not possible to decide at compile time whether
p should be translated or not.

In practice, the ambiguity in resolution of pointer targets implies
that not all functions are amenable to native simulation. Such func-
tions are precluded from being selected as native functions in our
hybrid simulation methodology.

Finally, as indicated in Section 2, all malloc calls, whether called
from a native or emulated function, must allocate space from the
same area in the simulated memory space. We achieved this by treat-
ing the malloc function itself as a native function, so that all calls
to malloc from emulated or native code are executed by a drop-in
for malloc that is memory-synchronized to the malloc executed
within the simulator. Thus, all calls to malloc allocate space in the
heap area of simulated memory.

3.3 Native Function Selector
In this section, we present models for estimation error and sim-

ulation time that the hybrid simulator can be expected to obtain in
simulating a program over a given input. We then discuss our al-
gorithm to optimally choose the set of native functions, in order to
minimize simulation time under a probabilistic maximum constraint
on the expected energy estimation error.

An execution instance of a program over a given input might be
abstractly represented as a dynamic function call graph, constructed
based on observing program execution under the given input. We use

25

a dynamic call graph annotated with execution/simulation time statis-
tics, and characteristics of function macromodels to obtain estimates
of simulation error and simulation time, which are used to guide the
optimal selection of natively executed functions.

Bounding simulation error: We seek to provide to the user a
probabilistic bound on estimation error ε of the form,

Probability(|ε| ≤ εo) ≥ αo, (1)
where εo and αo are user specified tolerance and confidence values.

Characterization based macromodeling techniques [9, 12], used in
this work to construct macromodels, are based on the normality as-
sumption, employed widely in classical regression. This allows us to
derive a bound of the form given in Equation (1). The total energy es-
timate reported by hybrid simulation is a sum of energy estimated us-
ing instruction-level models, denoted by EI , and macromodels. For
our purpose, EI is an exact value. We assume that energy estimates
reported by the macromodel for function fi have normally distributed
errors of the form εi = N(0, σi). We claim, without proof, that the
total energy E has error ε = N(0,

P

i∈F
Niσi), where F is the set

of all functions in the program and Ni is the number of calls in native
mode to function i. It can be shown using properties of the normal
distribution that under the constraint given by Equation (1),

X

i∈F

Niσi <
εo

erf−1(αo

2
)

= ∆max, (2)

where ∆max is the maximum allowable deviation of the expected
estimation error. We have thus derived a constraint on the total stan-
dard deviation of macro-model errors, which may be used to guide
mode-selection in order to minimize expected simulation time.

Minimizing simulation time under an error constraint: The
time required by the hybrid simulator to complete simulation on a
given input may be bounded using time estimates, obtained while
profiling, for emulated and natively executed functions, as follows.

T
H
main =

X

f∈F

Nf
X

j=1

T
N
f (j) + T

I
, (3)

where T I is the time required to simulate all emulated functions and
T N

f (j) is the time spent in simulating call j to function f in the na-
tive mode. We can thus formulate the problem of minimizing to-
tal simulation time as a minimization problem in variables Ni with
the objective specified by Equation (3) under the constraint given by
Equation (2). Thus, the problem is to minimize the expected simu-
lation time by deciding before simulating each call to a function, the
mode it should be simulated in.

As stated above, the problem requires a run-time solution, since it
is not possible to enumerate all possible calls to a function at compile
time (i.e., before simulation). The problem may be solved at compile
time by imposing the restriction that all calls to a function from a
particular call site be simulated in the same mode. We use a dynamic
programming based algorithm to solve the mode-selection problem.
Our algorithm is pseudo-polynomial in the maximum allowable error
deviation ∆max. However the complexity does not seem to be an
issue in practice, as algorithm runtime on each of our experiments
was less than a minute - much less than the simulation times.

4. IMPLEMENTATION AND RESULTS
In this section, we discuss implementation details and present the

results of our experiments with hybrid simulation. The tool flow
presented in Figure 2 is based around a C parser and a number of
Python scripts to glue together various tools. The hybrid simulator
itself runs on an x86/Linux platform and is based on the source code
of the SimIt-ARM emulator ema-count [13]. It simulates a lit-
tle endian target processor, and can execute programs cross-compiled
using the ARM-Linux-gcc toolchain. Simulated ARM binaries must
be statically linked and contain debugging information about variable
and function argument locations.

We evaluated our hybrid simulation technique using standard em-
bedded benchmarks from MediaBench [14], MiBench [15] and a
complex biometric application called the Fingerprint Verification
System (FVS) [16]. FVS was chosen because of its challenging
workload - almost an entire work week is required to simulate the
authentication of a fingerprint image on the baseline ISS. For Media-
Bench benchmarks, the standard supplied data set was used for train-
ing macromodels, and the alternate data set, also available as part of
the suite, was used for benchmarking the simulator. Fingerprint im-

Table 1: Example Applications
Benchmark Time (secs) Speed-up Error

Baseline Hybrid Expected Observed
FVS 120 hrs 40 hrs 68% 66% 1%

GSM toast 1135 516 59% 55% 2%
GSM untoast 11.5 4.5 76% 62% 4%

MSG mpeg2dec 1116 9 99% 99% 1%
MSG mpeg2enc 356 143 77% 60% 6%

SHA 17 1 99% 94% 1%
ages available from [16] were used as inputs for FVS. Descriptions
of GSM toast, GSM untoast, mpeg2dec and mpeg2enc may be found
in [14]. SHA is the SHA encryption algorithm, taken from [15].

For hybrid simulation, native functions were selected using a re-
quirement of 5% or smaller error, with probability 95% or more. We
compared simulation time and energy estimates with SimIt-ARM,
enhanced with instruction-level energy models from Jouletrack [17],
as the baseline case. The results of our experiments are presented in
Table 1. For each benchmark, we report the time required to com-
plete simulation using the baseline ISS as well as the hybrid simula-
tor. We also compare the speed-up observed in simulation time with
the expected value, i.e., the value predicted by the native function se-
lection algorithm. Finally, the error observed in energy estimates is
also reported. The times consumed by the native function selector,
native drop-in generator and stubgen are not reported since they were
insignificant compared to simulation times. The average speed-up
obtained was 70%.

5. CONCLUSIONS
In this work, we presented a function-level hybrid simulator that

can be used at an early stage in software design to obtain high fi-
delity energy estimates with significant speed-up over pure instruc-
tion set simulation. Our methodology does not rely on application
characteristics and greatly extends the applicability and usability of
macromodel based energy estimation.

6. REFERENCES
[1] P. Magarshack and P. G. Paulin, “System-on-chip beyond the nanometer wall,” in

Proc. Design Automation Conf., June 2003, pp. 419–424.
[2] J. Zhu and D. D. Gajski, “A retargetable, ultra-fast instruction set simulator,” in

Proc. Design Automation & Test Europe Conf., Mar. 1999, p. 62.
[3] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoffmann, “A

universal technique for fast and flexible instruction-set architecture simulation,”
in Proc. Design Automation Conf., June 2002, pp. 22–27.

[4] W. S. Mong and J. Zhu, “Dynamosim: A trace-based dynamically compiled
instruction set simulator,” in Proc. Int. Conf. Computer-Aided Design, Nov. 2004,
pp. 131–136.

[5] M. Reshadi, N. Bansal, P. Mishra, and N. Dutt, “An efficient retargetable
framework for instruction-set simulation,” in Proc. Int. Conf. Hardware/Software
Codesign & System Synthesis, Oct. 2003, pp. 13–18.

[6] W. Qin and S. Malik, “Flexible and formal modeling of microprocessors with
application to retargetable simulation,” in Proc. Design Automation & Test
Europe Conf., Mar. 2003, pp. 556–561.

[7] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid and early
simulation points,” in Proc. Int. Conf. Parallel Architectures & Compilation
Techniques, 2003.

[8] V. S. P. Rapaka and D. Marculsecu, “Pre-charcterization free, efficient
power/performance analysis of embedded and general purpose software
applications,” in Proc. Design Automation & Test Europe Conf., 2003, pp.
504–509.

[9] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha, “High-level
energy macro-modeling of embedded software,” IEEE Trans. Computer-Aided
Design, vol. 21, pp. 1037–1050, Sept. 2002.

[10] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Library functions timing
characterization for source-level analysis,” in Proc. Design Automation & Test
Europe Conf., Mar. 2003, pp. 1132–1133.

[11] S. H. Yong and S. Horwitz, “Pointer-range analysis,” in Proc. Int. Static Analysis
Symp., Aug. 2004, pp. 133–148.

[12] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha, “Automated
energy/performance macromodeling of embedded software,” in Proc. Design
Automation Conf., June 2004, pp. 99–102.

[13] W. Qin, “The SimIt-ARM simulator.” [Online]. Available:
http://www.ee.princeton.edu/∼wqin/armsim.htm

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for
evaluating and synthesizing multimedia and communicatons systems,” in Proc.
Int. Symp. Microarchitecture, Nov. 1997, pp. 330–335.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “MiBench: A free, commercially representative embedded benchmark
suite,” in Proc. Wkshp. Workload Characterization, Dec. 2001, pp. 3–14.

[16] S. Patel, “Finger-print verification system.” [Online]. Available:
http://fvs.sourceforge.net/

[17] A. Sinha and A. P. Chandrakasan, “JouleTrack - A web based tool for software
energy profiling,” in Proc. Design Automation Conf., June 2001, pp. 220–225.

26

