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ABSTRACT 
Development of highly reliable and available systems requires 
consideration of the occurrence of single event upsets, the effects 
they have on system performance, and strategies for their 
prevention and mitigation.  Methods of systems engineering 
process and the application and validation of techniques for fault 
tolerance are discussed as elements in the elimination and 
mitigation of single event upsets. 

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 

General Terms 
Reliability 

Keywords 
Radiation effects, single event upset, soft error rate, fault tolerant 
systems, error detection and correction coding, fault avoidance, 
fault masking, modular redundancy, temporal redundancy 

1. INTRODUCTION 
The development of systems requiring high reliability and 
availably requires knowledge of the occurrence of Single Event 
Upsets (SEU), understanding of their effects, and the use of 
techniques to eliminate or to otherwise mitigate their impact on 
system operation.  The existence of effects due to single energetic 
particle interaction with microelectronic device structures has 
been known and addressed since the mid-1970’s.  In 1975 Intel 
described α-particle induced Soft Error Rate (SER), space 
programs began reporting on-orbit occurrence of single event 
upsets; IBM reports the use of Error Correction Coding (ECC) in 
computers dating back to the mid-1960s.  Focus in the 1980’s was 
on the use of ECC to mask the occurrence of SER in SDRAM 
devices; work on fabrication technology modifications to reduce 
SER in memories and on effects in microprocessor device   
memory   was   performed  in  the  1990’s.    Developing an 
understanding of the occurrence, detection, and recovery 
techniques for logic and other elements of processor systems has 

been performed recently.1  Due to the significantly higher level of 
energetic particle severity in the space environment, most of the 
work on the general class of single event effects has occurred in 
support of space applications.  Single event upset is only one 
element of a broader set of single event effects that result from 
energetic particle interaction with the device structure.  The term 
Soft Error Rate was established by terrestrial systems developers, 
whereas the space systems community uses Single Event Upset to 
describe the same effects. 

2. ENERGETIC PARTICLE 
ENVIRONMENTS 
Single event upset environments may be separated into the space 
environment (earth orbiting and interplanetary traverse), and 
terrestrial applications, including high altitude avionics systems.  
Most severe amongst these applications is that of space systems; 
single event upsets in space result from the traverse of cosmic rays 
of galactic and solar origin, trapped protons, and solar event 
particles.  Severity of the space environment varies significantly 
over various orbit conditions (altitude and inclination) and 
exhibits profound spatial variation for various segments of orbit 
traverse and temporal variation due to both solar and the earth 
geomagnetic field conditions.  Clementine, a short duration moon 
mapping mission, experienced 71 errors per day in a 2.1 Gbit 
image memory, the use of error detection and correction fault 
masking provisions resulted in zero errors in 1.5 million stored 
images due to complete mitigation of these upsets.  Cassini, a long 
duration mission to explore Saturn, experienced 280 errors per 
day in 2.5 Gbit memory.2  The European Space Agency Freja 
satellite experienced >200 SEUs/ day, and upset rates as high as 
32 SEUs/ minute have been observed in a 2- Gbit DRAM solid- 
state data recorder on SOHO during intense solar particle events.3  

Terrestrial environments include high energy and thermal 
neutrons and α-particles emitted by the decay of radioactive 
impurities (232Th, 238U, 210Po, etc.) found in materials used in 
device manufacture and packaging.  Terrestrial neutrons are 
produced by the cascade of particles that result from cosmic ray 
interaction with oxygen and nitrogen atoms in the earth’s upper 
atmosphere.  Due to absorption in the atmosphere, the 
environment peaks at an altitude of approximately 60,000 feet, 
decreasing by over two orders of magnitude down to sea level.4  
The population of cosmic rays reaching the upper atmosphere 
varies with latitude due to the shielding provided by the earth’s 
geomagnetic field; increasing by a factor of six between equatorial 
latitude and the high latitude polar regions.  Short-term changes 
(daily extremes) in the neutron environment also result from earth 
geomagnetic storms associated with solar particle (flare) events.  
Additionally, the cosmic ray flux exhibits long-term dependence 
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on the 11-year solar cycle, in which the resultant flux of terrestrial 
neutrons reduces by approximately 30% during the solar 
maximum phase.5  Although the terrestrial environment changes 
are not as severe as those of space applications, there exists 
considerable spatial and some temporal variation in the 
environment severity. 

3. SINGLE PARTICLE INTERACTION 
WITH DEVICE STRUCTURE 
The interaction of energetic particles with microelectronic device 
structure results in direct ionization or secondary particles that 
traverse the device leaving a plasma region of electron-hole pairs 
in its wake.  Dimension of the track may be very small to greater 
than several microns depending on the energy of the incident 
particle.  The density of electro-hole pairs in the plasma region 
varies depending on the Linear Energy Transfer (LET) of the 
incident particle.  LET is related to energy loss per unit path 
length, is a function of the ion species and particle energy; and, 
using a conversion factor equates to charge produced per unit 
traveled or fC/µ .  Cosmic ions, α-particles, and protons result in 
direct ionization; neutrons and protons interact with nuclei to 
produce secondary particles that produce an ionization track. 

Charge collected by drift and diffusion results in several possible 
circuit level effects in devices.  Deposited charge can activate 
parasitic elements in the device structure; semiconductor latchup, 
dielectric rupture, and other potentially destructive effects are 
known to occur.  Severe effects such as these occur mostly due to  
higher charge producing particles found in the space environment.  
Of interest to this work is that of collected charge producing a 
Single Event Transient (SET) pulse, the circuit response to which 
may be a Single Event Upset (SEU).  Some SEU occurrence 
results in a more pervasive and complex effect on devices known 
as Single Event Functional Interrupt (SEFI). 

4. FAULT TOLERANT SYSTEMS 
4.1 System Reliability and Availability  
The two most common expressions of a system’s ability to 
tolerate failure are reliability and availability.  Reliability, R(t), is 
the conditional probability that a system will remain operational 
(or can be restored to an operational state) over the anticipated life 
of the system.  Availability, A, is defined as the probability that a 
system is accessible at any particular time, and expresses the 
fraction of time a system is operational.   

R(t) = e-λt     |    λ = 1 / MTBF 

A = µ /(λ+ µ)  |  µ = 1 / MTTR 

MTBF = Mean Time Between Failure   
 MTTR = Mean Time To Repair/Recover 

A system with high reliability may exhibit unacceptable 
availability if the mean-time-to-repair/recover is unacceptably 
long.  A system with high availability may in fact fail; if the mean-
time-to-repair/recover is suitably low, acceptable availability may 
be achieved.  Although availability is expressed as the percentage 
of the time the system is available to users, specifying the 
requirement is typically based on outage frequency, outage 
duration, and ultimately on the implications of users being denied 
access to the system.  The presence of degraded modes or 

conditions that infer partial or limited availability further 
complicate the specification and design activity.  Departures from 
expected system operation that contribute to unavailability are 
allocated to numerous sources, single event upsets receive only a 
portion of the allowable duration of unavailability.  Availability is 
often expressed as a steady-state value, either as the probability 
that the system is operational at any random time (P(s)=0.99999, 
5-nines), or as a given amount of downtime over a specified 
interval.  Statistical mean values of system failure rate and 
recovery times are often used in system analysis; however, the 
spatial and temporal variances in the energetic particle 
environments that produce single event upsets need to be 
understood in addressing availability. 

4.2 Introduction to Fault Tolerant Systems 
Techniques 
The risk of a single event upset causing operational impact to a 
system establishes the need for an adequate description of 
component SEU characteristics and setting design requirements 
for single event effects management and mitigation.  A technique 
such as Single Event Effects Criticality Analysis may be used to 
assess system level SEU criticality based on functional impact to  
the system.6  The evaluation of alternative single event effects 
mitigation and fault tolerance provisions should address cost, 
performance, reliability, and single event effects mitigation 
effectiveness.  System requirements and subsystem specifications 
must address allocated availability requirements, operational 
modes, and external support capability that relate to the fault 
tolerance characteristics of the system.  Support provisions from 
external agents such as periodic or on-demand operational 
intervention in support of diagnosis and recovery actions must be 
defined, and the acceptability of different modes of operation 
including reduced capabilities and degraded levels of service, safe 
shutdown, and emergency modes of operation must be considered.  
System architecture and partitioning defines error containment 
boundaries, establishes the system-wide strategy for coordinated 
error detection and recovery, and the redundancy provisions that 
support fault tolerance are determined.  Establishing a fault 
tolerance hierarchy defines detection and recovery functions for 
individual local subsystems, shared functions over a group of 
subsystems, and system-wide or global functions. 

Historically, the general subject of fault tolerant systems considers 
numerous causes of faults, including incorrect specifications, 
design errors, undetected manufacturing defects, human operator 
actions, component damage or failure, and interaction with the 
operating environment.  The language of fault tolerant systems 
identifies a fault as the initiating event (in this case an energetic 
particle induced single event transient or resultant upset); errors 
are identified as the undesired system states caused by the fault.  If 
error detection and recovery do not take place in a timely manner, 
a failure can occur that will be manifested by the inability of the 
system to provide specified service.  Fault tolerance is the 
capability of a system to recover from a fault or error without 
exhibiting failure.  A fault in a system does not necessarily result 
in an error; a fault may be latent in that it exists but has not 
resulted in an error; the fault must be sensitized by a particular 
system state and input conditions to produce an error.  The 
techniques of fault tolerant systems include fault avoidance, fault 
masking, detection of erroneous or compromised system 
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operation, containment of error propagation, and recovery to 
normal system operations.    The ability to detect at the lowest 
level possible, with error containment within the minimal number 
of components and subsystems, enables simpler and more 
effective recovery provisions.7,8 

Fault tolerant subsystem design includes error detection and 
recovery provisions for faults within the subsystem as well as 
support for interfaces with other subsystems and global detection 
and recovery provisions.  Detection and recovery may be either 
concurrent with normal system operation or preemptive in which 
case normal system operation is suspended until completion of the 
recovery activities.  Correction provisions may be real-time; 
recovery provisions may be either backward (rollback to a 
previous error-free state) or forward, constructing a valid error 
free new state from existing protected information.  The recovery 
sequence includes the identification and removal of errors, 
restoration of valid subsystem states, and validation of the 
completion of successful recovery operation.  It must be 
demonstrated that adequate testability is provided to detection and 
correction/recovery provisions, ensuring that manufacturing or 
component defects do not exist in systems which compromise the 
operation or performance of fault tolerance provisions.  
Furthermore, circuitry added to enable such testability must be 
examined for the propensity to introduce new fault conditions or 
to exacerbate the rate of fault occurrence.9 

Validation and verification activities must include the ability to 
establish that the design supports the requirements established for 
fault tolerance.  Methods and provisions utilized in subsystem 
evaluation and for various levels of system integration verify the 
performance of detection, correction, and recovery provisions.  
Qualitative evaluation of fault tolerant design provisions includes 
the use of formal and heuristic methods, test, and experimentation 
to demonstrate operability of detection and recovery provisions.   

4.3 Fault Avoidance 
Fault avoidance addresses techniques to reduce the occurrence of 
faults through reduction in the severity of the energetic particle 
environment or the mitigation of circuit response to the traverse of 
energetic particles.  Reduction in the severity of the environment 
includes consideration of alternative applications conditions, such 
as orbit altitude and inclination in space systems and latitude and 
altitude of atmospheric neutrons, and the use of shielding 
provisions to reduce the severity of the environment when 
translated to sensitive component locations.  Reduction in the 
severity of the alpha particle environment can be achieved 
through screening and selection of materials used in device 
manufacture; including low alpha emitting solder and plastic 
encapsulant materials.  Due to the limited energy and range of 
alpha particles emitted by plastic encapsulatnts, the use of 
shielding provisions such as polyimide material deposited onto 
the die surface can result in significant reduction in the population 
of alpha particles reaching sensitive device structures.  Shielding 
materials having large thermal neutron capture cross-section are 
effective in attenuating the population of thermal neutrons.  Due 
to their energy and resultant range, shielding is much less 
effective in attenuating the high-energy atmospheric neutrons, 
trapped and solar protons, or cosmic ray heavy ion environments.   

Fault avoidance provisions also address the mitigation of single 
event upset through reduction in charge generation and collection, 

and mitigation of circuit response to collected charge.  Techniques 
directed at reducing collected charge typically rely on the ability 
to truncate the funnel dimensions, to reduce the carrier lifetime in 
the region of the sensitive volume.  Manufacturers have 
demonstrated success in the reduction of alpha particle induced 
soft error rate through the use of retrograde well profile; the 
increasing carrier concentration with increased distance into the 
well region results in reduced carrier lifetime, thus reducing the 
charge collected from the region below the sensitive volume.10 

Mitigation of circuit response includes provisions to increase 
critical charge, suppress response by limiting circuit bandwidth 
such that no response is generated by the short collected charge 
transient pulse, and to provide circuit design provisions blocking 
the propagation of pulses in memory cell feedback paths.  
Memory manufacturers have utilized stacked capacitor structures 
to increase cell capacitance, single event upset hardened devices 
have used high valued polysilicon resistors in the feedback path of 
the SRAM cell, working with the cell capacitance prevents the 
cell from responding to the short duration of charge collection.  
Numerous unique and novel circuit designs have been developed 
for memory cells, latches, and registers; based on techniques to 
reduce the bandwidth of the cell to achieve immunity to the 
transient caused by collected charge or to provide redundant 
storage or blocking provision to prevent upset.11-14  Although 
effective in improving cell single event upset characteristics, the 
increased cell size and the reduced bandwidth are contrary to the 
achievement of high-speed operation. 

4.4 Fault Masking and Redundancy 
Implementation of fault masking typically utilizes some form of 
redundancy; variations include informational redundancy 
(redundant data structures), spatial redundancy (redundant 
hardware), and temporal redundancy (redundant sequential 
operations).  The fault detection and correction capabilities of 
redundant structures are good; recovery complexity depends upon 
the nature of the function performed by each of the structures. 

The increase in hardware content in informational redundancy is 
typically less than spatial modular redundancy.  Information 
redundancy and encoding provisions are designed such that in the 
presence of errors, the information is internally inconsistent, 
enabling Error Detection And Correction  (EDAC) 
implementations.  EDAC codes can vary widely in detection and 
correction capabilities, code efficiency, and complexity of 
encoding and decoding circuitry.  Cyclic redundancy checks, 
other cyclic codes, and convolutional coding schemes are used to 
detect errors in serial data transfer interfaces and storage media; 
such codes are generally classified as either block codes or 
convolutional codes.  Hamming codes are the first class of linear 
block codes that were devised for error correction; these codes 
and their variations have been widely used in digital 
communications and data storage systems.   The most common 
block code used in memory systems is the single-error-correcting, 
double-error-detecting (SEC-DED) Hamming code; for a code to 
be useful for high-speed memory applications, its structure must 
permit rapid parallel encoding and decoding operations, Hsiao 
developed SEC-DEC codes by examining the properties of 
shortened Hamming codes to identify specific codes that enable 
fast encoding and decoding processes.  The Bose, Chaudhuri, and 
Hocquenghem (BCH) codes form a large class of powerful error 
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correcting cyclic codes the most commonly recognized being the 
non-binary Reed-Solomon (RS) codes.15-17 

The nature of coding precludes its use in most computational 
operations.  Simple arithmetic functions permit the use of parity 
through multistage adder circuits, and arithmetic codes such as 
AN and residue codes exist.  AN is a non-separate code in which 
the added information is not distinct from the initial information, 
permitting fault detection in addition operations.  Other residue 
codes are separate in nature; inverse residue codes are capable of 
detecting multiple errors that are unidirectional in nature, and bi-
residue codes with two separate encoding levels provide error 
correction capability.  The use of residue coding schemes for fault 
tolerance has received very limited application due to the high 
overhead requirement for pre-multiplying input variables, limited 
correction capabilities, and lack of capability for general 
computational operations.18 

In the most common form of spatial or modular redundancy is 
Triple Modular Redundancy (TMR), a fault in an individual 
module is corrected by the action of a voter through the majority 
consensus, or two-out-of-three, voting rules.  The individual 
modules may consist of basic functions such as memory elements, 
D-flip-flops, or latches, and more complex logic blocks such as 
state machines or highly complex logic functions; including 
complete processing functional blocks, or entire subsystems.19 

The notion of modular redundancy can be extended to the general 
sense of n-modular redundancy (nMR) with associated 
enhancements to the fault tolerance capabilities and expense 
associated with their implementation.  The capability to change 
the nature of a modular voting scheme is termed dynamic 
redundancy.  In general, dynamic redundancy consists of three 
actions, detection of error, location of the error, and 
reconfiguration of the structure to perform in an optimum manner.  
If there exists a highly probable condition in which failures in 
both modules would produce identical module output conditions, 
the redundant module could potentially contain a complementary 
function instead of an identical copy of the primary module.  In 
this case the dual of the primary module is utilized in the design 
of the redundant module.  An element of difficulty in complex 
circuits using spatial redundancy is the ability to recover the faulty 
processor to a known-good condition so that its outputs may again 
be utilized in detection and correction operations.  Often the 
recovery operation in the faulty processor requires recovery of 
data and control states and resynchronization processes that 
cannot be performed concurrent with normal operations.   

An alternative to spatial redundancy is temporal redundancy in 
which the same hardware or software elements are used in 
consecutive operations, using diversity in time to provide results 
which may be compared using similar comparator/detection, and 
correction techniques discussed above for spatial redundancy.  
The technique is dependent upon the requirement for known 
error-free conditions on the input signals or variables used in the 
operations; either independent detection and correction must be 
provided to inputs, or the use of alternating logic techniques or 
complementing functions must be utilized to provide tolerance to 
input signal or variable errors.  Alternating logic utilizes a class of 
boolean functions which are self dual, i.e. they satisfy the property 
f(x1_, x2_, . . ., xn_) = f_(x1, x2, . . ., xn).  Recomputing with 
shifted operands (RESO) is applicable to certain problems in 
which the shifting of inputs forms a complementing function that 

produces known relationship in outputs that may be utilized in 
detection and correction. 

In older technologies single event transient pulses would not 
propagate along a path of combinatorial logic gates and the 
limited clocking frequency reduced the probability of sampling an 
incorrect logic state during the presence of a transient.  The 
bandwidth of advanced technologies supports propagation of such 
pulses, and high clock frequencies provide ample opportunity for 
clocking of errant results into memory elements.  The use of static 
spatial redundancy as a fault tolerance technique for single event 
upsets in memory elements (latches, flip-flops, and RAM), along 
with temporal redundancy as a mitigation provision against single 
event transients in combinatorial logic has been proposed for 
advanced technology devices.20 The combined scheme uses 
temporal triple mode redundancy by sampling the output of 
combinatorial logic at three different times, storing the individual 
result in three different latch or flip-flop elements, and majority 
voting the latched result.  By ensuring that the separation between 
clock edges is greater than the duration of a transient pulse 
emerging from the combinatorial logic, the transient can corrupt 
only one of the three values.  Majority voting of static triple 
spatial redundancy ensures that upset of individual latches will 
also be corrected through action of the majority vote logic. 

4.5 Error Detection, Containment and 
Recovery 
Whereas the fault detection capabilities of hardware based 
schemes such as modular redundancy are good, fault detection is 
the most difficult aspect of fault tolerance to achieve in 
applications oriented fault tolerance using algorithms, or software 
based fault detection, due to the elusive nature of the signature of 
most faults.  A fault that results in a check-stop result enables 
obvious opportunity for detection; conditions of compromised 
system state produce signatures that are difficult to discern.  Once 
detection is accomplished, recovery may be as complete and 
efficient as necessary to restore normal system operation.21 

The ability to apply software fault tolerance techniques relies on 
specific properties of the problems being addressed by processor 
operations and are embodied in a constraint predicate.  Three 
defined predicate subclasses formulate the constraint predicate: 
progress, feasibility, and consistency.  The progress predicate 
utilizes the notion that there exist steps in the sequence of process 
operations and that the decomposition of the process into a finite 
number of operations blocks provides opportunity for testability at 
these intermediate points in the process.  The feasibility predicate 
implies constraints that are apparent from the nature of the 
problem on which the processor is operating.  Contained within 
this notion is the property of boundary conditions as constraints 
from which to generate a good predicate; testable results must be 
within the solution space of the problem as defined by the 
boundary conditions.  Consistency conditions imply the ability to 
infer validity in intermediate or final results from input variables 
and previous intermediate or final process results.  Consistency 
tests are a powerful technique; entire constraint predicates have 
been developed using only consistency conditions. 

Application-oriented fault tolerance is a software approach to the 
problem of error detection and recovery; the software components 
are called assertions.  The application of a set of metrics to a 
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problem specification results in software assertions that may be 
embedded in the program code; assertions having the form “if not 
ASSERTION then ERROR”.  The extent of error detection is 
determined by the perceptiveness of the assertions to discern a 
compromised state of program execution.  The recovery capability 
is determined by the response that is embodied in the error branch 
path.  Applications-oriented fault tolerance works on the principle 
that testing of a program’s intermediate results for conformance to 
specification ensures that the end result will be within 
specification, and if an error does not manifest itself in a failure, 
then the fault is of no consequence or interest.22 

Several acceptance test techniques employed in detecting the 
presence of faults are N-version programming, self-checking 
software, recovery blocks, and the watchdog coprocessor.  N-
version programming is intended as a provision to detect defects 
in software design, coding, and integration.  Parallel or sequential 
execution of programs and comparing the results provides 
opportunity for fault detection, much in the same way as modular 
redundancy does for hardware fault detection provisions.23 

The self-checking software technique has aspects of functionality, 
control flow, and data in order to provide error detection.  The 
functional and data aspects examine the reasonableness of the 
results, and may include an assessment of the input variables in 
performing acceptance testing of algorithm results.  The capability 
provided by seemingly ad-hoc techniques in assessing the 
reasonableness of algorithm results is a powerful technique in the 
detection of computation errors.  The control aspect includes 
checks on the execution flow from entry point to exit points in 
algorithm blocks, and only valid paths between the algorithm 
blocks are permitted.  One approach to establishing the 
correctness of high-level control flow uses structure labeling that 
is embedded in the syntax of the program text.  The introduction 
of path tags to check the validity of the sequencing of blocks and 
block-tags to verify that execution of blocks proceeded properly 
from entry to exit points are examples of such structure labels.  
Each block contains a unique signature, and upon entry the block-
tag is set to the value of the signature.  The block-tag is verified 
upon exit from the routine to confirm that the block was not 
entered in any manner except the valid entry point.   The path-tag 
is then set to the value of the next block signature, which is 
checked on entry into all blocks.  Similar control checking of 
program iterative execution loops for illegal entry, completion, 
and branch related loop termination is utilized.   

The recovery block approach uses acceptance tests in the form of 
checksums and other bounds checking on computation results to 
detect the presence of errors.  The recovery block notion in this 
provision is that subsequent executions of the process using the 
same or different algorithms provide a recovery path from which 
acceptable results may be generated. The recovery block is a 
language construct supporting the incorporation of program 
redundancy into a fault tolerant program.  The syntax of recovery 
block incorporation may take the form: ensure T by B1 else by 
B2, . . . else by Bn else error.  T denotes the acceptance test, B1 
denotes the primary try block, and Bn denotes the alternate try 
blocks.  The T acceptance test is a logical expression representing 
the criterion for determining the acceptability of the execution 
results of the try blocks.24 

Another attempt at monitoring the behavior of a system is the use 
of a watchdog coprocessor.  Most embedded processor systems 

use a hardware watchdog timer to detect halts to processor 
execution or errors in program control flow that are detected 
through failure of the software execution to reset the timer within 
a prescribed period of time.  The watchdog coprocessor extends 
the notion from the simple hardware timer to the use of an 
additional processor to check the results of primary on-line 
processor elements.  An active watchdog may implement 
interaction with the on-line processor as simple as an “I’m OK” 
message or heartbeat monitor that the watchdog expects to receive 
within a prescribed window.  If not received within the valid 
window, the watchdog interprets this result that the on-line 
processor control flow is disrupted and asserts interrupt or reset of 
the on-line processor.  The watchdog may execute concurrently 
with the on-line processor, or it may operate off-line and pre-
compute results for subsequent acceptance testing.  It invokes 
decisions on the integrity of the system based on assertions about 
the main process, assuming that faults either disrupt program 
control flow, corrupt database contents, or produce incorrect 
numerical results.  

One specialized application of information redundancy to 
computational problems is Algorithm Based Fault Tolerance 
(ABFT).  In this approach, some attribute of the function being 
performed is exploited with the use of information or time 
redundancy to achieve error detection, correction, or recovery.  
Most ABFT techniques developed to date address computational 
problems that exhibit structure and regularity which can be 
exploited to develop informational redundancy, such as matrix 
computations, sorting, Fast Fourier Transforms, QR factorization, 
singular value decomposition, least squares minimization, and 
other signal processing applications.25 

To minimize the impact to system operations and the extent of 
recovery operations, and to enhance the probability of successful 
system recovery, errors must be confined to the module or 
subsystem in which the fault occurred.  Typically, error 
containment boundaries are hierarchically defined, with errors 
confined at the lowest level possible.  Containment boundaries 
can be established by subsystems checking their own outputs, or 
by validating all input information.  If error detection is activated 
but error recovery is not supported, the subsystem process is 
typically halted to prevent error propagation. 

If an unmasked fault has propagated in a system, a recovery 
period is needed to correct the system.  Most recovery schemes 
restore system operation to a previous correct state or recovery 
point.  A processor is rolled back to a recovery point by restoring 
the processor state and key variables to a known good condition, 
invalidating cache memory (which is likely to have been 
corrupted by error propagation) and forcing cache data to be 
restored from protected main memory.  A checkpoint is a copy of 
an application’s state that is stored in a protected region of the 
system.  When a failure is detected, the application’s state is 
rolled back to the saved previous checkpoint and execution 
resumed at that point.  Backward error recovery can be defined as 
the capability of a system to return to a consistent state that 
existed before it failed; a checkpoint is then defined as a 
consistent state from which the execution can be restarted.18  

4.6 Validation of Fault Tolerance 
Several approaches have been utilized to assess the effects of 
faults in processor systems and for validating fault handling 



 10

mechanisms, including analytical modeling, experimental 
techniques (hardware pin faults, memory corruption, and ion 
irradiation), simulation modeling (register transfer level, gate 
level, and op-code level simulation) and fault emulation (memory, 
bus, and register transfer level).  Use of analytical modeling is 
problematic due to the very large nature of the problem, and the 
simplifying assumptions that make the analysis tractable are 
regarded as compromising the usefulness of the technique and the 
validity of the results.  Experimental techniques involve 
monitoring the behavior of a system while faults are introduced 
and recording the error detection and correction/recovery 
performance of the system.  This approach requires the use of an 
accelerating agent to produce sufficient faults to gather 
statistically valid measurements on the fault tolerant performance 
of the system.  Simulation based methods provide the capability to 
establish the time of occurrence, location and type of fault, and 
the transient or permanent characteristics of the fault.  Physical 
injection of faults utilizes charged particles, such as heavy-ion 
fission fragments from a Californium-252 source, or the use of a 
heavy ion or proton accelerator to produce single event faults.  In 
addition to the ability to quantify fault tolerance, experimental 
techniques provide the capability to study the consequences of 
faults that escape detection or are not afforded complete 
correction or recovery.  Complexity of most systems results in the 
need to perform many experiments to achieve statistical 
confidence in the validation result  These results are utilized in 
analysis of system performance, often using techniques such as 
Markov process modeling, to make assertions regarding the fault 
tolerant performance and availability of the system. 
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