
2.2

 5

SEU Tolerant Device, Circuit and Processor Design
 William Heidergott

General Dynamics C4 Systems
8201 E. McDowell Road
Scottsdale, Arizona, USA

1.480.441.4598

bill.heidergott@gdc4s.com

ABSTRACT
Development of highly reliable and available systems requires
consideration of the occurrence of single event upsets, the effects
they have on system performance, and strategies for their
prevention and mitigation. Methods of systems engineering
process and the application and validation of techniques for fault
tolerance are discussed as elements in the elimination and
mitigation of single event upsets.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms
Reliability

Keywords
Radiation effects, single event upset, soft error rate, fault tolerant
systems, error detection and correction coding, fault avoidance,
fault masking, modular redundancy, temporal redundancy

1. INTRODUCTION
The development of systems requiring high reliability and
availably requires knowledge of the occurrence of Single Event
Upsets (SEU), understanding of their effects, and the use of
techniques to eliminate or to otherwise mitigate their impact on
system operation. The existence of effects due to single energetic
particle interaction with microelectronic device structures has
been known and addressed since the mid-1970’s. In 1975 Intel
described α-particle induced Soft Error Rate (SER), space
programs began reporting on-orbit occurrence of single event
upsets; IBM reports the use of Error Correction Coding (ECC) in
computers dating back to the mid-1960s. Focus in the 1980’s was
on the use of ECC to mask the occurrence of SER in SDRAM
devices; work on fabrication technology modifications to reduce
SER in memories and on effects in microprocessor device
memory was performed in the 1990’s. Developing an
understanding of the occurrence, detection, and recovery
techniques for logic and other elements of processor systems has

been performed recently.1 Due to the significantly higher level of
energetic particle severity in the space environment, most of the
work on the general class of single event effects has occurred in
support of space applications. Single event upset is only one
element of a broader set of single event effects that result from
energetic particle interaction with the device structure. The term
Soft Error Rate was established by terrestrial systems developers,
whereas the space systems community uses Single Event Upset to
describe the same effects.

2. ENERGETIC PARTICLE
ENVIRONMENTS
Single event upset environments may be separated into the space
environment (earth orbiting and interplanetary traverse), and
terrestrial applications, including high altitude avionics systems.
Most severe amongst these applications is that of space systems;
single event upsets in space result from the traverse of cosmic rays
of galactic and solar origin, trapped protons, and solar event
particles. Severity of the space environment varies significantly
over various orbit conditions (altitude and inclination) and
exhibits profound spatial variation for various segments of orbit
traverse and temporal variation due to both solar and the earth
geomagnetic field conditions. Clementine, a short duration moon
mapping mission, experienced 71 errors per day in a 2.1 Gbit
image memory, the use of error detection and correction fault
masking provisions resulted in zero errors in 1.5 million stored
images due to complete mitigation of these upsets. Cassini, a long
duration mission to explore Saturn, experienced 280 errors per
day in 2.5 Gbit memory.2 The European Space Agency Freja
satellite experienced >200 SEUs/ day, and upset rates as high as
32 SEUs/ minute have been observed in a 2- Gbit DRAM solid-
state data recorder on SOHO during intense solar particle events.3

Terrestrial environments include high energy and thermal
neutrons and α-particles emitted by the decay of radioactive
impurities (232Th, 238U, 210Po, etc.) found in materials used in
device manufacture and packaging. Terrestrial neutrons are
produced by the cascade of particles that result from cosmic ray
interaction with oxygen and nitrogen atoms in the earth’s upper
atmosphere. Due to absorption in the atmosphere, the
environment peaks at an altitude of approximately 60,000 feet,
decreasing by over two orders of magnitude down to sea level.4
The population of cosmic rays reaching the upper atmosphere
varies with latitude due to the shielding provided by the earth’s
geomagnetic field; increasing by a factor of six between equatorial
latitude and the high latitude polar regions. Short-term changes
(daily extremes) in the neutron environment also result from earth
geomagnetic storms associated with solar particle (flare) events.
Additionally, the cosmic ray flux exhibits long-term dependence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13 – 17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 6

on the 11-year solar cycle, in which the resultant flux of terrestrial
neutrons reduces by approximately 30% during the solar
maximum phase.5 Although the terrestrial environment changes
are not as severe as those of space applications, there exists
considerable spatial and some temporal variation in the
environment severity.

3. SINGLE PARTICLE INTERACTION
WITH DEVICE STRUCTURE
The interaction of energetic particles with microelectronic device
structure results in direct ionization or secondary particles that
traverse the device leaving a plasma region of electron-hole pairs
in its wake. Dimension of the track may be very small to greater
than several microns depending on the energy of the incident
particle. The density of electro-hole pairs in the plasma region
varies depending on the Linear Energy Transfer (LET) of the
incident particle. LET is related to energy loss per unit path
length, is a function of the ion species and particle energy; and,
using a conversion factor equates to charge produced per unit
traveled or fC/µ . Cosmic ions, α-particles, and protons result in
direct ionization; neutrons and protons interact with nuclei to
produce secondary particles that produce an ionization track.

Charge collected by drift and diffusion results in several possible
circuit level effects in devices. Deposited charge can activate
parasitic elements in the device structure; semiconductor latchup,
dielectric rupture, and other potentially destructive effects are
known to occur. Severe effects such as these occur mostly due to
higher charge producing particles found in the space environment.
Of interest to this work is that of collected charge producing a
Single Event Transient (SET) pulse, the circuit response to which
may be a Single Event Upset (SEU). Some SEU occurrence
results in a more pervasive and complex effect on devices known
as Single Event Functional Interrupt (SEFI).

4. FAULT TOLERANT SYSTEMS
4.1 System Reliability and Availability
The two most common expressions of a system’s ability to
tolerate failure are reliability and availability. Reliability, R(t), is
the conditional probability that a system will remain operational
(or can be restored to an operational state) over the anticipated life
of the system. Availability, A, is defined as the probability that a
system is accessible at any particular time, and expresses the
fraction of time a system is operational.

R(t) = e-λt | λ = 1 / MTBF

A = µ /(λ+ µ) | µ = 1 / MTTR

MTBF = Mean Time Between Failure
 MTTR = Mean Time To Repair/Recover

A system with high reliability may exhibit unacceptable
availability if the mean-time-to-repair/recover is unacceptably
long. A system with high availability may in fact fail; if the mean-
time-to-repair/recover is suitably low, acceptable availability may
be achieved. Although availability is expressed as the percentage
of the time the system is available to users, specifying the
requirement is typically based on outage frequency, outage
duration, and ultimately on the implications of users being denied
access to the system. The presence of degraded modes or

conditions that infer partial or limited availability further
complicate the specification and design activity. Departures from
expected system operation that contribute to unavailability are
allocated to numerous sources, single event upsets receive only a
portion of the allowable duration of unavailability. Availability is
often expressed as a steady-state value, either as the probability
that the system is operational at any random time (P(s)=0.99999,
5-nines), or as a given amount of downtime over a specified
interval. Statistical mean values of system failure rate and
recovery times are often used in system analysis; however, the
spatial and temporal variances in the energetic particle
environments that produce single event upsets need to be
understood in addressing availability.

4.2 Introduction to Fault Tolerant Systems
Techniques
The risk of a single event upset causing operational impact to a
system establishes the need for an adequate description of
component SEU characteristics and setting design requirements
for single event effects management and mitigation. A technique
such as Single Event Effects Criticality Analysis may be used to
assess system level SEU criticality based on functional impact to
the system.6 The evaluation of alternative single event effects
mitigation and fault tolerance provisions should address cost,
performance, reliability, and single event effects mitigation
effectiveness. System requirements and subsystem specifications
must address allocated availability requirements, operational
modes, and external support capability that relate to the fault
tolerance characteristics of the system. Support provisions from
external agents such as periodic or on-demand operational
intervention in support of diagnosis and recovery actions must be
defined, and the acceptability of different modes of operation
including reduced capabilities and degraded levels of service, safe
shutdown, and emergency modes of operation must be considered.
System architecture and partitioning defines error containment
boundaries, establishes the system-wide strategy for coordinated
error detection and recovery, and the redundancy provisions that
support fault tolerance are determined. Establishing a fault
tolerance hierarchy defines detection and recovery functions for
individual local subsystems, shared functions over a group of
subsystems, and system-wide or global functions.

Historically, the general subject of fault tolerant systems considers
numerous causes of faults, including incorrect specifications,
design errors, undetected manufacturing defects, human operator
actions, component damage or failure, and interaction with the
operating environment. The language of fault tolerant systems
identifies a fault as the initiating event (in this case an energetic
particle induced single event transient or resultant upset); errors
are identified as the undesired system states caused by the fault. If
error detection and recovery do not take place in a timely manner,
a failure can occur that will be manifested by the inability of the
system to provide specified service. Fault tolerance is the
capability of a system to recover from a fault or error without
exhibiting failure. A fault in a system does not necessarily result
in an error; a fault may be latent in that it exists but has not
resulted in an error; the fault must be sensitized by a particular
system state and input conditions to produce an error. The
techniques of fault tolerant systems include fault avoidance, fault
masking, detection of erroneous or compromised system

 7

operation, containment of error propagation, and recovery to
normal system operations. The ability to detect at the lowest
level possible, with error containment within the minimal number
of components and subsystems, enables simpler and more
effective recovery provisions.7,8

Fault tolerant subsystem design includes error detection and
recovery provisions for faults within the subsystem as well as
support for interfaces with other subsystems and global detection
and recovery provisions. Detection and recovery may be either
concurrent with normal system operation or preemptive in which
case normal system operation is suspended until completion of the
recovery activities. Correction provisions may be real-time;
recovery provisions may be either backward (rollback to a
previous error-free state) or forward, constructing a valid error
free new state from existing protected information. The recovery
sequence includes the identification and removal of errors,
restoration of valid subsystem states, and validation of the
completion of successful recovery operation. It must be
demonstrated that adequate testability is provided to detection and
correction/recovery provisions, ensuring that manufacturing or
component defects do not exist in systems which compromise the
operation or performance of fault tolerance provisions.
Furthermore, circuitry added to enable such testability must be
examined for the propensity to introduce new fault conditions or
to exacerbate the rate of fault occurrence.9

Validation and verification activities must include the ability to
establish that the design supports the requirements established for
fault tolerance. Methods and provisions utilized in subsystem
evaluation and for various levels of system integration verify the
performance of detection, correction, and recovery provisions.
Qualitative evaluation of fault tolerant design provisions includes
the use of formal and heuristic methods, test, and experimentation
to demonstrate operability of detection and recovery provisions.

4.3 Fault Avoidance
Fault avoidance addresses techniques to reduce the occurrence of
faults through reduction in the severity of the energetic particle
environment or the mitigation of circuit response to the traverse of
energetic particles. Reduction in the severity of the environment
includes consideration of alternative applications conditions, such
as orbit altitude and inclination in space systems and latitude and
altitude of atmospheric neutrons, and the use of shielding
provisions to reduce the severity of the environment when
translated to sensitive component locations. Reduction in the
severity of the alpha particle environment can be achieved
through screening and selection of materials used in device
manufacture; including low alpha emitting solder and plastic
encapsulant materials. Due to the limited energy and range of
alpha particles emitted by plastic encapsulatnts, the use of
shielding provisions such as polyimide material deposited onto
the die surface can result in significant reduction in the population
of alpha particles reaching sensitive device structures. Shielding
materials having large thermal neutron capture cross-section are
effective in attenuating the population of thermal neutrons. Due
to their energy and resultant range, shielding is much less
effective in attenuating the high-energy atmospheric neutrons,
trapped and solar protons, or cosmic ray heavy ion environments.

Fault avoidance provisions also address the mitigation of single
event upset through reduction in charge generation and collection,

and mitigation of circuit response to collected charge. Techniques
directed at reducing collected charge typically rely on the ability
to truncate the funnel dimensions, to reduce the carrier lifetime in
the region of the sensitive volume. Manufacturers have
demonstrated success in the reduction of alpha particle induced
soft error rate through the use of retrograde well profile; the
increasing carrier concentration with increased distance into the
well region results in reduced carrier lifetime, thus reducing the
charge collected from the region below the sensitive volume.10

Mitigation of circuit response includes provisions to increase
critical charge, suppress response by limiting circuit bandwidth
such that no response is generated by the short collected charge
transient pulse, and to provide circuit design provisions blocking
the propagation of pulses in memory cell feedback paths.
Memory manufacturers have utilized stacked capacitor structures
to increase cell capacitance, single event upset hardened devices
have used high valued polysilicon resistors in the feedback path of
the SRAM cell, working with the cell capacitance prevents the
cell from responding to the short duration of charge collection.
Numerous unique and novel circuit designs have been developed
for memory cells, latches, and registers; based on techniques to
reduce the bandwidth of the cell to achieve immunity to the
transient caused by collected charge or to provide redundant
storage or blocking provision to prevent upset.11-14 Although
effective in improving cell single event upset characteristics, the
increased cell size and the reduced bandwidth are contrary to the
achievement of high-speed operation.

4.4 Fault Masking and Redundancy
Implementation of fault masking typically utilizes some form of
redundancy; variations include informational redundancy
(redundant data structures), spatial redundancy (redundant
hardware), and temporal redundancy (redundant sequential
operations). The fault detection and correction capabilities of
redundant structures are good; recovery complexity depends upon
the nature of the function performed by each of the structures.

The increase in hardware content in informational redundancy is
typically less than spatial modular redundancy. Information
redundancy and encoding provisions are designed such that in the
presence of errors, the information is internally inconsistent,
enabling Error Detection And Correction (EDAC)
implementations. EDAC codes can vary widely in detection and
correction capabilities, code efficiency, and complexity of
encoding and decoding circuitry. Cyclic redundancy checks,
other cyclic codes, and convolutional coding schemes are used to
detect errors in serial data transfer interfaces and storage media;
such codes are generally classified as either block codes or
convolutional codes. Hamming codes are the first class of linear
block codes that were devised for error correction; these codes
and their variations have been widely used in digital
communications and data storage systems. The most common
block code used in memory systems is the single-error-correcting,
double-error-detecting (SEC-DED) Hamming code; for a code to
be useful for high-speed memory applications, its structure must
permit rapid parallel encoding and decoding operations, Hsiao
developed SEC-DEC codes by examining the properties of
shortened Hamming codes to identify specific codes that enable
fast encoding and decoding processes. The Bose, Chaudhuri, and
Hocquenghem (BCH) codes form a large class of powerful error

 8

correcting cyclic codes the most commonly recognized being the
non-binary Reed-Solomon (RS) codes.15-17

The nature of coding precludes its use in most computational
operations. Simple arithmetic functions permit the use of parity
through multistage adder circuits, and arithmetic codes such as
AN and residue codes exist. AN is a non-separate code in which
the added information is not distinct from the initial information,
permitting fault detection in addition operations. Other residue
codes are separate in nature; inverse residue codes are capable of
detecting multiple errors that are unidirectional in nature, and bi-
residue codes with two separate encoding levels provide error
correction capability. The use of residue coding schemes for fault
tolerance has received very limited application due to the high
overhead requirement for pre-multiplying input variables, limited
correction capabilities, and lack of capability for general
computational operations.18

In the most common form of spatial or modular redundancy is
Triple Modular Redundancy (TMR), a fault in an individual
module is corrected by the action of a voter through the majority
consensus, or two-out-of-three, voting rules. The individual
modules may consist of basic functions such as memory elements,
D-flip-flops, or latches, and more complex logic blocks such as
state machines or highly complex logic functions; including
complete processing functional blocks, or entire subsystems.19

The notion of modular redundancy can be extended to the general
sense of n-modular redundancy (nMR) with associated
enhancements to the fault tolerance capabilities and expense
associated with their implementation. The capability to change
the nature of a modular voting scheme is termed dynamic
redundancy. In general, dynamic redundancy consists of three
actions, detection of error, location of the error, and
reconfiguration of the structure to perform in an optimum manner.
If there exists a highly probable condition in which failures in
both modules would produce identical module output conditions,
the redundant module could potentially contain a complementary
function instead of an identical copy of the primary module. In
this case the dual of the primary module is utilized in the design
of the redundant module. An element of difficulty in complex
circuits using spatial redundancy is the ability to recover the faulty
processor to a known-good condition so that its outputs may again
be utilized in detection and correction operations. Often the
recovery operation in the faulty processor requires recovery of
data and control states and resynchronization processes that
cannot be performed concurrent with normal operations.

An alternative to spatial redundancy is temporal redundancy in
which the same hardware or software elements are used in
consecutive operations, using diversity in time to provide results
which may be compared using similar comparator/detection, and
correction techniques discussed above for spatial redundancy.
The technique is dependent upon the requirement for known
error-free conditions on the input signals or variables used in the
operations; either independent detection and correction must be
provided to inputs, or the use of alternating logic techniques or
complementing functions must be utilized to provide tolerance to
input signal or variable errors. Alternating logic utilizes a class of
boolean functions which are self dual, i.e. they satisfy the property
f(x1_, x2_, . . ., xn_) = f_(x1, x2, . . ., xn). Recomputing with
shifted operands (RESO) is applicable to certain problems in
which the shifting of inputs forms a complementing function that

produces known relationship in outputs that may be utilized in
detection and correction.

In older technologies single event transient pulses would not
propagate along a path of combinatorial logic gates and the
limited clocking frequency reduced the probability of sampling an
incorrect logic state during the presence of a transient. The
bandwidth of advanced technologies supports propagation of such
pulses, and high clock frequencies provide ample opportunity for
clocking of errant results into memory elements. The use of static
spatial redundancy as a fault tolerance technique for single event
upsets in memory elements (latches, flip-flops, and RAM), along
with temporal redundancy as a mitigation provision against single
event transients in combinatorial logic has been proposed for
advanced technology devices.20 The combined scheme uses
temporal triple mode redundancy by sampling the output of
combinatorial logic at three different times, storing the individual
result in three different latch or flip-flop elements, and majority
voting the latched result. By ensuring that the separation between
clock edges is greater than the duration of a transient pulse
emerging from the combinatorial logic, the transient can corrupt
only one of the three values. Majority voting of static triple
spatial redundancy ensures that upset of individual latches will
also be corrected through action of the majority vote logic.

4.5 Error Detection, Containment and
Recovery
Whereas the fault detection capabilities of hardware based
schemes such as modular redundancy are good, fault detection is
the most difficult aspect of fault tolerance to achieve in
applications oriented fault tolerance using algorithms, or software
based fault detection, due to the elusive nature of the signature of
most faults. A fault that results in a check-stop result enables
obvious opportunity for detection; conditions of compromised
system state produce signatures that are difficult to discern. Once
detection is accomplished, recovery may be as complete and
efficient as necessary to restore normal system operation.21

The ability to apply software fault tolerance techniques relies on
specific properties of the problems being addressed by processor
operations and are embodied in a constraint predicate. Three
defined predicate subclasses formulate the constraint predicate:
progress, feasibility, and consistency. The progress predicate
utilizes the notion that there exist steps in the sequence of process
operations and that the decomposition of the process into a finite
number of operations blocks provides opportunity for testability at
these intermediate points in the process. The feasibility predicate
implies constraints that are apparent from the nature of the
problem on which the processor is operating. Contained within
this notion is the property of boundary conditions as constraints
from which to generate a good predicate; testable results must be
within the solution space of the problem as defined by the
boundary conditions. Consistency conditions imply the ability to
infer validity in intermediate or final results from input variables
and previous intermediate or final process results. Consistency
tests are a powerful technique; entire constraint predicates have
been developed using only consistency conditions.

Application-oriented fault tolerance is a software approach to the
problem of error detection and recovery; the software components
are called assertions. The application of a set of metrics to a

 9

problem specification results in software assertions that may be
embedded in the program code; assertions having the form “if not
ASSERTION then ERROR”. The extent of error detection is
determined by the perceptiveness of the assertions to discern a
compromised state of program execution. The recovery capability
is determined by the response that is embodied in the error branch
path. Applications-oriented fault tolerance works on the principle
that testing of a program’s intermediate results for conformance to
specification ensures that the end result will be within
specification, and if an error does not manifest itself in a failure,
then the fault is of no consequence or interest.22

Several acceptance test techniques employed in detecting the
presence of faults are N-version programming, self-checking
software, recovery blocks, and the watchdog coprocessor. N-
version programming is intended as a provision to detect defects
in software design, coding, and integration. Parallel or sequential
execution of programs and comparing the results provides
opportunity for fault detection, much in the same way as modular
redundancy does for hardware fault detection provisions.23

The self-checking software technique has aspects of functionality,
control flow, and data in order to provide error detection. The
functional and data aspects examine the reasonableness of the
results, and may include an assessment of the input variables in
performing acceptance testing of algorithm results. The capability
provided by seemingly ad-hoc techniques in assessing the
reasonableness of algorithm results is a powerful technique in the
detection of computation errors. The control aspect includes
checks on the execution flow from entry point to exit points in
algorithm blocks, and only valid paths between the algorithm
blocks are permitted. One approach to establishing the
correctness of high-level control flow uses structure labeling that
is embedded in the syntax of the program text. The introduction
of path tags to check the validity of the sequencing of blocks and
block-tags to verify that execution of blocks proceeded properly
from entry to exit points are examples of such structure labels.
Each block contains a unique signature, and upon entry the block-
tag is set to the value of the signature. The block-tag is verified
upon exit from the routine to confirm that the block was not
entered in any manner except the valid entry point. The path-tag
is then set to the value of the next block signature, which is
checked on entry into all blocks. Similar control checking of
program iterative execution loops for illegal entry, completion,
and branch related loop termination is utilized.

The recovery block approach uses acceptance tests in the form of
checksums and other bounds checking on computation results to
detect the presence of errors. The recovery block notion in this
provision is that subsequent executions of the process using the
same or different algorithms provide a recovery path from which
acceptable results may be generated. The recovery block is a
language construct supporting the incorporation of program
redundancy into a fault tolerant program. The syntax of recovery
block incorporation may take the form: ensure T by B1 else by
B2, . . . else by Bn else error. T denotes the acceptance test, B1
denotes the primary try block, and Bn denotes the alternate try
blocks. The T acceptance test is a logical expression representing
the criterion for determining the acceptability of the execution
results of the try blocks.24

Another attempt at monitoring the behavior of a system is the use
of a watchdog coprocessor. Most embedded processor systems

use a hardware watchdog timer to detect halts to processor
execution or errors in program control flow that are detected
through failure of the software execution to reset the timer within
a prescribed period of time. The watchdog coprocessor extends
the notion from the simple hardware timer to the use of an
additional processor to check the results of primary on-line
processor elements. An active watchdog may implement
interaction with the on-line processor as simple as an “I’m OK”
message or heartbeat monitor that the watchdog expects to receive
within a prescribed window. If not received within the valid
window, the watchdog interprets this result that the on-line
processor control flow is disrupted and asserts interrupt or reset of
the on-line processor. The watchdog may execute concurrently
with the on-line processor, or it may operate off-line and pre-
compute results for subsequent acceptance testing. It invokes
decisions on the integrity of the system based on assertions about
the main process, assuming that faults either disrupt program
control flow, corrupt database contents, or produce incorrect
numerical results.

One specialized application of information redundancy to
computational problems is Algorithm Based Fault Tolerance
(ABFT). In this approach, some attribute of the function being
performed is exploited with the use of information or time
redundancy to achieve error detection, correction, or recovery.
Most ABFT techniques developed to date address computational
problems that exhibit structure and regularity which can be
exploited to develop informational redundancy, such as matrix
computations, sorting, Fast Fourier Transforms, QR factorization,
singular value decomposition, least squares minimization, and
other signal processing applications.25

To minimize the impact to system operations and the extent of
recovery operations, and to enhance the probability of successful
system recovery, errors must be confined to the module or
subsystem in which the fault occurred. Typically, error
containment boundaries are hierarchically defined, with errors
confined at the lowest level possible. Containment boundaries
can be established by subsystems checking their own outputs, or
by validating all input information. If error detection is activated
but error recovery is not supported, the subsystem process is
typically halted to prevent error propagation.

If an unmasked fault has propagated in a system, a recovery
period is needed to correct the system. Most recovery schemes
restore system operation to a previous correct state or recovery
point. A processor is rolled back to a recovery point by restoring
the processor state and key variables to a known good condition,
invalidating cache memory (which is likely to have been
corrupted by error propagation) and forcing cache data to be
restored from protected main memory. A checkpoint is a copy of
an application’s state that is stored in a protected region of the
system. When a failure is detected, the application’s state is
rolled back to the saved previous checkpoint and execution
resumed at that point. Backward error recovery can be defined as
the capability of a system to return to a consistent state that
existed before it failed; a checkpoint is then defined as a
consistent state from which the execution can be restarted.18

4.6 Validation of Fault Tolerance
Several approaches have been utilized to assess the effects of
faults in processor systems and for validating fault handling

 10

mechanisms, including analytical modeling, experimental
techniques (hardware pin faults, memory corruption, and ion
irradiation), simulation modeling (register transfer level, gate
level, and op-code level simulation) and fault emulation (memory,
bus, and register transfer level). Use of analytical modeling is
problematic due to the very large nature of the problem, and the
simplifying assumptions that make the analysis tractable are
regarded as compromising the usefulness of the technique and the
validity of the results. Experimental techniques involve
monitoring the behavior of a system while faults are introduced
and recording the error detection and correction/recovery
performance of the system. This approach requires the use of an
accelerating agent to produce sufficient faults to gather
statistically valid measurements on the fault tolerant performance
of the system. Simulation based methods provide the capability to
establish the time of occurrence, location and type of fault, and
the transient or permanent characteristics of the fault. Physical
injection of faults utilizes charged particles, such as heavy-ion
fission fragments from a Californium-252 source, or the use of a
heavy ion or proton accelerator to produce single event faults. In
addition to the ability to quantify fault tolerance, experimental
techniques provide the capability to study the consequences of
faults that escape detection or are not afforded complete
correction or recovery. Complexity of most systems results in the
need to perform many experiments to achieve statistical
confidence in the validation result These results are utilized in
analysis of system performance, often using techniques such as
Markov process modeling, to make assertions regarding the fault
tolerant performance and availability of the system.

5. REFERENCES
[1] Bossen, D., CMOS Soft Errors and Server Design, Radiation

Induced Soft Errors in Silicon Components and Computer
Systems Tutorial, IRPS 2002.

[2] Johnston, A., Mitigation Methods for Soft Errors and
Related Radiation Effects in Spacecraft, Radiation Induced
Soft Errors in Silicon Components and Computer Systems
Tutorial, IRPS 2002.

[3] Dodd, P. and Sexton, F., Mitigation of Single- Event Effects
in Mission- Critical Systems, Radiation Induced Soft Errors
in Silicon Components and Computer Systems Tutorial,
IRPS 2002.

[4] Normand, E., Single-Event Effects in Avionics, IEEE
Transactions on Nuclear Science, Vol. 43, No. 2, April 1996,
Page 461-474

[5] National Geophysical Data Center (NGDC), National
Oceanic and Atmospheric Administration (NOAA),
http://www.ngds.noaa.gov/stp/SOLAR/COSMIC_RAYS/cos
mic.html

[6] LaBel, K., Michele Gates, M., Barth, J., Stassinopoulos,
E.G., Johnston, A. and Marshall, P., Single Event Criticality
Analysis (SEECA), http://flick.gsfc.nasa.gov/radhome/papers

[7] Somani, A.K. and Viadya, N.H., Understanding Fault
Tolerance and Reliability, Computer, pp 45-50, (Apr 1997).

[8] Avizienis, A., Toward Systematic Design of Fault-Tolerant
Systems, Computer, pp 51-58, (April 1997)

[9] Nelson, V., Fault-Tolerant Computing: Fundamental
Concepts, Computer, pp 19-25, (July 1990)

[10] Mitsubishi Electric Develops High-Frequency Synchronous
SRAM with Dramatically Reduced Soft Error Rate,
International Solid-State Circuits Conference, Feb 1999,
http://www.mitsubishichips.com/press/releases/fsram_99.htm

[11] Vinson, J, Circuit Reliability of Memory Cells with SEU
Protection, IEEE Transactions on Nuclear Science, Vol. 39,
No. 6, pp 1671-1678, (December 1992)

[12] Rockett, L., An SEU Hardened CMOS Data Latch Design,
IEEE Transactions on Nuclear Science, Vol. 35, No. 6, pp
1682-1687, (December 1992)

[13] Calin, T., Nicolaidis, M., Velazco, R., Upset Hardened
Memory Design for Submicron CMOS Technology, IEEE
Transactions on Nuclear Science, Vol. 43, No. 6, pp 2874-
2878, (December 1996)

[14] Norely, M., Liu, and Whitaker, S., Low Power SEU Immune
CMOS Memory Circuits, IEEE Transactions on Nuclear
Science, Vol. 39, No. 6, pp 1679-1684, (December 1992)

[15] Lin, S. and Costello, D., Error Control Coding –
Fundamentals and Applications, Prentice-Hall, (1983)

[16] Fujiwara, E. and Pradhan, D., Error-Control Coding in
Computers, Computer, (July 1990)

[17] Chen, I. and Yen, I., Analysis of Probablistic Error Checking
Procedures on Storage Systems, The Computer Journal, Vol.
38, No. 5, (1995)

[18] Peercy, M. and Banerjee, P., Fault Tolerant VSLI Systems,
Proceedings of the IEEE, pp 745-758, (1993)

[19] Vaidya, N.H., Comparison of Duplex and Triplex Memory
Reliability, IEEE Transactions on Computers, Vol. 45, No. 4,
pp 503-507, (1996)

[20] Mavis, D. and Eaton, P., Temporally Redundant Latch for
Preventing Single Event Disruptions in Sequential
Integrated Circuits, Mission Research Corporation Technical
Report P8111.29, October 1998

[21] Sosnowski, J., Transient Fault Tolerance in Digital Systems,
IEEE Micro, (1994)

[22] McMillin, B., Fault Tolerance for Multicomputers: The
Application Oriented Paradigm, Department of Computer
Science, University of Missouri-Rolla, (1997)

[23] Banatre, M. and Lee, P., Hardware and Software
Architectures for Fault Tolerance, Experiences and
Perspectives

[24] Kim, K.H., and Welch, H.O., Distributed Execution of
Recovery Blocks: An Approach for Uniform Treatment of
Hardware and Software Faults in Real-Time Applications,
Fault-Tolerance Systems: Techniques and Applications,
edited by Hoang Phan, pp 95-105, (1992)

[25] Blaquiere, Y., Gagne, G., Savaria, Y., and Evequoz, C., A
New Efficient Algorithm-Based SEU Tolerant System
Architecture, IEEE Transactions on Nuclear Science, Vol.
42, No. 6, (Dec 1995)

