
Partial Program Admission by Path Enumeration
Michael Wilson

Department of Computer Science
and Engineering

Washington University in St. Louis
St. Louis, Missouri 63130

Email: mlw2@arl.wustl.edu

Ron Cytron
Department of Computer Science

and Engineering
Washington University in St. Louis

St. Louis, Missouri 63130
Email: cytron@cse.wustl.edu

Jonathan Turner
Department of Computer Science

and Engineering
Washington University in St. Louis

St. Louis, Missouri 63130
Email: jon.turner@arl.wustl.edu

Abstract—Real-time systems on non-preemptive platforms re-
quire a means of bounding the execution time of programs
for admission purposes. Worst-Case Execution Time (WCET)
is most commonly used to bound program execution time. While
bounding a program’s WCET statically is possible, computing its
true WCET is difficult without significant semantic knowledge.
We present an algorithm for partial program admission, suited
for non-preemptive platforms, using dynamic programming to
perform explicit enumeration of program paths. Paths – possible
or not – are bounded by the available execution time and
admitted on a path-by-path basis without requiring semantic
knowledge of the program beyond its Control Flow Graph (CFG).

I. I NTRODUCTION

Admission control in real-time systems running on non-
preemptive platforms requires the ability to bound the ex-
ecution time of applications. In a trusted environment, a
single administrator can make an out-of-band determination
of execution boundedness. Untrusted, shared environments
are more difficult. As an example of such an environment,
consider network virtualization, which has been advanced as
a way to foster innovation in the Internet [1].

In network virtualization, core router platforms host 3rd-
party application code, running at Internet core speeds, al-
lowing the creation of high-speed overlay services [2]. These
platforms, of which the IXP 28XX is a representative example,
usually have no preemption mechanism suitable for use at high
speeds. Internet core speeds necessitate extremely tight cycle
budgets for packet processing. To share this type of system
among untrusted parties requires stringent admission control.

In other domains, instrumentation with runtime checks to
enforce proper behavior is a practical solutions. Unfortunately,
Internet core speeds render runtime checks impractical. At
5Gbps, an IXP 2800-based system with 1.4 GHz microengines
and 8 hardware thread contexts has a compute budget of 170
cycles. With such tight budgets, even a few runtime checks can
quickly push otherwise admissible program paths over budget.
A practical solution must therefore impose as little runtime
overhead as possible.

Worst-Case Execution Time (WCET) analysis is the cur-
rently accepted approach. A WCET bound can be established
statically, assuming that all program paths are viable. However,
some well behaved programs might be rejected. For example,
a program may have mutually exclusive code paths that, taken

together, exceed the cycle budget. Demonstrating that these
paths are mutually exclusive takes semantic knowledge, either
provided by the developer or deduced by analysis at admission
time. In most domains, this information is provided by the
developer as branch constraints. For our virtualization appli-
cation, we cannot trust the developer; any semantic knowledge
must come from the analysis.

We proposepartial program admission as a practical so-
lution to this problem. By explicitly examining all paths, we
can perform static analysis to re-write 3rd-party applications
to achieve the following goals:

1) all “safe” paths (paths that complete under budget) are
admitted,

2) no “unsafe” paths (paths that complete over budget, or
that do not complete) are admitted,

3) no runtime penalty is imposed on any safe path, and
4) no semantic knowlege is required.

To re-write the program, we actually duplicate some code
paths. While this causes some code expansion, or “bloat”, in
practical cases the bloat proves to be within acceptable limits.

II. A LGORITHM OVERVIEW

Our algorithm should be considered in the context of
a simplified processor model. Our idealized processor has
instructions taking exactly one cycle to complete. All memory
accesses complete in one cycle. There is no pipeline.

Our computational model is event-driven, where code is
executed only in response to these events. For the network
virtualization application, the event is packet arrival.

Finally, we require the developer to add a “time-exceeded”
exception handler to her code. The exception handler is
required to adhere to strict coding guidelines which make static
analysis simple and easy.

A. Path Enumeration

Our input to the algorithm consists of an assembly level
representation of the program. From this, we can develop a
Control Flow Graph (CFG) of the program, in which edges
are labeled by the execution time required for the correspondig
program segments. Our objective is to derive a new CFG that
executes the same sequence of instructions for program exe-
cutions that complete within a specified time boundB, while



Fig. 1. CFG and the corresponding CFT. Weights along the edges represent
cycle counts to traverse that edge. Total path cycle counts are presented below
each terminal node in the execution tree.

terminating in an exception handler for program executions
that exceed the budgetB.

The conceptual starting point for this construction is the
creation of a Control Flow Tree (CFT) from the CFG. The
CFT duplicates nodes in the CFG as necessary, in order to
convert the graph into a tree.

See Figure 1 for an example. NodesS and T are dummy
nodes used to delineate entry and exit points, and contain no
actual code. Similarly, in the CFT,T 1− T 4 are copies of the
dummy nodeT and contain no code.

Code generated from the CFT is functionally identical to the
original CFG. If the length of the path from the root node to a
nodeu in the tree exceedsB, then we can replace the subtree
rooted atu with an exception node, representing a jump to
the exception handling routine. As an additional step, if after
applying this step, the CFT contains a subtree whose leaves
are all exception nodes, we can replace the entire subtree with
an exception node.

This pruning procedure is illustrated on Figure 1. Let us
consider a budget of 10 cycles. While it would be valid to
execute the pathA → C → D2 → F2 → G4 before aborting
to the exception handler, it is clear that any execution path
reaching F2 will go over budget. Our earliest chance to raise
the exception is by intercepting the branch instruction at D2,
with the result shown in Figure 2.

We refer to the tree constructed in this way as theB-bounded
execution tree of the original control flow graph. We note that
such a tree can be defined relative to any nodeu in the CFG
and we letbxtB(u) (or generally, BXT) denote this execution
tree.

While one could generate a version of the original program
directly from the BXT, this typically results in an excessive
amount of code duplication. We can dramatically reduce the
amount of code duplication by merging equivalent subtrees of
the BXT in a systematic way.

Fig. 2. Abort to exception handler

B. Code Duplication Reduction

The BXT typically contains multiple subtrees that are iden-
tical to one another and can be merged. To make this precise,
we define two nodesu1 andu2 in the BXT to beequivalent if
they were derived from the same nodeu in the original CFG
(that is, they represent copies of the same orignal program
segment). Two subtrees of the BXT are equivalent if they are
structurally identical and all of the corresponding node pairs
are equivalent. We can merge any pair of equivalent subtrees
without changing the set of executions, yielding abounded
execution graph (BXG) equivalent to the BXT. Conceptually,
the merging is performed in a top down fashion. That is, ifu1

andu2 are roots of equivalent subtrees, we merge them so long
as there are no ancestorsv1 of u1 andv2 of u2 that are also
roots of equivalent subtree. The merging process continues, as
long as there are equivalent subtrees that can be merged.

Returning to our example, nodesD1 and D2 cannot be
coalesced because their child execution trees are different. D1
has childrenE1 andF2; D2 has childrenE2 andX . However,
the subtrees rooted atE1 and E2 are identical. There is no
need to retain both trees. Instead, we can coalesce them intoa
single subtree. Even further, the tree rooted atG2 is identical
to the subtrees rooted atG1 andG3. We can also coalesce the
G2 node with theG1/G3 node from theE1/E2 execution
tree. See Figure 3.

In contrast to the massive code duplication in the BXT, in
the BXG only one node (D) needed to be duplicated.

While one can derive the BXG by explicitly constructing
the BXT and then merging nodes, there is a more efficient
dynamic programming procedure that can be used to construct
the BXG directly. This procedure is based on the observation
that the structure of a BXT subtree with root nodeu1 is a
function of just two things – the nodeu in the original CFG
thatu1 was derived from and the amount of available execution
time that remains after execution has reachedu1. If the length
of the path from the root tou1 is p, then the remaining
execution time isB − p whereB is the overall bound. We



Fig. 3. Coalescence of equivalent execution subtrees

note that the BXT subtree with rootu1 is bxtB−p(u). So two
nodesu1 andu2 derived from the same CFG nodeu will have
identical subtrees if the lengths of their paths from the root
are identical. More generally, if their path lengths arep andq,
they will have identical subtrees ifbxtB−p(u) = bxtB−q(u).
This will be true for values ofB − p and B − q that are
“close enough” in a certain sense. For each nodeu in the
original CFG, the dynamic programming procedure produces
a partition on the integers 0 toB. Two valuesi andj fall in the
same block of the partition if and only ifbxti(u) = bxtj(u).
Using these partitions, we can construct the BXG directly
from the CFG, without having to explicitly construct the
BXT. See [3] for a complete description of the algorithm, a
correctness proof and execution time analysis.

III. PERFORMANCE

We have implemented this algorithm and tested it on a
variety of CFGs and budgets.

A. Synthetic CFGs

Our synthetic CFGs were generated by a series of vertex
substitutions that parallel grammar production rules in a C-like
language. For our acyclic CFGs, we include simple statements,
if, if-then-else, and switch/case statements. For our cyclic
CFGs, we addedwhile, do/while, andfor loops. In both cases,
the typical size of the synthetic input CFG was roughly double
the size of the largest packet processing code block we have
seen in our router virtualization efforts, and quadruple the
target size for a typical code block.

Examine Figure 4. This represents the results of running the
algorithm on 1000 different acyclic synthetic CFGs. We show
the resulting distribution of the maximum code duplicationfac-
tor required for each synthetic CFG over all possible budgets.
The vast majority (82%) require a maximum duplication factor
from 1–2, with an average maximum of 1.6. Large duplication
factors are actually very rare; one pathological case required a
duplication factor of 23.5. Subsequent analysis of this example

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
er

ce
nt

ag
e

of
C

F
G

s

Maximum Duplication Required (Normalized)

Code Duplication Distribution

Fig. 4. Percentage of synthetic CFGs requiring more than X duplication
(from run of 1000 synthetic CFGs)

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

In
st

ru
ct

io
ns

Budget (cycles)

IPv4 Header Format

Fig. 5. Code duplication on real CFG (IP Header Format)

showed that it was composed almost exclusively of a series of
nestedswitch/case statements.

The results on cyclic CFGs are uninteresting and omitted.
While the algorithm works on cyclic CFGs, it works by
implicitly unrolling the loop to the limit of the budget. Thus,
the code duplication factor is bounded only by the budget. As
expected, in actual simulation the code duplication factorfor
cyclic graphs is linear in the budget.

B. Real CFG: IPv4 Header Rewriting

For a real CFG, we used the code that rewrites the IPv4
header for next-hop forwarding. This consists of 180 instruc-
tions, designed to run at over 5 Gbps on our virtualized router.

See Figure 5. The real CFG necessitated some minor
modification to the algorithm to deal with pipeline stalls due
to unfilled deferral slots.

At very small budgets, the algorithm actually generatesless
code than the original CFG. This is due to pruning when
the budget is too low for this code block. That is, so many



paths are pruned that many vertices are never emitted at all.
For most application code, this represents a serious developer
error and would be reported as such. It is simple for our
algorithm to report when certain paths are never admitted, and
we implemented this in our experimental version.

Above 108 cycles, we reach the maximum length path
of the CFG. At this point, all paths are admissible and no
duplication is necessary. The original CFG is accepted with
no modification.

A suitable budget for 5 Gbps would be 170 cycles. Clearly,
we are under 170. For 10 Gbps we need 85 cycles. The IPv4
header format code is not currently able to achieve 10 Gbps,
as the chart makes obvious. Even worse, 85 cycles is the peak
of our code duplication, at 296 instructions. This still yields a
duplication factor of only 1.64, well in line with our synthetic
cases.

IV. RELATED WORK

The major competing technology is WCET analysis using
mixed integer programming [4]. This differs from our work
in that it makes no effort to solve the code emission problem,
and requires that we trust the developer to provide semantic
information on branch constraints.

Our problem is different. We need to accept and handle
untrusted code in a shared environment. Thus, we must derive
any semantic information from the program, not the developer.
In the absence of programmer specific semantic information,
we can re-write programs to create provably safe CFGs via
code duplication.

We also note that the decision to use integer programming
to solve the WCET problem was because the developers
considered explicit path enumeration infeasible. This fails to
consider the possibilities of dynamic programming.

for (i=0; i<100; i++) {
if (rand() > 0.5) j++;
else k++;

}
Fig. 6. “Difficult” WCET analysis for explicit path enumeration

Consider the code snippet in Figure 6. The argument is that
this snippet contains2100 possible paths, and that to enumerate
them all is simply impractical. However, using a dynamic
programming approach with loop bounds, we can determine
WCET for this snippet in linear time.

V. CONTINUING WORK

Our current implementation of the algorithm does not yet
perform emission, nor does it incorporate a parser to accept
real-world code. This is our current developmental priority.

We have also identified additional ways to reduce duplica-
tion. One immediate gain can be made by noting duplicated
paths that contain no safe paths “close” to the budget. We can
coalesce these paths by adding runtime checks that lengthen
safe paths but do not actually push them over the budget. One
possible way to reduce the expense of the runtime check is

inspired by Ball and Larus [5], who developed single-counter
methods for tracking execution paths through a CFG and
applied those to optimize the “hot” paths. In our work, we
are interested in using the same techniques to differentiate
safe vs. unsafe paths.

Much greater gains can be made by extracting semantic
information from the code itself. If we have complete semantic
information, we can avoid path enumeration for impossible
paths in the CFG. The problem becomes a limited, finite form
of the Halting Problem: does this code, when started with any
of the possible inputs, halt withinB cycles? Any finite form
of the Halting Problem is decideable.

We believe that a data flow framework solution is appropri-
ate. With explicit path enumeration, we can solve the constant
propagation problem to completion over branch conditions.
This would allow us to deduce loop iteration bounds, mutually
exclusive paths, and even unreachable code.

We consider this the most important area for additional
study. The current state of the algorithm allows duplication to
stand in lieu of semantic knowledge. Code that is semantically
safe but unsafe in the CFG can be admitted by rewriting the
code to guarantee that the unsafe but semantically impossible
paths are never taken. With a complete semantic analysis, we
would never need to strip those paths, and our code duplication
would be reserved for those cases where a genuinely unsafe
path is included.

In our application of event-driven, tight budget real-time
guarantees, this line of research is very promising. The number
of input values to examine is limited by the paucity of available
cycles for reading data from memory. We know that our
constant propagation will never need to deal with more than a
few dozen values, because any code that examines more than
this will be over budget due to memory latencies.

VI. CONCLUSION

In this paper, we have introduced a new technique for par-
tial program admission. We have demonstrated that dynamic
programming can be used to render explicit path enumeration
eminently feasible. The same construction can be used to emit
a modified CFG that meets event-drive real-time guarantees.

This method shows great promise in the realm of network
virtualization. Other applications in similar fields may be
equally promising.

REFERENCES

[1] J. Turner and D. Taylor, “Diversifying the internet,” inIEEE Globecom
2005, St. Louis, MO, Nov. 2005.

[2] J. Turner and N. McKeown, “Can overlay hosting services make ip
ossification irrelevant?” inProc. PRESTO: Workshop on Programmable
Routers for the Extensible Services of TOmorrow, May 2007.

[3] M. Wilson, R. Cytron, and J. Turner, “Partial program admission by path
enumeration,” Washington University, St. Louis, MO, WUCSETech. Rep.
WUCSE-2008-4, 2008.

[4] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,”SIGPLAN Not., vol. 30, no. 11, pp.
88–98, 1995.

[5] T. Ball and J. R. Larus, “Efficient path profiling,” inMICRO 29:
Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1996, pp. 46–57.


