Partial Program Admission by Path Enumeration

Michael Wilson Ron Cytron Jonathan Turner
Department of Computer Science Department of Computer Science Department of Computer Science
and Engineering and Engineering and Engineering
Washington University in St. Louis Washington University in St. Louis Washington University in St. Louis
St. Louis, Missouri 63130 St. Louis, Missouri 63130 St. Louis, Missouri 63130
Email: miw2@arl.wustl.edu Email: cytron@cse.wustl.edu Email: jon.turner@arl.wustl.edu

Abstract—Real-time systems on non-preemptive platforms re- together, exceed the cycle budget. Demonstrating thaethes
quire a means of bounding the execution time of programs paths are mutually exclusive takes semantic knowleddegreit
for admission purposes. Worst-Case Execution Time (WCET) ,qvided by the developer or deduced by analysis at admissio

is most commonly used to bound program execution time. While fi | t d . this inf tion i ‘ded by th
bounding a program’s WCET statically is possible, computirg its Ime. In most domains, this inftormation IS provided by the

true WCET s difficult without significant semantic knowledge. developer as branch constraints. For our virtualizatiopliap
We present an algorithm for partial program admission, suited cation, we cannot trust the developer; any semantic knayeled
for non-preemptive platforms, using dynamic programming o must come from the analysis.

perform explicit enumeration of program paths. Paths — postble We proposepartial program admission as a practical so-

or not — are bounded by the available execution time and . . - .
admitted on a path-by-path basis without requiring semantc lution to this problem. By explicitly examining all pathsew

knowledge of the program beyond its Control Flow Graph (CFG) ~ can perform static analysis to re-write 3rd-party appicrat
to achieve the following goals:

1) all “safe” paths (paths that complete under budget) are
o]]) admitted,
Admls_smn control in regl—ume syst(_ams running on non-) ng “ynsafe” paths (paths that complete over budget, or
preemptive platforms requires the ability to bound the ex- ~ ihat do not complete) are admitted
e_cut|0n tlm_e_ of applications. In a trusted enwronme_nt,_a 3) no runtime penalty is imposed on any safe path, and
single admlnlstrator can make an out-of-band deter_mlnatlo 4) no semantic knowlege is required.
of execution boundedness. Untrusted, shared envwonmenL? : .
- ; 0 re-write the program, we actually duplicate some code
are more difficult. As an example of such an environment . .) -\ o
. . . . paths. While this causes some code expansion, or “bloat”, in
consider network virtualization, which has been advanced 2" L e
, S practical cases the bloat proves to be within acceptabligslim
a way to foster innovation in the Internet [1].
In netwc_)rk _virtualization, core router platforms host 3rd- Il. ALGORITHM OVERVIEW
party application code, running at Internet core speeds, al)] _
lowing the creation of high-speed overlay services [2]. e Our algorithm should be considered in the context of
platforms, of which the IXP 28XX is a representative exampl@ Simplified processor model. Our idealized processor has
usually have no preemption mechanism suitable for use bt higstructions taking exactly one cycle to complete. All meyno
speeds. Internet core speeds necessitate extremely yiglet c8CCESSES compl_ete In one CYf?'e- There IS no pipeline. .
budgets for packet processing. To share this type of systenfUr computational model is event-driven, where code is
among untrusted parties requires stringent admissiorralont €xecuted only in response to these events. For the network
In other domains, instrumentation with runtime checks tgrtualization application, the event is packet arrival.
enforce proper behavior is a practical solutions. Unfaatety, ~ Finally, we require the developer to add a “time-exceeded”
Internet core speeds render runtime checks impractical. @fception handler to her code. The exception handler is
5Gbps, an IXP 2800-based system with 1.4 GHz microengirf@§uired to adhere to strict coding guidelines which magcst
and 8 hardware thread contexts has a compute budget of 8n@lysis simple and easy.
cycles. With such tight budgets, even a few runtime checks ca ,
quickly push otherwise admissible program paths over budg®: Path Enumeration
A practical solution must therefore impose as little rur@im Our input to the algorithm consists of an assembly level
overhead as possible. representation of the program. From this, we can develop a
Worst-Case Execution Time (WCET) analysis is the cu€ontrol Flow Graph (CFG) of the program, in which edges
rently accepted approach. A WCET bound can be establistere labeled by the execution time required for the corredjgon
statically, assuming that all program paths are viable. él@x program segments. Our objective is to derive a new CFG that
some well behaved programs might be rejected. For exampm®&ecutes the same sequence of instructions for program exe-
a program may have mutually exclusive code paths that, takartions that complete within a specified time bouBdwhile

I. INTRODUCTION

Fig. 1. CFG and the corresponding CFT. Weights along the edgmresent . .
cycle counts to traverse that edge. Total path cycle countprasented below Fig. 2. Abort to exception handler
each terminal node in the execution tree.

B. Code Duplication Reduction

terminating in an exception handler for program executionsThe BXT typically contains multiple subtrees that are iden-
that exceed the budgé?. tical to one another and can be merged. To make this precise,
The conceptual starting point for this construction is thee define two nodes; andu, in the BXT to beequivalent if
creation of a Control Flow Tree (CFT) from the CFG. Théhey were derived from the same nodeén the original CFG
CFT duplicates nodes in the CFG as necessary, in order(tiat is, they represent copies of the same orignal program
convert the graph into a tree. segment). Two subtrees of the BXT are equivalent if they are

See Figure 1 for an example. Nodésand 7" are dummy Structurally identical and all of the corresponding nodéga

nodes used to delineate entry and exit points, and contain@/§ equivalent. We can merge any pair of equivalent subtrees
actual code. Similarly, in the CFT1 — T4 are copies of the Without changing the set of executions, yieldingbaunded

dummy nodel” and contain no code. execution graph (BXG) equivalent to the BXT. Conceptually,
Code generated from the CFT is functionally identical to thtge merging 1 perform_ed in a top down fashion. That is;if
original CFG. If the length of the path from the root node to gndug are roots of equivalent subtrees, we merge them so long

nodeu in the tree exceedB, then we can replace the subtre& there are no ancestars of u; andv, of u, that are also

. : : . roots of equivalent subtree. The merging process contjrases
rooted atu with an exception node, representing a jump t .

: . ; o . ong as there are equivalent subtrees that can be merged.
the exception handling routine. As an additional step, tiéraf

applying this step, the CFT contains a subtree whose |eave§eturn|ng to our example, noddsl and D2 cannot be

; : oalesced because their child execution trees are diffean
are all exc_eptlon nodes, we can replace the entire subttbe Vﬁas childrenEl andF2: D2 has children2 and X However,
an exception node.

)) o) the subtrees rooted @1 and E2 are identical. There is no
This pruning procedure is illustrated on Figure 1. Let Ugee tg retain both trees. Instead, we can coalesce thera into

consider a budget of 10 cycles. While it would be valid tQjngje subtree. Even further, the tree rootedratis identical

execute the patl — €' — D2 — F'2 — (4 before aborting 4, the subtrees rooted &t andG3. We can also coalesce the

to the exception handler, it is clear that any execution path, qqe with theG1/G3 node from theE1/E2 execution
reaching F2 will go over budget. Our earliest chance to rai§ga gee Figure 3.

the exception is by intercepting the branch instruction 2 D In contrast to the massive code duplication in the BXT, in

with the result shown in Figure 2. the BXG only one nodelf) needed to be duplicated.

We refer to the tree constructed in this way asBreounded \whjle one can derive the BXG by explicitly constructing
execution tree of the original control flow graph. We note thatithe BXT and then merging nodes, there is a more efficient
such a tree can be defined relative to any node the CFG dynamic programming procedure that can be used to construct
and we lethatp(u) (or generally, BXT) denote this executionthe BXG directly. This procedure is based on the observation
tree. that the structure of a BXT subtree with root nodeg is a

While one could generate a version of the original prografanction of just two things — the node in the original CFG
directly from the BXT, this typically results in an excessivthatu; was derived from and the amount of available execution
amount of code duplication. We can dramatically reduce thiene that remains after execution has reachedf the length
amount of code duplication by merging equivalent subtrédesaf the path from the root ta:; is p, then the remaining
the BXT in a systematic way. execution time isB — p where B is the overall bound. We

Code Duplication Distribution

100
90
80
70
60
50
40
30
20
10

Percentage of CFGs

1234567 8 910111213141516171819

Maximum Duplication Required (Normalized)

Fig. 3. Coalescence of equivalent execution subtrees Fig. 4. Percentage of synthetic CFGs requiring more than plichtion
(from run of 1000 synthetic CFGs)

note that the BXT subtree with roay; is bxtp_p(u). SO two
nodesu; andu, derived from the same CFG nodewill have
identical subtrees if the lengths of their paths from thetroo 300
are identical. More generally, if their path lengths arandg,

IPv4 Header Format

they will have identical subtrees Hrtp_,(u) = brtp_q(u). 250 1
This will be true for values ofB — p and B — ¢ that are @ 200 |
“close enough” in a certain sense. For each nadm the 2

original CFG, the dynamic programming procedure produces§ 150
a partition on the integers 0 8. Two valuesi and; fall in the 2 100 -

same block of the partition if and only #xt;(u) = bxt;(u).

Using these partitions, we can construct the BXG directly 50
from the CFG, without having to explicitly construct the 0
BXT. See [3] for a complete _desgnpuon of t_he algorithm, a 0 20 40 60 80 100 120 140 160
correctness proof and execution time analysis.

Budget (cycles)

I1l. PERFORMANCE
. . . . Fig. 5. Code duplication on real CFG (IP Header Format)
We have implemented this algorithm and tested it on a

variety of CFGs and budgets.
. showed that it was composed almost exclusively of a series of
A. Synthetic CFGs nestedswitch/case statements.

Our synthetic CFGs were generated by a series of vertexThe results on cyclic CFGs are uninteresting and omitted.
substitutions that parallel grammar production rules inl&k€ While the algorithm works on cyclic CFGs, it works by
language. For our acyclic CFGs, we include simple statesperimplicitly unrolling the loop to the limit of the budget. Tku
if, if-then-else, and switch/case statements. For our cyclic the code duplication factor is bounded only by the budget. As
CFGs, we addedhile, do/while, andfor loops. In both cases, expected, in actual simulation the code duplication faébor
the typical size of the synthetic input CFG was roughly deubtyclic graphs is linear in the budget.
the size of the largest packet processing code block we have .
seen in our router virtualization efforts, and quadruple tH- Real CFG: 1Pv4 Header Rewriting
target size for a typical code block. For a real CFG, we used the code that rewrites the IPv4

Examine Figure 4. This represents the results of running theader for next-hop forwarding. This consists of 180 irestru
algorithm on 1000 different acyclic synthetic CFGs. We shotions, designed to run at over 5 Gbps on our virtualized route
the resulting distribution of the maximum code duplicatiac- See Figure 5. The real CFG necessitated some minor
tor required for each synthetic CFG over all possible buslgemodification to the algorithm to deal with pipeline stallsedu
The vast majority (82%) require a maximum duplication factdo unfilled deferral slots.
from 1-2, with an average maximum of 1.6. Large duplication At very small budgets, the algorithm actually generd#ss
factors are actually very rare; one pathological case reda code than the original CFG. This is due to pruning when
duplication factor of 23.5. Subsequent analysis of thisvga the budget is too low for this code block. That is, so many

paths are pruned that many vertices are never emitted at @spired by Ball and Larus [5], who developed single-counte
For most application code, this represents a serious daselomethods for tracking execution paths through a CFG and
error and would be reported as such. It is simple for oapplied those to optimize the “hot” paths. In our work, we
algorithm to report when certain paths are never admitted, aare interested in using the same techniques to differentiat
we implemented this in our experimental version. safe vs. unsafe paths.

Above 108 cycles, we reach the maximum length path Much greater gains can be made by extracting semantic
of the CFG. At this point, all paths are admissible and niaformation from the code itself. If we have complete seriwant
duplication is necessary. The original CFG is accepted withformation, we can avoid path enumeration for impossible
no modification. paths in the CFG. The problem becomes a limited, finite form

A suitable budget for 5 Gbps would be 170 cycles. Clearlgf the Halting Problem: does this code, when started with any
we are under 170. For 10 Gbhps we need 85 cycles. The IRs#dthe possible inputs, halt withi® cycles? Any finite form
header format code is not currently able to achieve 10 Gbjed,the Halting Problem is decideable.
as the chart makes obvious. Even worse, 85 cycles is the peale believe that a data flow framework solution is appropri-
of our code duplication, at 296 instructions. This stilllgea ate. With explicit path enumeration, we can solve the consta
duplication factor of only 1.64, well in line with our syntiie propagation problem to completion over branch conditions.

cases. This would allow us to deduce loop iteration bounds, mujuall
exclusive paths, and even unreachable code.
IV. RELATED WORK We consider this the most important area for additional

The major competing technology is WCET analysis usingfudy. The current state of the algorithm allows duplicato
mixed integer programming [4]. This differs from our workstand in lieu of semantic knowledge. Code that is semabtical
in that it makes no effort to solve the code emission problesgfe but unsafe in the CFG can be admitted by rewriting the
and requires that we trust the developer to provide semaride to guarantee that the unsafe but semantically imgessib
information on branch constraints. paths are never taken. With a complete semantic analysis, we

Our problem is different. We need to accept and handfeould never need to strip those paths, and our code duplicati
untrusted code in a shared environment. Thus, we must defveuld be reserved for those cases where a genuinely unsafe
any semantic information from the program, not the develop@ath is included.
In the absence of programmer specific semantic informationIn our application of event-driven, tight budget real-time
we can re-write programs to create provably safe CFGs \@garantees, this line of research is very promising. Thebam
code duplication. of input values to examine is limited by the paucity of avaliéa

We also note that the decision to use integer programmigcles for reading data from memory. We know that our
to solve the WCET problem was because the develop&&nstant propagation will never need to deal with more than a
considered explicit path enumeration infeasible. Thitsfes few dozen values, because any code that examines more than
consider the possibilities of dynamic programming. this will be over budget due to memory latencies.

for (i=0: i<100: i+4) { VI. CONCLUSION

if (rand() > 0.5) j++; In this paper, we have introduced a new technique for par-
el se k++: tial program admission. We have demonstrated that dynamic
} programming can be used to render explicit path enumeration

eminently feasible. The same construction can be used tb emi
a modified CFG that meets event-drive real-time guarantees.

Consider the code snippet in Figure 6. The argument is that! 1S method shows great promise in the realm of network
this snippet contain®'®° possible paths, and that to enumerat\é'rtual'zat'on'_ cher applications in similar fields may be
them all is simply impractical. However, using a dynami€dually promising.
programming approach with loop bounds, we can determine REFERENCES
WCET for this snippet in linear time.

Fig. 6. “Difficult” WCET analysis for explicit path enumerah

[1] J. Turner and D. Taylor, “Diversifying the internet,” EEE Globecom
2005, St. Louis, MO, Nov. 2005.
V. CONTINUING WORK [2] J. Turner and N. McKeown, “Can overlay hosting serviceake ip

o . | . f th | ithm d ossification irrelevant?” irProc. PRESTO: Workshop on Programmable
ur current Iimplementation of the algorithm does not yet Routers for the Extensible Services of TOmorrow, May 2007.

perform emission, nor does it incorporate a parser to acceptM. Wilson, R. Cytron, and J. Turner, “Partial program dssion by path
real-world code. This is our current developmental prjprit enumeration,” Washington University, St. Louis, MO, WUC®Eh. Rep.
. o . . WUCSE-2008-4, 2008.

We have also identified additional ways to reduce duPI'C?Aﬂ Y.-T. S. Li and S. Malik, “Performance analysis of embeddsoftware
tion. One immediate gain can be made by noting duplicated using implicit path enumeration dGPLAN Not., vol. 30, no. 11, pp.
paths that contain no safe paths “close” to the budget. We can 88-98, 1995. N -

. . iggT Ball and J. R. Larus, “Efficient path profiling,” irMICRO 29:
coalesce these paths by adding runtime checks that lengt Mbroceedings of the 29th annual ACM/IEEE international symposium on
safe paths but do not actually push them over the budget. OneMicroarchitecture. ~ Washington, DC, USA: IEEE Computer Society,

possible way to reduce the expense of the runtime check is 1996. pp. 46-57.

