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Abstract 
 

Kaiabachev, Taha, Zhu [1] have presented a 

declarative programming paradigm called 

Functional Reactive Programming, which is based on 

behaviors and events. An improved system called P-

FRP uses fixed priority scheduling for tasks. The 

system allows for the currently executing lower 

priority tasks to be rolled back to restoring the 

original state and allowing a higher priority task to 

run.  These aborted tasks will restart again when no 

tasks of higher priority are in the queue. Since P-

FRP has many applications in the real time domain it 

is critical to understand the time bound in which the 

tasks which have been aborted are guaranteed to run, 

and if the task set is schedulable. In this paper we 

provide an analysis of the unique execution paradigm 

of the P-FRP system and study the timing bounds 

using different constraint variables.
*
 

 

1. Introduction 
 

Reactive Programming has been found to be 

ideal in the area of real time systems. Most real time 

systems are reactive where the host raises events 

which are acted upon in a certain time frame. 

Functional programming is a paradigm based on 

lambda – calculus and offers various advantages over 

non-Neumann style of programming that is prevalent 

in standard languages. In [4] and [5] Functional 

Reactive Programming has been implemented for 

Real Time applications.  Wan, Taha, Hudak [2] have 

given a statically-typed language called RT-FRP for 

real time systems which considers and space and time 

cost of execution.   In [3] a compilation strategy to 

convert RT-FRP semantics into efficient code is 

given. The code of this new system called E-FRP has 

been tested on a small microcontroller driven robot.   

All events in E-FRP are assumed to have the same 

priority. Events go into the queue and are executed in 

order, and the next event can execute only when the 

one before has completed execution.  System 

                                                           
* This work is supported in part by the U.S. 
National Science Foundation under Award Nos. 

0720856 and 0720857. 

interrupts with critical deadlines will have to wait for the 

execution queue to complete before it can start. This will 

cause the interrupts to miss its deadline leading to 

potentially catastrophic results. To overcome come this, 

a priority based FRP (P-FRP) system has been 

developed. This system used fixed priority scheduling to 

assign a priority number to every task before execution. 

If a task is executing and a higher priority enters the 

queue then the currently executing task is stopped and 

using a rollback mechanism the task is aborted and 

system state is restored. This prevents any side effect 

from the execution of the lower priority task. The higher 

priority task then starts execution. Though it may seem 

that the lower priority task has been ‘preempted’, when it 

starts execution it will have to restart.  Hence from an 

execution standpoint the task can be considered non 

preempt-able, even though significant CPU resources 

might have gone into executing and then rolling it back. 

The system also needs to account for asynchronous and 

aperiodic tasks. These combined with the semantics of 

rollbacks offer significant challenges in the study of 

bounds of various task execution parameters. By 

constraining other variables we can assume that the 

entire task set is non – pre emptive. However this will 

give an inaccurate picture of the actual resources used by 

the system since even though the task has rolled back 

and has not executed it has still consumed CPU 

resources. The actual resource bound will not be the 

same as when the tasks are considered simply non 

preempt-able. For example if the FRP system runs on a 

power aware real time host the actual power consumed 

will be much more than if the tasks are considered to be 

simply non-preempt-able not have executed. Rollbacks 

take significant CPU (and disk) resources, and hence 

should be considered in the timing analysis. 

 

2. E-FRP 
 

The original semantics of E-FRP follow no priority 

or deadline scheduling. This scheme can be compared to 

First in First out (FIFO) scheme where tasks that come in 

first are executed. New tasks are put in queue and wait 

while other tasks ahead in are completed. As shown in 

[14] FIFO gives an infeasible schedule when deadlines 

and priorities are given. It is easy to put a general upper 

bound on the wait time of the task. Once a task is put in 

the queue it has to wait for the all the previous tasks to 



finish.   If there are n tasks and ti is execution time for 

task i, then the maximum possible wait for task k is 

when it is placed last in the queue. In this case the 

wait time will be sum of execution times of all tasks 

before k. Therefore maximum wait time = k

n

i tt −∑
1

. 

 

3. Priority based FRP 
 

In P-FRP a fixed priority is assigned to every 

task before compile time. Each event in the system is 

mapped to its fixed priority, numbers for which are 

selected from a fixed range of integer values. All 

events are executed atomically since task preemption 

is a rollback action. This way P-FRP retains the 

execution semantics of P-FRP. A bound on the 

waiting time for low priority tasks has been analyzed 

as follows.  

 

There are n events, event i is represented by Ii, 

each having an arrival rate of ri which is the number 

of occurrences of the event per second. Task Ii  has a 

priority of i. The maximum wait for an event k has 

been deduced to be  (n – k) Gk, where  

 
Gk = 1 / max(rk+1, rk+2,…, rn , (n – k). min(rk+1,… rn) 

 

Tasks k+1, k+2 ... n are of higher priority than k. 

 

However this time bound is restricted if certain 

conditions are true. These are : 

 

1. tk >> tk+1 

2. Gk >= tk  

3. Same event will not occur if prior occurrence has 

not handled. 

 

Where tk is the execution time of task k. Gk  is the 

maximum gap guaranteed to exist. Gap is the time 

period that exists between occurrences of task  Ij. and 

task Im where mj ≈ and m, j > k. Any task whose 

priority is greater than k, cannot execute in the gap.  

The gap is available exclusively to run task k. 

 

The first condition says that tasks with lower 

priority have an extremely low execution time 

relative to higher priority tasks. This is valid in some 

execution scenarios, for example a normal operating 

system where higher priority tasks can be system 

interrupts and low priority tasks are normal 

applications. Most interrupt handlers have small and 

fast executing code whereas application tasks are 

large in both time and space. Though no deadline is 

specified this can be compared to a soft real time 

system, since interrupts have to be handled fast as 

other application behavior might depends on them. As an 

example some application which is waiting for a mouse 

click event will have to idle till the mouse / keyboard 

interrupt is handled. Clearly the mouse interrupt has a 

higher priority and also a soft deadline. 

   

However in general for real time systems both hard 

and soft this assumption can lead to incorrect results. In 

such systems execution time of tasks is not indirectly (or 

directly ) proportional to their priorities, and no relation 

can be formed between the two. It is possible for tasks 

with a large execution time to have a higher priority than 

tasks with relatively less execution time. Execution time 

of tasks is an important consideration in analyzing any 

real time system. Worse Case Execution Time ( WCET )  

of tasks is used to get the upper bound on wait times and 

is used when any useful scheduling policy for the system 

has to be defined. 

 

The second assumption says that the maximum gap 

available to task k should be larger than the execution 

time of the task. This is important since if the gap is less 

than the execution time then the task will never be able 

to complete within the observed time period. In such a 

case the task will start execution in an available gap, then 

a higher priority event will enter the queue forcing the 

executing task to stop and rollback. The aborted task will 

restart in the second available gap only to be aborted 

again. This will be repeated many times though the task 

will still not complete since it has to start re start 

execution in any available gap. This means the task set is 

not schedulable and is therefore not suited for study of 

time bounds. Schedulability of the task set is an inherent 

assumption with the second condition. 

 

The third condition again implies schedulability of 

the task set, In E-FRP the length of the task queue is 

bounded by ∑
n

it
1

. If an event comes and the queue is full 

then the event will not be run at all. When the first 

instance runs the length of the queue becomes 1
1

−∑
n

it . 

Hence this condition deals with the resource bound ness 

of the system. Some real time systems can have an event 

generated before the first one is handled. Hence those 

systems will not have this time / gap bound, though the 

queue size can be increased by adding empty task sets. It 

is clear from the wait time equation that a task of highest 

priority In will require no wait since (n – k) Gk =0. 

Further study is required to find out the tightness of this 

bound. A new method also needs to be derived by 

relaxing some of the conditions which should be a more 

practical representation of  existing real time systems. 

Our work aims to derive an upper bound which accounts 



for task execution time and where the WCET is 

related to priorities of a task. 

 

The timing analysis in [1] also does not consider 

the start time of tasks. Higher priority tasks are 

sporadic though a minimum period of separation is 

not specified. They also do not have any explicit 

deadline. It is assumed that a high priority the task 

starts execution immediately on entering the queue. 

When deadline and task execution time is considered 

the time taken for rollback will also have to be 

accounted for. If roll back time is too much a higher 

priority task may miss its deadline. We have to find a 

relation between size of the task and the time taken to 

abort it, do get a real picture on the schedulability of 

the task. We will also try to find out the cost in term 

of CPU time incurred during rollbacks. The total time 

can be accounted as context switches time, though in 

this case it is more prominent and cannot be ignored. 

An upper bound on context switch will have to be 

derived while finding the maximum wait time. It will 

also impact the bound ness of CPU resources, and 

can be used to find out the power consumed by the 

system in a more accurate way.  

 

4. Example 

 
Consider the following set of 3 tasks T1, T2, and T3 . ti is 

the execution speed of task i in seconds, and  ri is the 

arrival rate ( number of occurrences / second ) 

 
T1: r1 = 1, t1 = .7  

T2: r2 = 2, t2 = .1 

T3: r3 = 3, t3 = .05 

 

In E-FRP the maximum wait time for task T2 will be: 

2

3

1

tti −∑  = 0.75  

 

Now we assign a static priority order to this task set. 

pi is the priority of task i, and  p3  > p2  > p1 . The 

execution times for this task set satisfy the necessary 

condition for the gap bound given in [1] to be used. 

Hence the maximum wait time for T2 = (3 – 2) G2.  

 
G2 = 1 / max(r3 , (3 – 2). min(r3)) 

     = 1 / max(3 , (3 – 2). min(3)) 

     = 1 / max(3 , 3) 

     = 1 / 3 

 

∴  Maximum wait time = 1 * 1/ 3 = 0.33 

 

Hence we can see that with P-FRP, higher priority tasks 

will have a lesser wait time. 

 

 

5. Real – time Databases 
 

The P-FRP system has asynchronous release of 

tasks, the intervals between them are aperiodic and 

executed tasks can be rolled back without completion. 

This makes the task set non-preempt-able though it 

implements preemption semantics. Studying the time 

bound of such a system is challenging. Research has 

been done where the task set running on the CPU is non-

Preemptive with variable execution time [6], is 

asynchronous where the start time is unknown[7] and 

where task set is non preemptive and sporadic [8]. In [9] 

algorithms have been given to find multiple feasible 

intervals (gaps) for a non-preempt-able task run. 

However no study has been done where these variables 

exist alongside with the consideration of an executing 

task set aborting and restarting again. We have looked at 

systems which have real time behavior but support task 

aborts. The rollback and abort mechanisms are 

implemented by databases and if we add time constraints 

the subset is real time databases.  

 

To allow for data consistency every database 

transaction is atomic with respect to each other. Hence 

all databases implement a  system for concurrency 

control to guarantee atomicity of the transactions. 

Concurrency control strategies in databases are generally 

of two types pessimistic and optimistic. Pessimistic 

strategies block the execution of a transaction that will 

lead to data conflicts. An optimistic strategy continues 

with the operation till the end and then rollback the 

transaction that will lead to conflicts.  In our study we 

will look at optimistic strategies that have been 

implemented with timing constraints. This models the 

priority based FRP closely. 

 

According to Shu [10] abort – oriented protocols 

were mainly developed to cope up with situations where 

the blocking property provided by pure locking protocols 

such a priority ceiling were not capable of scheduling 

tasks due to excessive blocking. A transaction is aborted 

if it prevents the completion of  other high priority tasks. 

Though this allows the transaction set to be scheduled, it 

incurs additional costs in terms of aborting and re-

execution. This cost has been studied in the Shu’s work. 

Aborting a task also leads to priority inversion where a 

low priority task can run before a higher priority one. 

Method like the Priority Ceiling Protocol [12] prevents 

this from occurring. Byun, Burns, Wellings [9] do a 

response time analysis of hard real time transactions. For 

concurrency control they use priority abort where a 

lower priority transaction is aborted to allow transaction 

of a higher priority to run. However transactions that are 

waiting for a commit are not aborted to save time. Liang, 

Kuo and Shu [11] provide a class of abort oriented 

protocols for real time databases. The motivation for 



developing these protocols is to avoid excessive 

blocking. This paper analyzes which standard 

scheduling algorithms like Earliest Deadline First ( 

EDF) or Least Laxity First ( LLF) can be used with 

transactions without affecting the validity of the data. 

Compatibility between the two is important, and this 

study will be important for P-FRP when new 

scheduling algorithms like Rate Monotonic, or 

dynamic Algorithms like EDF / LLF will replace the 

current priority assignment of tasks. A Basic 

Aborting Protocol ( BAP )  and its various 

derivations have been given. Tasks in BAP are 

classified as abortable or non-abortable which is 

determined by an offline schedulability analysis. In 

our study we have to consider all tasks as abortable 

because P-FRP does not distinguish tasks which can 

be aborted or not. Cheng [15] and Cheng, Chang [16] 

have developed schedulability tests for transactions 

in real-time systems.    

 

6. Conclusion 
 

We are looking to determine the timing bounds 

of the priority FRP system which allows for time 

bound tasks to run in the system and allows task pre 

emption by aborting the tasks. The task abortion finds 

an analogy in databases. Real time databases allow 

for both task aborting and timing constraints to be 

present in the system. Hence a study of system in real 

time database is important to understand the timing 

requirements of the P-FRP system. We also have to 

account for asynchronous release of tasks which are 

aperiodic in nature and study the Worse Case 

Response Time of the system. The original paper has 

studied this response time which is subject to lot of 

constraints. Our task is to come out with an improved 

timing analysis which closely models real time 

systems in practice today.   
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