
Timing Analysis of the Priority based FRP System

Chaitanya Belwal

cbelwal@cs.uh.edu

Dept. of Computer

Science, University of

Houston, TX

Albert M. K. Cheng

cheng@cs.uh.edu

Dept. of Computer

Science, University of

Houston, TX

Walid Taha

taha@rice.edu

Dept. of Computer

Science, Rice

University, Houston, TX

Angela Zhu

angela.zhu@cs.rice.edu

Dept. of Computer

Science, Rice

University, Houston, TX

Abstract

Kaiabachev, Taha, Zhu [1] have presented a

declarative programming paradigm called

Functional Reactive Programming, which is based on

behaviors and events. An improved system called P-

FRP uses fixed priority scheduling for tasks. The

system allows for the currently executing lower

priority tasks to be rolled back to restoring the

original state and allowing a higher priority task to

run. These aborted tasks will restart again when no

tasks of higher priority are in the queue. Since P-

FRP has many applications in the real time domain it

is critical to understand the time bound in which the

tasks which have been aborted are guaranteed to run,

and if the task set is schedulable. In this paper we

provide an analysis of the unique execution paradigm

of the P-FRP system and study the timing bounds

using different constraint variables.
*

1. Introduction

Reactive Programming has been found to be

ideal in the area of real time systems. Most real time

systems are reactive where the host raises events

which are acted upon in a certain time frame.

Functional programming is a paradigm based on

lambda – calculus and offers various advantages over

non-Neumann style of programming that is prevalent

in standard languages. In [4] and [5] Functional

Reactive Programming has been implemented for

Real Time applications. Wan, Taha, Hudak [2] have

given a statically-typed language called RT-FRP for

real time systems which considers and space and time

cost of execution. In [3] a compilation strategy to

convert RT-FRP semantics into efficient code is

given. The code of this new system called E-FRP has

been tested on a small microcontroller driven robot.

All events in E-FRP are assumed to have the same

priority. Events go into the queue and are executed in

order, and the next event can execute only when the

one before has completed execution. System

* This work is supported in part by the U.S.
National Science Foundation under Award Nos.

0720856 and 0720857.

interrupts with critical deadlines will have to wait for the

execution queue to complete before it can start. This will

cause the interrupts to miss its deadline leading to

potentially catastrophic results. To overcome come this,

a priority based FRP (P-FRP) system has been

developed. This system used fixed priority scheduling to

assign a priority number to every task before execution.

If a task is executing and a higher priority enters the

queue then the currently executing task is stopped and

using a rollback mechanism the task is aborted and

system state is restored. This prevents any side effect

from the execution of the lower priority task. The higher

priority task then starts execution. Though it may seem

that the lower priority task has been ‘preempted’, when it

starts execution it will have to restart. Hence from an

execution standpoint the task can be considered non

preempt-able, even though significant CPU resources

might have gone into executing and then rolling it back.

The system also needs to account for asynchronous and

aperiodic tasks. These combined with the semantics of

rollbacks offer significant challenges in the study of

bounds of various task execution parameters. By

constraining other variables we can assume that the

entire task set is non – pre emptive. However this will

give an inaccurate picture of the actual resources used by

the system since even though the task has rolled back

and has not executed it has still consumed CPU

resources. The actual resource bound will not be the

same as when the tasks are considered simply non

preempt-able. For example if the FRP system runs on a

power aware real time host the actual power consumed

will be much more than if the tasks are considered to be

simply non-preempt-able not have executed. Rollbacks

take significant CPU (and disk) resources, and hence

should be considered in the timing analysis.

2. E-FRP

The original semantics of E-FRP follow no priority

or deadline scheduling. This scheme can be compared to

First in First out (FIFO) scheme where tasks that come in

first are executed. New tasks are put in queue and wait

while other tasks ahead in are completed. As shown in

[14] FIFO gives an infeasible schedule when deadlines

and priorities are given. It is easy to put a general upper

bound on the wait time of the task. Once a task is put in

the queue it has to wait for the all the previous tasks to

finish. If there are n tasks and ti is execution time for

task i, then the maximum possible wait for task k is

when it is placed last in the queue. In this case the

wait time will be sum of execution times of all tasks

before k. Therefore maximum wait time = k

n

i tt −∑
1

.

3. Priority based FRP

In P-FRP a fixed priority is assigned to every

task before compile time. Each event in the system is

mapped to its fixed priority, numbers for which are

selected from a fixed range of integer values. All

events are executed atomically since task preemption

is a rollback action. This way P-FRP retains the

execution semantics of P-FRP. A bound on the

waiting time for low priority tasks has been analyzed

as follows.

There are n events, event i is represented by Ii,

each having an arrival rate of ri which is the number

of occurrences of the event per second. Task Ii has a

priority of i. The maximum wait for an event k has

been deduced to be (n – k) Gk, where

Gk = 1 / max(rk+1, rk+2,…, rn , (n – k). min(rk+1,… rn)

Tasks k+1, k+2 ... n are of higher priority than k.

However this time bound is restricted if certain

conditions are true. These are :

1. tk >> tk+1

2. Gk >= tk

3. Same event will not occur if prior occurrence has

not handled.

Where tk is the execution time of task k. Gk is the

maximum gap guaranteed to exist. Gap is the time

period that exists between occurrences of task Ij. and

task Im where mj ≈ and m, j > k. Any task whose

priority is greater than k, cannot execute in the gap.

The gap is available exclusively to run task k.

The first condition says that tasks with lower

priority have an extremely low execution time

relative to higher priority tasks. This is valid in some

execution scenarios, for example a normal operating

system where higher priority tasks can be system

interrupts and low priority tasks are normal

applications. Most interrupt handlers have small and

fast executing code whereas application tasks are

large in both time and space. Though no deadline is

specified this can be compared to a soft real time

system, since interrupts have to be handled fast as

other application behavior might depends on them. As an

example some application which is waiting for a mouse

click event will have to idle till the mouse / keyboard

interrupt is handled. Clearly the mouse interrupt has a

higher priority and also a soft deadline.

However in general for real time systems both hard

and soft this assumption can lead to incorrect results. In

such systems execution time of tasks is not indirectly (or

directly) proportional to their priorities, and no relation

can be formed between the two. It is possible for tasks

with a large execution time to have a higher priority than

tasks with relatively less execution time. Execution time

of tasks is an important consideration in analyzing any

real time system. Worse Case Execution Time (WCET)

of tasks is used to get the upper bound on wait times and

is used when any useful scheduling policy for the system

has to be defined.

The second assumption says that the maximum gap

available to task k should be larger than the execution

time of the task. This is important since if the gap is less

than the execution time then the task will never be able

to complete within the observed time period. In such a

case the task will start execution in an available gap, then

a higher priority event will enter the queue forcing the

executing task to stop and rollback. The aborted task will

restart in the second available gap only to be aborted

again. This will be repeated many times though the task

will still not complete since it has to start re start

execution in any available gap. This means the task set is

not schedulable and is therefore not suited for study of

time bounds. Schedulability of the task set is an inherent

assumption with the second condition.

The third condition again implies schedulability of

the task set, In E-FRP the length of the task queue is

bounded by ∑
n

it
1

. If an event comes and the queue is full

then the event will not be run at all. When the first

instance runs the length of the queue becomes 1
1

−∑
n

it .

Hence this condition deals with the resource bound ness

of the system. Some real time systems can have an event

generated before the first one is handled. Hence those

systems will not have this time / gap bound, though the

queue size can be increased by adding empty task sets. It

is clear from the wait time equation that a task of highest

priority In will require no wait since (n – k) Gk =0.

Further study is required to find out the tightness of this

bound. A new method also needs to be derived by

relaxing some of the conditions which should be a more

practical representation of existing real time systems.

Our work aims to derive an upper bound which accounts

for task execution time and where the WCET is

related to priorities of a task.

The timing analysis in [1] also does not consider

the start time of tasks. Higher priority tasks are

sporadic though a minimum period of separation is

not specified. They also do not have any explicit

deadline. It is assumed that a high priority the task

starts execution immediately on entering the queue.

When deadline and task execution time is considered

the time taken for rollback will also have to be

accounted for. If roll back time is too much a higher

priority task may miss its deadline. We have to find a

relation between size of the task and the time taken to

abort it, do get a real picture on the schedulability of

the task. We will also try to find out the cost in term

of CPU time incurred during rollbacks. The total time

can be accounted as context switches time, though in

this case it is more prominent and cannot be ignored.

An upper bound on context switch will have to be

derived while finding the maximum wait time. It will

also impact the bound ness of CPU resources, and

can be used to find out the power consumed by the

system in a more accurate way.

4. Example

Consider the following set of 3 tasks T1, T2, and T3 . ti is

the execution speed of task i in seconds, and ri is the

arrival rate (number of occurrences / second)

T1: r1 = 1, t1 = .7

T2: r2 = 2, t2 = .1

T3: r3 = 3, t3 = .05

In E-FRP the maximum wait time for task T2 will be:

2

3

1

tti −∑ = 0.75

Now we assign a static priority order to this task set.

pi is the priority of task i, and p3 > p2 > p1 . The

execution times for this task set satisfy the necessary

condition for the gap bound given in [1] to be used.

Hence the maximum wait time for T2 = (3 – 2) G2.

G2 = 1 / max(r3 , (3 – 2). min(r3))

 = 1 / max(3 , (3 – 2). min(3))

 = 1 / max(3 , 3)

 = 1 / 3

∴ Maximum wait time = 1 * 1/ 3 = 0.33

Hence we can see that with P-FRP, higher priority tasks

will have a lesser wait time.

5. Real – time Databases

The P-FRP system has asynchronous release of

tasks, the intervals between them are aperiodic and

executed tasks can be rolled back without completion.

This makes the task set non-preempt-able though it

implements preemption semantics. Studying the time

bound of such a system is challenging. Research has

been done where the task set running on the CPU is non-

Preemptive with variable execution time [6], is

asynchronous where the start time is unknown[7] and

where task set is non preemptive and sporadic [8]. In [9]

algorithms have been given to find multiple feasible

intervals (gaps) for a non-preempt-able task run.

However no study has been done where these variables

exist alongside with the consideration of an executing

task set aborting and restarting again. We have looked at

systems which have real time behavior but support task

aborts. The rollback and abort mechanisms are

implemented by databases and if we add time constraints

the subset is real time databases.

To allow for data consistency every database

transaction is atomic with respect to each other. Hence

all databases implement a system for concurrency

control to guarantee atomicity of the transactions.

Concurrency control strategies in databases are generally

of two types pessimistic and optimistic. Pessimistic

strategies block the execution of a transaction that will

lead to data conflicts. An optimistic strategy continues

with the operation till the end and then rollback the

transaction that will lead to conflicts. In our study we

will look at optimistic strategies that have been

implemented with timing constraints. This models the

priority based FRP closely.

According to Shu [10] abort – oriented protocols

were mainly developed to cope up with situations where

the blocking property provided by pure locking protocols

such a priority ceiling were not capable of scheduling

tasks due to excessive blocking. A transaction is aborted

if it prevents the completion of other high priority tasks.

Though this allows the transaction set to be scheduled, it

incurs additional costs in terms of aborting and re-

execution. This cost has been studied in the Shu’s work.

Aborting a task also leads to priority inversion where a

low priority task can run before a higher priority one.

Method like the Priority Ceiling Protocol [12] prevents

this from occurring. Byun, Burns, Wellings [9] do a

response time analysis of hard real time transactions. For

concurrency control they use priority abort where a

lower priority transaction is aborted to allow transaction

of a higher priority to run. However transactions that are

waiting for a commit are not aborted to save time. Liang,

Kuo and Shu [11] provide a class of abort oriented

protocols for real time databases. The motivation for

developing these protocols is to avoid excessive

blocking. This paper analyzes which standard

scheduling algorithms like Earliest Deadline First (

EDF) or Least Laxity First (LLF) can be used with

transactions without affecting the validity of the data.

Compatibility between the two is important, and this

study will be important for P-FRP when new

scheduling algorithms like Rate Monotonic, or

dynamic Algorithms like EDF / LLF will replace the

current priority assignment of tasks. A Basic

Aborting Protocol (BAP) and its various

derivations have been given. Tasks in BAP are

classified as abortable or non-abortable which is

determined by an offline schedulability analysis. In

our study we have to consider all tasks as abortable

because P-FRP does not distinguish tasks which can

be aborted or not. Cheng [15] and Cheng, Chang [16]

have developed schedulability tests for transactions

in real-time systems.

6. Conclusion

We are looking to determine the timing bounds

of the priority FRP system which allows for time

bound tasks to run in the system and allows task pre

emption by aborting the tasks. The task abortion finds

an analogy in databases. Real time databases allow

for both task aborting and timing constraints to be

present in the system. Hence a study of system in real

time database is important to understand the timing

requirements of the P-FRP system. We also have to

account for asynchronous release of tasks which are

aperiodic in nature and study the Worse Case

Response Time of the system. The original paper has

studied this response time which is subject to lot of

constraints. Our task is to come out with an improved

timing analysis which closely models real time

systems in practice today.

References

1. R. Kaiabachev, W. Taha, A. Zhu, E-FRP with

priorities, In the Proceedings of the 7th ACM &

IEEE international conference on Embedded

software, Pages: 221 - 230, 2007.

2. Z.Wan, W. Taha, and P. Hudak. Real –time FRP,

In ICFP’01, Pages: 146-156, ACM Press, 2001.

3. Z. Wan, W. Taha, and P. Hudak, Event driven

FRP, In PADL’02, Lecture Notes on Computer

Science. Springer, 2002.

4. J. Peterson, G.D. Hager and P. Hudak, A

Language for Declarative Robotic Programming,

ICRA’99. IEEE, May 1999.

5. R. Kieburtz, Real-Time Reactive Programming for

Embedded Controllers. Available from author’s

home page, March 2001.

6. I. Alzeer, P. Molinaro, Y. Trinquet, Response Time

Calculation for non-Preemptive Tasks with Variable

Execution time. In Proceedings of ETFA ‘03. Pages:

131 – 136.

7. G. Bernat, Response Time Analysis of

Asynchronous Real-Time system, In Real-Time

System, Pages 131-156 , Springer, 2004.

8. K. Jeffay, D.F. Stanat, C.U. Martel, On Non-

preemptive scheduling of Periodic and Sporadic

tasks, In Proceedings of the 12th IEEE Symposium

on Real-Time Systems, Pages: 129-139 ,December.

IEEE, 1991.

9. J.J. Chen, J. Wu, C.S. Shih, T.W. Kuo,

Approximation algorithms for Scheduling Multiple

Feasible Interval Jobs, In Proceedings of RTCSA'05,

Pages: 11 - 16, 2005.

10. J. Byun, A. Burns, A. Wellings, A Worst-Case

Behavior Analysis for Hard Real-Time transactions,

Workshop on Real-Time Databases, 1996.

11. L. Shu, A Characterization of Re-execution Costs

for Real-Time Abort-Oriented Protocols,

Proceedings of RTSCA 1998, Pages: 286 - 292

Issue, Oct 1998.

12. M.C. Liang, T.W. Kuo, L. Shu, BAP: A Class of

Abort-Oriented Protocols Based on the Notion of

Compatibility, Proceedings of RTCSA '1996,118 -

127, Oct- Nov 1996.

13. L. Sha, R. Rajkumar, J.P.Lehoczky, Priority

Inheritance Protocols: An approach to Real Time

Synchronization, Transactions on Computers

Volume 39, Issue 9, Sep 1990 Page(s):1175 – 1185.

14. A. M. K. Cheng, Real Time Systems: Scheduling,

Analysis and Verification, Wiley, 2002.

15. A. M. K. Cheng, Scheduling Transactions in Real-

Time Database Systems, Proc. IEEE-CS Computer

Conf., San Francisco, CA, pages 222-231, Feb.

1993.

16. A. M. K. Cheng, L. Zhang, An Efficient On-Line

Scheduler for Real-Time Main Memory Database

Systems, Proc. IEEE Intl. Conf. on Data and

Knowledge Systems for Manufacturing and

Engineering, Hong Kong, pages 680-685, May

1994.

