
Adding the Time Dimension to Majority Voting Strategies∗

Hüseyin Aysan, Sasikumar Punnekkat, and Radu Dobrin
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{huseyin.aysan, sasikumar.punnekkat, radu.dobrin}@mdh.se

Abstract

Real-time applications typically have to satisfy high de-
pendability requirements and require fault tolerance in both
value and time domains. A widely used approach to en-
sure fault tolerance in dependable systems is the N-modular
redundancy (NMR) which typically uses a majority voting
mechanism. However, NMR primarily focuses on produc-
ing the correct value, without taking into account the time
dimension. In this paper, we propose a new approach, Vot-
ing on Time and Value (VTV), applicable to real-time sys-
tems, which extends the modular redundancy approach by
explicitly considering both value and timing failures, such
that correct value is produced at correct time, under speci-
fied assumptions. We illustrate the proposed approach by an
algorithm applicable for triple modular redundancy (TMR).

1. Introduction

Most real-time applications typically have to satisfy high
dependability requirements due to their interactions and
possible impacts on the environment. Ensuring dependable
performance of such systems typically involves both fault
prevention and fault tolerance approaches in their design.
Usage of redundancy is the key for achieving fault toler-
ance and it has been employed successfully in the physi-
cal, temporal, information and analytical domains of a large
number of critical applications. Static techniques such as
N-modular redundancy (NMR) have been used in safety
and mission critical applications, most often in the well-
known form of triple-modular redundancy (TMR), where
three nodes are used for replication [9]. The key attraction
of this approach lies in its low overhead and fault masking
abilities, without the need for backward recovery. The dis-
advantages include the cost of redundancy and single point
failure mode of the voter. Traditionally, voters are con-
structed as simple electronic circuits so that a very high reli-
ability can be achieved. Usage of triplicated voters has been

∗This work was partially supported by the Swedish Foundation for
Strategic Research via the strategic research centre PROGRESS.

employed to take care of the single-point failure mode in
case of highly critical systems [8]. Surveys and taxonomies
on several voting strategies have been presented [7, 5].

Replicated nodes’ output delivery times can vary due to
several factors, such as clock drifts, node failures, process-
ing and scheduling variations at node level, as well as com-
munication delays. Most of the existing voting strategies,
however, focus solely on masking value failures by assum-
ing that the system is tightly synchronized, as presented in
[6]. On the other hand, loosely synchronized systems may
be an attractive alternative due to, e.g., low overheads, re-
quiring, however, specifically designed asynchronous vot-
ing algorithms to compensate for the timing variations.

A simple approach towards tolerating both value and
timing failures in a replica using the NMR approach could
be adding time stamps to the replica outputs. Then, major-
ity voting on time stamp values could detect possible timing
anomalies of the nodes, under the unrealistic assumptions
that the communication is ideal and nodes never halt. More-
over, this approach is unable to mask late timing failures.

Shin and Dolter [11] proposed two voting techniques
applicable to real-time systems, relaxing the tight syn-
chronization requirements, viz., Quorum Majority Voting
(QMV) and Compare Majority Voting (CMV). QMV per-
forms majority voting among the received values as soon as
2n+1 out of 3n+1 replicas deliver their outputs to the voter,
thus, guaranteeing detection of majority of non-faulty val-
ues even in the case n replicas fail. CMV masks failures of
n out of 2n+1 replicas as in basic majority voting. The main
difference is that in CMV the output is delivered as soon as
a majority consisting of identical values has been received,
i.e., without waiting for the rest of the replicas. Both QMV
and CMV provide outputs within a bounded time interval,
as long as the assumptions regarding the maximum number
of failures hold. However, QMV and CMV are unable to
detect assumption violations in the time domain.

In this paper, we propose a novel approach, Voting on
Time and Value (VTV), which performs majority voting in
both time and value domains. Our approach enhances the
fault tolerance abilities of NMR by restricting the replica
outputs to be both correct in value, and delivered within a



specified admissible time interval, under specified assump-
tions. Furthermore, our approach is able to detect assump-
tion violations in time domain.

The rest of the paper is organized as follows: In Section
2 we present the system model and the assumptions used in
this paper. Section 3 describes our approach, illustrates it
by an instantiation to a system using triplicated nodes. We
conclude the paper in Section 4 outlining the on-going and
future work.

2. System Model

In this paper, we assume a distributed real-time system,
where each critical node is replicated for fault tolerance, and
replica outputs are voted to ensure correctness in both value
and time. For the sake of readability, in the rest of the paper,
we denote the ith replica of a node N by Ni. The output de-
livered by Ni, is specified by two domain parameters, viz.,
value and time [1, 10, 3]:

Specified output for Ni = < v∗i , t∗i ,∆v,∆t >

where v∗i is the correct value, t∗i is the correct time point
when the output should be delivered, [v∗i − ∆v, v∗i + ∆v]
is the admissible value range and [t∗i − ∆t, t

∗
i + ∆t] is the

admissible time interval for output delivery as per the real-
time system specifications.

An output delivered by Ni is denoted as:

Delivered output from Ni = < vi, ti >

where vi is the value and ti is the time point at which the
value was delivered.

We define the output generated by replica Ni as incor-
rect in value domain if vi < v∗i − ∆v or vi > v∗i + ∆v ,
and incorrect in time domain if ti < t∗i − ∆t (early timing
failure), or if ti > t∗i + ∆T (late timing failure).

Assumptions: Our approach relies on the following set of
assumptions (to a large extent based on [4]):

1. non-faulty nodes produce values within a specified ad-
missible range and within a specified time interval af-
ter each computation block

2. replica outputs with incorrect values do not form ma-
jority

3. incorrectly timed replica outputs do not form majority

4. a maximum permissible drift δ from the global time
is specified and ensured by infrequent synchronization
(which is significantly less costly than tight synchro-
nization)

5. the voter does not fail.

3. Voting on Time and Value (VTV)

In this section we present our novel voting strategy that
explicitly considers failures in both time and value domains.
As a consequence of assumption 5, in the worst case, the
maximum deviation between any two replica outputs is 2δ.
Hence, in VTV approach, agreement in the time domain
is reached when a majority of replicas deliver their outputs
within this derived time interval of 2δ (referred to as feasi-
ble window henceforth). If a node has n replicas, then at
least m = dn+1

2 e outputs from these replicas need to match
for establishing majority. The number of groups with m se-
quential replica outputs within n replica outputs is n−m+1.
Since the majority in time domain can be formed by any of
these groups, a separate feasible window needs to be ini-
tiated upon receiving each of first n − m + 1 replica out-
puts. We keep track of the feasible windows by using sim-
ple countdown timers. Once an agreement in time domain
is obtained, then values are voted. If an agreement in value
domain is not obtained for a particular feasible window, the
process continues with subsequent feasible windows, until
a majority in time and an agreement in value can be formed,
or an assumption violation is detected.

Output from Ni

valid invalid validity

time domain

voting

timely
correct/incorrect value domain

early
correct/incorrect

late
correct/incorrect

or

Figure 1. Replica output flow through voter

Depending on the real-time application characteristics, a
value produced by a node may be considered valid or in-
valid for the purpose of voting, in case it is produced early.
An illustration of replica output flow through the voter is
given in Figure 1. An issue is the choice of the set of valid
values to be used in the voting mechanism, i.e., all received
values vs. all timely received values. We illustrate this vot-
ing dilemma by using the scenario described in Figure 2.
Let us assume, e.g., an airbag control system where a sen-
sor is replicated in five different nodes and produces one out
of two values periodically, e.g., value a in case of a collision
detection and value b otherwise. If a collision is detected at
a time t ≤ t1 let us assume that the airbag has to inflate
within a time interval [tstart, tend], where t2 < tstart ≤ t3



and t5 ≤ tend. In our example, the first two values are
detected as early and the last three are identified as timely.
However, in this case, an early value has to be taken into
consideration in the voting since an early collision detection
is still a valid output with respect to the value domain. Thus,
the output has to be voted upon receiving the last value at
time t5, among all values, i.e., a, a, a, b, and b, resulting
in an output a at time (t5 + ε) (where ε is the time required
for the voting and is assumed to be negligible in this paper
for simplifying the presentation).

On the other hand, let us assume that the same Figure 2
illustrating an altitude measurement sensor in an airplane,
replicated by five nodes to read and output the altitude pe-
riodically to the voter, where data freshness may be a more
desirable aspect. As the correct window of time for the
output is the same as described in the previous example,
the only relevant values to be taken into consideration by
the voter are a, b, and b corresponding to the time points
t3, t4, and t5 respectively. Hence, the output produced at
time (t5 + ε) is b.

N1

N2

N3 Voter

N4

N5

TIME

δ δ δ

a

a

a

b

b

a/b?

t1 t2 t3 t4 t5

Figure 2. Voting dilemma

Upon finding a feasible window, if a majority in value
domain is obtained with all the values received so far, the
voter delivers the majority value without waiting for the rest
of the replicas. Otherwise, either a majority in value do-
main, receipt of all replica outputs, or the end of the feasible
window is waited for, whichever comes first. If a majority
in value domain is obtained while waiting, it is delivered as
the correct output. The decision on whether the early gen-
erated replica outputs are involved in value voting or not
results in two cases at this point:

Case 1 Early and timely outputs are considered valid. If
the end of the feasible window is reached with a major-
ity among the received values, it is delivered as correct
output.

Case 2 Only timely outputs are considered valid. If the
end of the feasible window is reached with a major-
ity among the timely received values, it is delivered as
correct output.

If the end of the feasible window is reached without an
agreement in value domain, the process continues with a
subsequent feasible window. If the last feasible window is
reached, or all replica outputs are received without reaching
an agreement on the values, disagreement is signalled to the
rest of the system.

3.1 VTV in TMR

In this section, we present an instantiation of our ap-
proach to triple modular redundancy which can tolerate sin-
gle node failures in value domain, time domain or both (Al-
gorithm 1). In this example, we assume early timing failures
as invalid for the purpose of voting. However, the validity
of such values can be easily tuned in the algorithm.

Majority in time domain is achieved if at least two val-
ues are delivered to the voter within a time interval less than
or equal to 2δ, since this is the maximum deviation in time
among all the values as long as there is no failure. Major-
ity in value domain is formed if at least two of the timely
outputs have the same value.

The algorithm signals disagreement in case majority
condition is not satisfied in any of the domains, thus en-
abling a fail-safe or fail-stop behavior of the system.

The replicated nodes’ output values are stored in local
variables V1, V2 and V3. Values are assigned to these vari-
ables in the order of receiving inputs from the nodes (i.e.,
the first received value is stored in V1, the second one in
V2 and the last one in V3). Two countdown timers, C1 and
C2, initially set to 2δ, are used to keep track of feasible win-
dows in order to identify majority in time domain.

The algorithm waits for the first node output to be de-
livered and then starts C1. It continues by waiting for the
second node output and starts C2 upon its arrival. If both
values have arrived before C1 expires, and have matching
values, the voter will output the correct value. Otherwise
we have two cases:

Case 1 C1 has not reached zero, but the values V1 and V2
do not match. In this case, the algorithm waits for V3
until C1 reaches zero. If the third value arrives be-
fore C1 reaches zero and matches either V1 or V2, the
algorithm outputs the matching value since all values
are timely and there is an agreed value. In case of as-
sumption violation, i.e., there exists no replica output
pair matching in value domain, the algorithm signals
disagreement. If the third value does not arrive before
C1 reaches zero, the algorithm waits for V3 until C2
reaches zero. If V3 is received and matches V2 before



Algorithm 1: VTV
input : v1, v2, v3 = NULL
output: vout or indication of disagreement
/* Inputs are ordered wrt reception */
/* Voting in value domain is performed

among timely received values */
C1, C2 ← 2δ ; // countdown timers1
while v1 = NULL do wait;2
start C1;3
while v2 = NULL do wait;4
start C2;5
if C1 > 0 then6

if v1 = v2 then7
output v1;8

else9
while C1 > 0 and v3 = NULL do wait;10
if C1 > 0 and (v3 = v1 or v3 = v2) then11

output v3;12
else if v3 <> NULL then13

signal disagreement;14
else15

while C2 > 0 and v3 = NULL do wait ;16
if v3 = v2 then17

output v3;18
else19

signal disagreement;20
end21

end22

end23

else if C2 > 0 then24
while C2 > 0 and v3 = NULL do wait;25
if v3 = v2 then26

output v3;27
else28

signal disagreement;29
end30

else31
signal disagreement;32

end33

C2 reaches zero, the algorithm outputs the matching
value. Otherwise the algorithm signals disagreement.

Case 2 C1 has reached zero. In this case, V1 is consid-
ered invalid, and the algorithm waits for V3 until C2
reaches zero, as only a match between V2 and V3 may
result in an agreement. If the values do not match or
V3 has not been received at all, the algorithm signals
disagreement.

4. Conclusions

In this paper we have presented a new voting strategy
called Voting on Value and Time (VTV) for redundant sys-
tems, to explicitly consider both value and timing failures

for achieving fault tolerance in real-time applications. Un-
der specified failure assumptions, our method is capable of
producing the correct output as well as identifying the cor-
rect window of time in which the output has to be delivered.

We have presented an algorithm for the particular case
where one output is replicated in three different nodes, and
illustrated the basic idea on how we perform the voting in
both value and time domain.

Our ongoing research indicates that VTV, when used in
the general case to mask arbitrary number of value and tim-
ing failures, is cost-effective in comparison with the number
of nodes required by majority voting in NMR. The main
reason is that, in our approach, a non-faulty node can be
successfully used to mask both a value and a timing failure
in the voting procedure.

References

[1] A. Avizienis, J. Laprie, and B. Randell. Fundamental con-
cepts of dependability. Research Report N01145, LAAS-
CNRS, April 2001.

[2] D. Blough and G. Sullivan. A comparison of voting strate-
gies for fault-tolerant distributed systems. Proceedings of
the Ninth Symposium on Reliable Distributed Systems, pages
136–145, 1990.

[3] A. Bondavalli and L. Simoncini. Failure classification with
respect to detection. Proceedings of 2nd IEEE Workshop on
Future Trends in Distributed Computin, pages 47–53, 1990.

[4] P. Ezhilchelvan, J.-M. Helary, and M. Raynal. Building
responsive tmr-based servers in presence of timing con-
straints. Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium
on, pages 267–274, 2005.

[5] F. D. Giandomenico and L. Strigini. Adjudicators for
diverse-redundant components. Proceedings of the Ninth
Symposium on Reliable Distributed Systems, pages 114–
123, 1990.

[6] H. Kopetz. Fault containment and error detection in the
time-triggered architecture. Autonomous Decentralized Sys-
tems, 2003. ISADS 2003. The Sixth International Symposium
on, pages 139–146, 2003.

[7] G. Latif-Shabgahi and a. S. B. J.M. Bass. A taxonomy for
software voting algorithms used in safety-critical systems.
IEEE Transactions on Reliability, 53(3):319–328, 2004.

[8] R. E. Lyons and W. Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. Journal of Re-
search and Development, 6:200–209, 1962.

[9] J. V. Neuman. Probabilistic logics and the synthesis of reli-
able organisms from unreliable components. Automata Stud-
ies, pages 43–98, 1956.

[10] D. Powell. Failure mode assumptions and assumption cov-
erage. Proceedings of 22nd International Symposium on
Fault-Tolerant Computing, pages 386–395, 1992.

[11] K. Shin and J. Dolter. Alternative majority-voting methods
for real-time computing systems. IEEE Transactions on Re-
liability, 38(1):58–64, 1989.


