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Abstract

Wireless technology has been regarded as a paradigm
shifter in the process industry. The first open wireless com-
munication standard specifically designed for process mea-
surement and control applications, WirelessHART was offi-
cially released in September 2007 (as a part of the HART
7 Specification). WirelessHART is a secure and TDMA-
based wireless mesh networking technology operating in the
2.4GHz ISM radio band. In this paper, we give an intro-
duction to the architecture of WirelessHART and share our
first-hand experience in building a prototype for this spec-
ification. We describe several challenges we had to tackle
during the implementation, such as the design of the timer,
network wide synchronization, communication security, re-
liable mesh networking, and the central network manager.
For each challenge, we provide a detailed analysis and pro-
pose our solution. Based on the prototype implementation,
a simple WirelessHART network has been built for the pur-
pose of demonstration. The demonstration network in turn
validates our design. To the best of our knowledge, this is the
first reported effort to build a WirelessHART protocol stack.

1 Introduction

Wireless process control has been a popular topic re-
cently in the field of industrial control [20, 15, 14]. Com-
pared to traditional wired process control systems, their
wireless counterparts have the potential to save costs and
make installation easier. Also, wireless technologies open
up the potential for new automation applications. Sev-
eral industrial organizations, such as ISA [7], HART [3],
WINA [8] and ZigBee [10], have been actively pushing the
application of wireless technologies in industrial automa-
tion. As a milestone of such efforts, WirelessHART is rati-
fied by the HART Communication Foundation in September

2007. WirelessHART is the first open wireless communica-
tion standard specifically designed for process measurement
and control applications [3].

Before WirelessHART is released, there have been a few
publicly available standards on office and manufacturing au-
tomation, such as ZigBee [10] and Bluetooth [2]. However,
these technologies cannot meet the stringent requirements of
industrial control. Compared with office applications, indus-
trial applications have stricter timing requirement and higher
security concern. For example, many monitoring applica-
tions are expected to retrieve updates from sensors every one
second. Neither ZigBee nor Bluetooth makes any effort to
provide a guarantee on end-to-end wireless communication
delay. In addition, industrial environments are harsher for
wireless applications in terms of interferences and obstacles
than office environment. Some interferences may be persis-
tent. ZigBee, without built-in channel hopping technique,
would surely fail in such environments. Bluetooth assumes
quasi-static star network, which is not scalable enough to be
used in large process control systems.

The new WirelessHART is specifically targeted to solve
these problems and provide a complete solution for process
control applications. At the very bottom, it adopts IEEE
802.15.4-2006 [5] as the physical layer. On top of that,
WirelessHART defines its own time-synchronized MAC
layer. Some notable features of WirelessHART MAC in-
clude strict 10ms time slot, network wide time synchroniza-
tion, channel hopping, channel blacklisting, and industry-
standard AES-128 ciphers and keys. The network layer
supports self-organizing and self-healing mesh networking
techniques. In this way, messages can be routed around in-
terferences and obstacles. WirelessHART also distinguishes
itself from other public standards by maintaining a central
network manager. The network manager is responsible for
maintaining up-to-date routes and communication schedules
for the network, thus guarantee the network performance.

In this paper we discuss how we developed a prototype
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WirelessHART protocol stack. Based on the prototype, we
build a three-node network for demonstration purposes. The
goal of this paper is to introduce the WirelessHART archi-
tecture and to share our first-hand experiences on an imple-
mentation of the specification. The contributions of this pa-
per are threefold:

• Introduction of the architecture of WirelessHART.
We will highlight the features that make Wire-
lessHART suitable for wireless process control.

• Study of some challenging problems in Wire-
lessHART implementation. For practical concern, we
need to implement the feature-rich WirelessHART on
controllers with low processing power and limited re-
sources. We identified and analyzed some challenges,
such as time management, communication security,
and mesh networking.

• Sharing of some experiences and lessons learned
during the implementation. To the best of our knowl-
edge, this effort is the first reported attempt to im-
plement the newly approved WirelessHART standard.
Those who want to build a full-featured WirelessHART
stack should find our experiences helpful.

The remainder of this paper is structured as follows. In
Section 2 we review some existing public standards in office
and manufacturing automation. We describe the layered ar-
chitecture of WirelessHART in Section 3. Section 4 presents
some challenges and our proposed solutions. In Section 5,
we validate our design by a demonstration WirelessHART
network. We talk about the future work and conclude the
paper in Section 6.

2 Background and Related works

Conceptually, WirelessHART networks are one special
type of wireless sensor network. Although it bears many
similarities with other wireless standards, such as Blue-
tooth [2], ZigBee [10], and Wi-Fi [4], WirelessHART dif-
ferentiates itself from them in many other aspects.

Wireless sensor network has received extensive study re-
cently [13, 18, 17, 21, 22, 12]. Different from generic
wireless sensor networks which assume that sensors are de-
ployed randomly and abundantly, the deployment of Wire-
lessHART network is deliberate and has only limited redun-
dancy. In a generic sensor network, many sensors may be
deployed in the same area and perform the same function.
However, in a WirelessHART network, sensors are usually
attached to field devices to collect specific environmental
data, such as flow speeds, fluid levels, or temperatures. A
reading from a sensor is not necessarily replaceable by that
from the nearby sensors. More importantly, generic wire-
less sensor networks are self-configurable and have no strict

requirements on timing and communication reliability. To
meet the requirements of wireless industrial applications,
WirelessHART uses a central network manager to provide
routing and communication schedules. Thus WirelessHART
is essentially a centralized wireless network.

WirelessHART, Bluetooth and ZigBee share a very ob-
vious feature: they all operate in the unrestricted 2.4GHz
ISM radio band, which is available nearly globally. On the
other hand, they distinguish from each other in many other
aspects. Both WirelessHART and Bluetooth support time
slots and channel hopping. However, Bluetooth is targeted
at Personal Area Networks (PAN), whose range is usually
set to 10 meters. Furthermore, Bluetooth only supports star-
type network topology, and one master can only have up to
7 slaves. These limitations make it awkward to apply Blue-
tooth in large industrial control systems. In contrast, Wire-
lessHART supports mesh networking directly. The topol-
ogy of a WirelessHART network can be a star, a cluster or a
mesh, thus providing much better scalability.

Both WirelessHART and ZigBee are based on the IEEE
802.15.4 physical layer. While ZigBee uses the existing
IEEE 802.15.4 MAC, WirelessHART goes one step fur-
ther to define its own MAC protocol. WirelessHART in-
troduces channel hopping and channel blacklisting into the
MAC layer, while ZigBee can only utilize Direct Sequence
Spread Spectrum (DSSS) provided by IEEE 802.15.4. Thus,
if a noise is persistent, which is not unusual in industrial
fields, the performance of a ZigBee network might degrade
severely. By changing the communication channel pseudo-
randomly, WirelessHART can limit the damage to mini-
mum.

Just like ZigBee, Wi-Fi does not support channel hopping
either. In addition, power consumption is not a concern for
Wi-Fi. Thus, Wi-Fi is not a good fit for industrial environ-
ment as well.

It is noteworthy that ISA SP100 [7] committee is also
working on wireless standards for industrial applications.
However, the standard is yet to be published.

3 WirelessHART Architecture

In order to make this paper self-contained, we elect to
describe in this section the parts of the WirelessHART spec-
ification that are related to our work.

Figure 1 illustrates the architecture of the WirelessHART
protocol stack according to the OSI 7-layer communication
model. As shown in this figure, WirelessHART protocol
stack includes five layers: physical layer, data link layer 1,
network layer, transport layer and application layer. In addi-
tion, a central network manager [19] is introduced to manage
the routing and arbitrate the communication schedule.

1In the rest of this paper, we use “data link layer” and “MAC layer”
interchangeably.
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Figure 1. Architecture of HART Communication Protocol

3.1 Physical layer

The WirelessHART physical layer is based mostly on the
IEEE STD 802.15.4-2006 2.4GHz DSSS physical layer [5].
This layer defines radio characteristics, such as the signaling
method, signal strength, and device sensitivity.

Just as IEEE 802.15.4 [5], WirelessHART operates in the
2400-2483.5MHz license-free ISM band with a data rate of
up to 250 kbits/s. Its channels are numbered from 11 to 26,
with a 5MHz gap between two adjacent channels.

3.2 Data Link Layer

One distinct feature of WirelessHART is the time-
synchronized data link layer. WirelessHART defines a strict
10ms time slot and utilizes TDMA technology to provide
collision free and deterministic communications. The con-
cept of superframe is introduced to group a sequence of
consecutive time slots. Note a superframe is periodical,
with the total length of the member slots as the period.
All superframes in a WirelessHART network start from the
ASN(absolution slot number) 0, the time when the network
is first created. Each superframe then repeats itself along the
time based on its period.

In WirelessHART, a transaction in a time slot is de-
scribed by a vector:

{frame id, index, type, src addr, dst addr, chan-
nel offset}
where frame id identifies the specific superframe; index
is the index of the slot in the superframe; type indicates
the type of the slot (transmit/receive/idle); src add and
dst addr are the addresses of the source device and destina-
tion device, respectively; channel offset provides the logical
channel to be used in the transaction.

To fine-tune the channel usage, WirelessHART intro-
duces the idea of channel blacklisting. Channels affected

Figure 2. WirelessHART Data Link Layer Architecture

by consistent interferences could be put in the black list. In
this way, the network administrator can disable the use of
those channels in the black list totally.

To support channel hopping, each device maintains an
active channel table. Due to channel blacklisting, the table
may have less than 16 entries. For a given slot and channel
offset, the actual channel is determined from the formula:
ActualChannel = (ChannelOffset + ASN) % NumChannels

The actual channel number is used as an index into the ac-
tive channel table to get the physical channel number. Since
the ASN is increasing constantly, the same channel offset
may be mapped to different physical channels in different
slots. Thus we provide channel diversity and enhance the
communication reliability.

Figure 2 describes the overall design of the data dink
layer which consists of six major modules as described in
the follow subsections.

3.2.1 Interfaces

The interface between the MAC and PHY layer describes
the service primitives provided by the physical layer, and the
interface between the MAC and NETWORK layer defines
the service primitives provided to the network layer.

3.2.2 Timer

Timer is a fundamental module in WirelessHART. It pro-
vides accurate timing to ensure the correct operating of the
system. One significant challenge we met during the im-
plementation is how to design the timer module and keep
those 10ms time slots in synchronization. The specific tim-
ing requirement inside a WirelessHART time slot is depicted
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Figure 3. WirelessHART Slot Timing

in Figure 3 and the implementation issues are addressed in
Section 4.

3.2.3 Communication Tables

Each network device maintains a collection of tables in the
data link layer. The superframe table and link table store
communication configurations created by the network man-
ager; the neighbor table is a list of neighbor nodes that the
device can reach directly and the graph table is used to col-
laborate with the network layer and record routing informa-
tion.

3.2.4 Link Scheduler

The functionality of the link scheduler is to determine the
next slot to be serviced based on the communication sched-
ule in the superframe table and link table. The scheduler is
complicated by such factors as transaction priorities, the link
changes, and the enabling and disabling of superframes. Ev-
ery event that can affect link scheduling will cause the link
schedule to be re-assessed.

3.2.5 Message Handling Module

The message handling module buffers the packets from the
network layer and physical layer separately.

3.2.6 State Machine

The state machine in the data link layer consists of three
primary components: the TDMA state machine, the XMIT
and RECV engines. The TDMA state machine is responsi-
ble for executing the transaction in a slot and adjusting the
timer clock. The XMIT and RECV engine deal with the
hardware directly, which send and receive a packet over the
transceiver, respectively.

3.3 Network Layer and Transport Layer

The network layer and transport layer cooperate to pro-
vide secure and reliable end-to-end communication for net-

Figure 4. WirelessHART Mesh Networking

work devices 2.
As shown in Figure 4, the basic elements of a typical

WirelessHART network include: (1) Field Devices that are
attached to the plant process, (2) Handheld which is a
portable WirelessHART-enabled computer used to config-
ure devices, run diagnostics, and perform calibrations, (3) A
gateway that connects host applications with field devices,
and (4) A network manager that is responsible for config-
uring the network, scheduling and managing communica-
tion between WirelessHART devices.

To support the mesh communication technology, each
WirelessHART device is required to be able to forward
packets on behalf of other devices. There are two routing
protocols defined in WirelessHART:

• Graph Routing: A graph is a collection of paths that
connect network nodes. The paths in each graph is
explicitly created by the network manager and down-
loaded to each individual network device. To send a
packet, the source device writes a specific graph ID
(determined by the destination) in the network header.
All network devices on the way to the destination must
be pre-configured with graph information that specifies
the neighbors to which the packets may be forwarded.

• Source Routing: Source Routing is a supplement of
the graph routing aiming at network diagnostics. To
send a packet to its destination, the source device in-
cludes in the header an ordered list of devices through
which the packet must travel. As the packet is routed,
each routing device utilizes the next network device ad-
dress in the list to determine the next hop until the des-
tination device is reached.

2For simplicity, in the rest of the paper, we will not separate these two
layers in the presentation.
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3.4 Application Layer

The application layer is the topmost layer in Wire-
lessHART. It defines various device commands, responses,
data types and status reporting. In WirelessHART, the com-
munication between the devices and gateway is based on
commands and responses. The application layer is responsi-
ble for parsing the message content, extracting the command
number, executing the specified command, and generating
responses.

3.5 Security Architecture

WirelessHART is a secure network system. Both the
MAC layer and network layer provide security services.
The MAC layer provides hop-to-hop data integrity by us-
ing MIC. Both the sender and receiver use the CCM* mode
together with AES-128 as the underlying block cypher to
generate and compare the MIC.

The network layer employs various keys to provide con-
fidentiality and data integrity for end-to-end connections.
Four types of keys are defined in the security architecture:

• Public Keys which are used to generate MICs on the
MAC layer by the joining devices.

• Network Keys which are shared by all network devices
and used by existing devices in the network to generate
MAC MIC’s.

• Join Keys that are unique to each network device and
is used during the joining process to authenticate the
joining device with the network manager.

• Session Keys that are generated by the network man-
ager and is unique for each end-to-end connection be-
tween two network devices. It provides end-to-end
confidentiality and data integrity.

Figure 5 describes the usage of these keys under two dif-
ferent scenarios: 1) a new network device wants to join the
network and 2) an existing network device is communicating
with the network manager. In the first scenario, the joining
device will use the public key to generate the MIC on MAC
layer and use the join key to generate the network layer MIC
and encrypt the join request. After the joining device is au-
thenticated, the network manager will create a session key
for the device and thus establish a secure session between
them. In the second scenario, on the MAC layer, the DLPDU
is authenticated with the network key; on the network layer,
the packet is authenticated and encrypted by the session key.

4 Challenges and Solutions

As described in Section 3, WirelessHART includes some
core modules, such as time management, mesh networking,

Figure 5. Keying Model

security and network management. It is a very challenging
task to build such a prototype on a resource-limited hard-
ware platform.

In the following subsections, we first introduce the hard-
ware platform we use. Then we describe those challenges
we met in the process of development and present our solu-
tions.

4.1 Hardware Platform

We base our implementation on the MC1321x evalua-
tion kit [1] provided by Freescale. This toolkit contains
one 1321x-NCB (Network Coordinator Board) board, two
1321x-SRB (Sensor Reference Board) boards, and a USB
Multilink BDM Programmer/Debugger. The only major dif-
ference between 1321x-NCB and 1321x-SRB is that 1321x-
NCB has a programmable 2-line LCD for displaying mes-
sages. Other than that, the two boards share the following
common features:

• 40 MHz 8-bit HCS08 MCU

• 2.4 GHz wireless transceiver compatible with the IEEE
802.15.4 standard

• Programmable 60 KB Flash and 4KB RAM memory

• Multiple 16-bit timers

• USB port to interface with PC

• 3-axis acceleration sensor and temperature sensor

• 4 LEDs and switches for demonstration, monitoring
and control

Together with the toolkit, Freescale also provides a sim-
ple IEEE 802.15.4 physical layer library in ANSI C. Our
task is to build a new WirelessHART protocol stack by us-
ing the physical layer library.
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Implicitly, this toolkit imposes two restrictions on our im-
plementation: code size and MCU speed. The maximum
code size is limited by the flash size, which is 60 KB in
this case. Also, the relatively low computation capability
of HCS08 makes it difficult to meet the timing requirement
inside a time slot. We describe our design to solve these
problems in the following subsections.

4.2 Timer and Timer Interrupts

WirelessHART has very stringent timing requirements on
each network device. A 10ms time slot is further sliced into
several time intervals, each of which ranges from 100µs to
4.5ms. For example, as shown in Figure 3, a receiver must
start listening TsRxOffset time units after the beginning of a
time slot. In addition, A receiver must acknowledge a packet
within TsMaxPacket+TsTxAckDelay time units after the ar-
rival of the first bit of the packet. Some of the time inter-
vals are very short. For instance, TsCCA, the CCA detection
time, is defined to be 128µs.

Also note that an ACK DLPDU is required to carry a 2-
byte time adjustment field measured in microseconds. Thus,
the timer used in WirelessHART MAC must be precise
enough to count in microseconds.

During each time interval defined in a time slot, a node
can either be idle or perform some tasks if necessary. Some
of those tasks may be very time consuming. For example,
when a node receives a DLPDU, it has to first verify the MIC
(message integrity code) and then prepare the corresponding
acknowledge. Ideally, those tasks should be finished within
the designated time interval. However, in practice, the exe-
cution may take a longer time and by the time those tasks are
completed, the predefined next time interval already starts.
In this case, the subsequent tasks will be in serious troubles.
Consequently, we can not wait till the end of all tasks in cur-
rent interval to set the next timer. Instead, we decide to make
the timer WirelessHART -aware and use the timer module to
start/stop the tasks.

We use a separate 16-bit TPM (Timer/Pulse Width Mod-
ulator Module) module to implement the timer. The TPM
module’s input clock is set to the bus clock (16MHz). By
changing the internal prescaler of the TPM module, we can
change the clock frequency of the timer as follows:

ftimerclock =
fbusclock

prescaler

Currently, the prescaler is set to 16. As a result, each tick
of the timer is 1µs, which is precise enough to meet the re-
quirement of WirelessHART MAC. The TPM module con-
tains one free running counter and one comparison counter.
Whenever the free running counter equals the comparison
counter, a timer interrupt is triggered.

By adjusting the comparison counter and maintaining
some internal data structures, the timer module can simu-
late several software timers. The caller of the timer module
indicates what type the next time slot would be. Then the
timer module generates a sequence of timeout events in the
slot based on the given time slot type (transmit/receive/idle).
As an example, if current slot is a receive slot, the timer
would first generate an interrupt at the start of the slot. Then,
TsRxOffset time units later, it would automatically generate
another interrupt to the MAC, informing the MAC to put
the transceiver in the listening mode. Conceptually, an in-
terrupt handler is composed of two parts: synchronous part
and asynchronous part. The synchronous part resides in the
interrupt handler, whereas the asynchronous part is included
in the MAC state machine. Time critical and light-weight
jobs are put in the synchronous part, and less time critical
and computation intensive jobs are put in the asynchronous
part. For the second interrupt in the example above, the in-
terrupt handler only needs to set the mode of the transceiver
and change some internal states, which can all be put in the
synchronous part and leave the asynchronous part empty.
However, an asynchronous part is needed when some time-
consuming job is incurred, such as data encryption and de-
cryption. In this case, at the very end of the interrupt han-
dler, a specific event is sent to the MAC state machine to
signal the execution of the asynchronous part. The interrupt
handler finishes immediately after that.

4.3 Synchronization

As time is divided into time slots and transactions within
a time slot follow specific timing requirements, it is crucial
that nodes in the network are kept in synchronization.

When it joins a WirelessHART network initially, a
node has no idea what current time is. Fortunately, for
each incoming DLPDU, a node records the time when the
DLPDU’s first bit arrives. Because of the strict time slot
structure, a node can derive the start of the next time slot
from the DLPDU arrival time according to the following for-
mula:

Tnext slot = arrival time + 10ms− TsTxOffset

Synchronization happens not only in the join process, but
also during a node’s normal operations. A receiving node
always compares the start time of the incoming DLPDU and
the expected arrival time measured in its own clock. The
difference is the drift between their clocks. The receiver
includes the difference in the time adjustment field of the
corresponding ACK packet. Each node is designated a time
source node. Whenever a node receives an ACK from its
time source, it will adjust its clock based on the time adjust-
ment field. If the sender is the time source of the receiver,
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the receiver adjusts its clock directly from the time differ-
ence value.

4.4 State Machine Design

The major part of WirelessHART MAC layer is a compli-
cated state machine. Each run of the state machine contains
three steps:

1. Call the link scheduler to determine the next slot to be
serviced.

2. Receive the “time slot start” event from the timer and
increment the ASN by 1.

3. When it is time to service the given time slot derived in
step 1), execute the associated transaction.

Most of the code in the state machine deals with execut-
ing a transaction. We define six states in the state machine:

• Join: In this state, the device is not authorized by the
network manager yet. After successfully joining the
network, it enters the Idle state.

• Idle: When the device successfully joins the network
or finishes transmiting/receiving a packet, it enters this
state.

• Talk: When ready to transmit a packet, the state ma-
chine enters this state and calls the XMIT engine.

• Wait ACK: After a non-broadcast DLPDU is transmit-
ted successfully, the state machine reaches this state.

• Listen: In this state, the state machine calls the RECV
engine to wait for an incoming DLPDU.

• Answer: In this state, the state machine constructs
and sends out an ACK DLPDU corresponding to the
DLPDU received in the previous Listen state.

Based on these internal states and the incoming event
type, the state machine knows what task to execute. For ex-
ample, when it receives a “time slot start” event, it will first
increase the ASN by 1. Then, if current slot is a transmit
slot, it sets the transceiver to transmit mode and enters into
the “Talk” state.

4.5 Network Data Model Design

Similar to the MAC layer, the network layer maintains a
set of tables, including the session table, transport table, and
route table.

The session table is central in the design as all the end-
to-end communication in WirelessHART is built upon the
concept of secure session. A session establishes a secure

data pipe between the device and one of its correspondent
devices. The transport table is used to support end-to-end
acknowledged transactions with automatic retries. It uses a
MASTER bit to identify whether the device is a MASTER
or a SLAVE. Along with the corresponding sequence num-
ber, this table also buffers the payload of the last request (in
MASTER mode) or response (in SLAVE mode). Thus it al-
lows the device to resend the request or response when the
retry timer expires.

For each destination, there can be more than one entries
in the route table with different graph IDs. When generat-
ing a network layer packet, WirelessHART has to consult
the route table, superframe table, and graph table together
to determine the routing information to be used. For cer-
tain destination, there can also exist a source route, which is
mainly used for network diagnostics.

With these well-organized communication tables and
graph/source routing protocols, WirelessHART supports
various network topologies and provides reliable end-to-end
communications.

4.6 Security

In the MAC layer, WirelessHART provides data authen-
tication service. The authentication service uses CCM*
mode(Counter with CBC-MAC (corrected)) [16] with AES-
128 [11] as the underlying block cypher. CCM* needs 4
byte-strings as parameters (a, m, N, K). As the DLPDU is
not encrypted, the second parameter m is empty, while a
includes the DLPDU header and payload.

The key K is 16-byte long. The value of K depends on
the current status of the node. If a node is joining a network
or broadcasting a network advertisement, the well-known
key 0x7777 772E 6861 7274 636F 6D6D 2E6F 7267 is
used. In all other situations, the network key assigned by
the network manager is used.

The nounce N is 13-byte long and is the concatenation
of the absolute slot number and the source address. The first
5 bytes are always the absolute slot number. If the source
address of the DLPDU is a long address (EUI-64 address),
the source address is filled into the remaining 8 bytes of the
nounce. Otherwise, the short source address(2 bytes) is put
right next to the slot number, with the rest 6 bytes filled with
0.

The sender and receiver of the DLPDU both call the
CCM* function with the same input: the DLPDU header
and payload. After receiving a DLPDU, the receiver com-
pares the returned MIC with the MIC in the original mes-
sage. If they match, the message is authenticated. Otherwise
the message is invalid and discarded.

From the perspective of a receiver, it must run CCM* on
the received message and on the corresponding ACK mes-
sage within TsTxAckDelay(1ms). This is a very challeng-
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ing task for low power processors.
We grabbed a complete CCM* program from [6]. This

program only encrypts/decrypts one block of data, which
is 16 bytes. There are three major underlying func-
tions in the program: aes set key(), aes encrypt(), and
aes decrypt(). We measured the execution time of these
three functions on the hardware platform described in pre-
vious section. On average, aes set key() takes 1341µs,
aes encrypt() takes 1335µs, and aes decrypt() takes
1581µs. The numbers are just too big for WirelessHART.
It should also be noted that those functions only works on
16 bytes, while a WirelessHART DLPDU can be as long as
121 bytes.

Then we tested the CCM* program on the new and
more powerful FreeScale EVBQE128 kit. The run
time for the three major functions ccm init and key(),
ccm encrypt message(), ccm decrypt message() are
77µs, 795µs, 818µs, respectively. Obviously, without any
tweak, the EVBQE128 toolkit would not meet the require-
ment of WirelessHART either.

We propose to use a hardware accelerator to speed
up the encryption/decryptoin process. Upon our re-
quest, Freescale is developing a new toolkit with on-board
hardware accelerator. Freescale claims that the encod-
ing of 16 bytes of data would be finished in 13 sys-
tem clocks with the new toolkit. However, even with
the new toolkit, we may still have problems. Except for
the aes encrypt() function, ccm encrypt message() and
ccm decrypt message() also call some other helper func-
tions. Of the 795µs and 818µs run times of the two func-
tions, the helper functions take about 123µs and 148µs, re-
spectively. These times can not be improved by the hardware
accelerator.

In order to further speed up the encryption/decryption
process, we propose to execute CCM* incrementally. Orig-
inally, CCM* is not designed to support stream processing.
However, as WirelessHART DLPDU is not encrypted, the
message length is indicated in the DLPDU header. Thus, we
can run CCM* on an incoming message as soon as every
16 bytes are received. Given the relatively slow data trans-
mission rate (250kbps), we may only need to process one
block of data in the TsTXAckDelay period, regardless of
the message length. In this way, we can meet the stringent
timing requirements of WirelessHART.

WirelessHART also provides built-in security support in
the network layer. It also uses CCM* mode. As there is
no time slot concept in the network layer, we do not have
problems with message encryption/decryption in this layer.

4.7 Network Management

According to WirelessHART, two most important func-
tions of a network manager are generating routes and com-
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Figure 6. Topology of the WirelessHART Network in
Fig. 4

munication schedules. Although WirelessHART specifies
what a network manager should do in various cases, it leaves
out all details. That is, the network manager has the freedom
to choose how to fulfil its tasks. For example, when gener-
ating routes, the network manager can aim to either balance
the load on network nodes or minimize the average network
latency. Depending on the metrics the manager tries to opti-
mize, the resulting routes can be very different.

For the purpose of proof of concept, we implemented a
simple network manager. We illustrate the design of the net-
work manager by an example. The topology of the example
network in Figure. 4 is shown in Figure. 6, where the num-
ber below each node is the node’s identification number and
there are two paths from the gateway to device 10. The burst
mode data rate from each device is summarized as follows:

Device ID 3 4 5 6 7 8
Burst Mode Rate (seconds) 8 32 4 64 16 64

4.7.1 Generating Routes

Based on the link information provided by each node, the
network manager needs to create the overall network graph.
In this process, the manager follows several rules in the spec-
ified order:

(a) Minimize the number of hops.

(b) Route through powered devices if they are available.

(c) Use signal strength to select the best paths to neighbors.

(d) Use a combination of weighted signal strengths to select
between alternative routes.

(e) Prune the number of neighbors to 4 or less.

After generating the overall network graph, the manager
has to create the follow graphs:
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• An graph describing paths from each network device to
the gateway

• A broadcast graph from the gateway downward to each
device

• Graphs from the gateway to each device

4.7.2 Generating Communication Schedules

The network manager has to assign time slots to each device
according to the graphs derived above. The strategies we
take are summarized below:

(a) The network management superframe has priority over
data superframes.

(b) Traverse the graph by breath-first search, starting from
the gateway, number the devices as N0, N1, . . . , Nn.

(c) Every device needs to have a slot for a keep-alive mes-
sage. The keep alive timer is 60 seconds.

(d) For join requests, from the furthest devices, allocate one
link for each en-route network device to the gateway
(No redundancy provided)

(e) For join responses, traverse the graph by breath-first
search, allocating one link for each en-route network de-
vice from the gateway to end network device.

(f) For data requests, the allocation is similar to join re-
quests. An additional slot is allocated in each en-route
device for retransmission.

(g) If there is an alternative path, allocate a slot for it.

The resulting schedule is shown in Figure. 7. The upper
part of the figure shows the overall slot allocations divided
into logical channels. The bottom portion of the schedule
describes the transmit slots and receive slots for each device.

After the overall schedule is generated, the network man-
ager splits the schedule into sub-schedule for each device
and distributes them to the corresponding devices.

5 A WirelessHART Network Demonstration

Based on the WirelessHART prototype stack, we con-
tinued to develop some applications on the stack, with the
aim of building a demonstration network with the Freescale
1321xEvk toolkit. The application is written in ANSI C.

The demonstration network, shown in Fig. 8, contains
one gateway and two devices, which are referred to as De-
vice 1 and Device 2. In this network, Device 1 designates
the Gateway as its time source, and is the time source of
the Device 2. The gateway and Device 2 both maintain a 4-
bit counter, with the gateway counting upward and Device 2

Figure 7. The Overall Schedule for the Sample Network

Figure 8. The Demonstration Network

counting downward. They exchange the counter values via
Device 1 and show the received value on the LEDs. The
first two LEDs on Device 1 display the lower two bits of the
gateway’s counter and the remaining two LEDs on Device
1 shows the lower two bits of Device 2’s counter. In this
way, we can check the communication status between any
two devices simply from the LEDs.

We also define an overall superframe for the network,
shown in Table 1. Basically, this superframe regulates the
time sequence of all communications. That is, the gateway
first transmits a packet to Device 2 via Device 1. Device 2
sends out its counter value after it receives the packet from
the gateway.

Since WirelessHART works on top of 802.15.4 physical
layer and adopts 802.15.4 DLPDU format, we can capture
the communication details on packet level by using a hard-
ware sniffer and 802.15.4 protocol analyzer. These two com-
ponents are also shown in Fig. 8. With the help of the ana-
lyzer, we have verified the following points:

(a) A device can synchronize to its time source within 3
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Table 1. The superframe configuration
Time Slot Transaction

0 Gateway → Device 1
1 Device 1 → Device 2
2 Device 2 → Device 1
3 Device 1 → Gateway

time slots.

(b) A DLPDU is always immediately acknowledged in the
same time slot.

(c) Both the gateway and Device 2 get the other party’s
counter value via Device 1. That is, Device 1 is for-
warding data packets for the two devices.

This demonstration proves that our design is feasible and
the implementation works. More details on the demo can be
found at [9].

6 Discussion and Conclusion

WirelessHART is the first open wireless standard for in-
dustrial process control. To meet the strict real-time require-
ments of process control, WirelessHART specifies many
challenging features. In this paper, we briefly introduce the
new WirelessHART standard, focusing on the overall archi-
tecture. Then we present some challenges in implementing
this specification, such as timer design, synchronization and
security. We proposed some novel ways to tackle the chal-
lenges. Preliminary results from our prototype are very en-
couraging and also revealing. Based on experiments with
the hardware, we determine that there is a serious need for
using AES hardware accelerator to realize the 10ms time
slot.

WirelessHART is a layered and unique protocol stack.
We have thus far focused on implementing the major fea-
tures of WirelessHART. For future work, we will build a
full-featured WirelessHART prototype. For example, there
is much work to be done on the transport layer and applica-
tion layer.

Another avenue of future work is the network manager.
The network manager is the central control unit of a Wire-
lessHART network. When deriving the routing table and
communication schedules, the network manager can choose
to optimize several metrics, such as energy consumption, av-
erage end-to-end latency. We believe the scheduling algo-
rithms can be vastly different depending on the optimization
goal. For now, our network manager is a proof of concept
and far from perfect.

Beyond that, we are also interested in the co-existence
issues between WirelessHART, ZigBee and Bluetooth. As

they all work on the 2.4G ISM band, it would be interesting
to see how they would react in a mixed environment.
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