
Hardware/Software Partitioning and Static Task Scheduling on Runtime
Reconfigurable FPGAs using a SMT Solver

Mingxuan Yuan, Xiuqiang He and Zonghua Gu
Dept. of Computer Science and Engineering

Hong Kong University of Science and Technology

Abstract

FPGAs are often used together with a CPU as hardware ac-
celerators. A runtime reconfigurable FPGA allows part of the
FPGA area to be reconfigured while the remainder continues
to operate without interruption, so that hardware tasks can be
placed and removed dynamically at runtime. In this paper, we
formulate and solve the problem of optimal hardware/software
partitioning and static task scheduling for a hybrid FPGA/CPU
device, with the optimization objective of minimizing the total
schedule length, in the framework of Satisfiability Modulo The-
ories (SMT) with Linear Integer Arithmetic.

1 Introduction

Reconfigurable HW devices, such as FPGAs, are very pop-

ular in today’s embedded systems design due to their low-cost,

high-performance and reconfigurability. FPGAs are inherently

parallel, that is, two or more tasks can execute on a FPGA de-

vice concurrently as long as they can both fit on it. Partially
Runtime-Reconfigurable (PRTR) FPGAs, such as Virtex-2 Pro

and Virtex-4 from Xilinx, allow part of the FPGA area to be

reconfigured while the remainder continues to operate without

interruption, so that HW tasks can be placed and removed dy-

namically at runtime. (In this paper, we use the term FPGA to

refer to PRTR FPGA.) The task scheduler and placer are needed

to find empty space to place a new task, and recycle the occu-

pied area when a task is finished while making sure all task

deadlines are met.

Current commercial FPGA technology, e.g., Xilinx Virtex-

4, supports both 1D reconfiguration, where each task occupies

a contiguous set of columns, and 2D reconfiguration, where

each task occupies a rectangular area with a width and height

in terms of number of CLBs on the two dimensions. Real-time

scheduling for 1D reconfigurable FPGAs shares many similari-

ties with global scheduling on identical multi-processors, where

all processors in the system have identical processing speed,

and different task invocation instances may run on different pro-

cessors. Similarly, a task can be relocated to a different position

on the FPGA at runtime, with the associated reconfiguration

overhead. But FPGA scheduling is a more general and diffi-

cult problem than multi-processor scheduling, since each HW

task may occupy a different area size on the FPGA while a SW

task always occupies one and only one CPU. In fact, we can

view multiprocessor scheduling as a special case of HW task

scheduling on a 1D reconfigurable FPGA where all tasks have

unit width.

Unlike CPU scheduling, where task context switch overhead

is often small enough to be ignored, FPGA reconfiguration car-

ries a significant overhead in the range of milliseconds that is

proportional to size of the area being reconfigured. Several

techniques have been proposed to reduce the impact of recon-

figuration overhead. In this paper, we consider configuration
prefetch [1], a technique for hiding the large reconfiguration

delay by allowing a task’s configuration to be loaded on the

FPGA sometime before the start of its actual computation. As

a result, a task’s reconfiguration and computation stages may

be separated by a time gap. Each task invocation consists of

two distinct stages: reconfiguration and execution. This can be

useful for reducing or eliminating impact of reconfiguration de-

lays by overlapping one task’s reconfiguration stage with some

other task’s computation stage.

FPGAs may be used in place of ASICs as co-processors, also

called HW accelerators, for computation-intensive kernels in

the application. As HW co-processors, FPGAs have a number

of advantages over ASICs:

• FPGAs are more cost effective than ASICs in terms of ease

of design and reduced time-to-market.

• FPGAs are more flexible than ASICs. Whereas ASIC

co-processors accelerate specific functions, co-processors

based on FPGAs can be applied to the speedup of arbitrary

SW programs with some distinctive characteristics (e.g.,

programs with parallelizable bit-level operations [2]).

• Dynamically reconfigurable FPGAs may be used to

achieve further cost-effectiveness and flexibility by recon-

figuring the FPGA to run different acceleration tasks at

different times, thus avoiding the need for multiple ASIC

co-processors.

There are some commercial products to support develop-

ment of FPGA-based co-processors as HW accelerators, e.g.,

Altera has developed HW and tools for a flexible co-processor

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.39

295

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.39

295

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.39

295

Figure 1. One example configuration of Altera
FPGA co-processor, taken from the Altera web-
site [3].

architecture. Fig. 1 shows one possible configuration using Al-

tera’s FPGA co-processor with Texas Instruments’ digital sig-

nal processor, where the co-processor is direct memory access

(DMA)-driven via the TI external memory interface (EMIF),

and the data is buffered using first-in first-out (FIFO) buffers.

It is also possible to build a System on a Programmable Chip

(SoPC) with the Nios embedded processor core instead of an

external processor. Combined with PRTR feature of modern

FPGAs, this approach provides a flexible and high-performance

approach to HW acceleration.

In this paper, we address the HW/SW partitioning problem,

where the FPGA is paired with a CPU, which may be a softcore
CPU carved out of the configurable logic in the FPGA, e.g.,

MicroBlaze for Xilinx FPGAs, or a separate independent CPU

connected to the FPGA via a bus. Each task has both a HW

implementation that can run on the FPGA, and a SW imple-

mentation that can run on the CPU. Communication between

the FPGA and CPU incurs a fairly large delay. The application

is given in the form of a task graph with known execution times

on the HW (FPGA) and SW (CPU), and known area sizes on

the FPGA. The HW/SW partitioning problem is to find an valid

allocation of tasks to either HW or SW and a static schedule

with the optimization objective of minimizing the total sched-

ule length (makespan). We make the following assumptions in

this paper:

• The FPGA is 1D reconfigurable.

• The FPGA has a single reconfiguration controller, which is

the state-of-the-art in industry practice. The reconfigura-

tion controller is a global shared resource, and reconfigura-

tion stages of multiple tasks must be serialized while their

execution stages can be concurrent as long as they can all

fit on the FPGA. This is a major source of complexity of

real-time scheduling on FPGAs.

• The entire FPGA area is uniformly reconfigurable, and

each dynamic task can be flexibly placed anywhere on the

FPGA area as long as there is enough empty space. In

practice, it is common to pre-configure parts the FPGA

area for dedicated purposes as static components where

dynamic tasks cannot be placed. This situation can be han-

dled easily in our task model by denoting these columns

as always occupied. It is also possible to allocate an

area of logical shared memory that spans the entire width

of the FPGA and acts as a global shared communica-

tion medium [4], which reduces the height of the FPGA

columns that are available to dynamic tasks but does not

otherwise affect our task model.

Many scheduling problems in design automation are NP-

complete. Typically, efficient heuristic algorithms are devised

to obtain near-optimal solutions. Researchers have also used

various techniques to obtain exact solutions to these scheduling

problems, including Integer Linear Programming (ILP) solvers,

Constraint Programming (CP) solvers, Binary Decision Di-

agram (BDD) packages, Satisfiability (SAT) solvers, model-

checkers, etc. In particular, SAT is a well-known NP-complete

problem of assigning values to a set of boolean variables to

make a propositional logic formula true. The formula is typ-

ically written in Conjunctive Normal Form (CNF) consisting

of a conjunction of boolean disjunctions. SAT solvers have be-

come amazingly fast in recent years, and a good SAT solver can

routinely handle up to 10300 states. SAT can encode bounded

integers with bit vectors, but it cannot encode unbounded types

such as real variables, or infinite structures, such as queues or

linked lists. Even for bounded variables, the number of vari-

ables can be very large, and SAT solving can be very slow

if there is a large number of variables. Since the number of

boolean variables needed to encode integer variables grows

large quickly for large integer values, SAT is not very suitable

for optimization problems involving large integer values.

Satisfiability Modulo Theories (SMT) is an extension to SAT

by adding the ability to handle arithmetic and other decidable

theories, e.g., equality with uninterpreted function symbols, lin-

ear integer arithmetic, linear real arithmetic, integer difference

logic and real difference logic. In our problem formulation,

we use the Linear Integer Arithmetic (LIA) theory, which can

express linear inequalities involving integer variables and con-

stants. Integer Difference Logic (IDL) is a specialized fragment

of LIA that can express inequalities that constrain the difference

between pairs of integer variables. (If we adopt a continuous

view of time, then we can declare all time-related variables as

real numbers instead of integers in the SMT solver, which can

handle real arithmetic as well as integer arithmetic. Our expe-

rience shows that Yices exhibits slightly worse performance if

we use real variables than if we use integers, so we declare all

variables to be integers in this paper.)

Early attempts for solving SMT instances involved translat-

ing them to Boolean SAT instances (e.g., a 32-bit integer vari-

able would be encoded by 32 boolean variables, and word-level

operations such as addition would be replaced by lower-level

boolean operations) and passing this formula to a Boolean SAT

solver. This allows us to use existing SAT solvers and lever-

age their performance and capacity improvements over time.

On the other hand, the loss of high-level semantics means that

the SAT solver has to work a lot harder than necessary to dis-

cover obvious facts such as x + y = y + x for integer ad-

296296296

dition. This observation led to the development of a number

of SMT solvers that tightly integrate the boolean reasoning

of a DPLL-style search with theory solvers that handle con-

junctions of predicates from a given theory. This architecture,

called DPLL(T), gives the responsibility of boolean reasoning

to the DPLL-based SAT solver which, in turn, interacts with a

solver for theory T through a well-defined interface. The the-

ory solver checks the feasibility of conjunctions of theory pred-

icates passed on to it from the SAT solver as it explores the

boolean search space of the formula. Different SMT solvers

may use different theory solvers and different techniques of in-

tegrating them within the DPLL(T) framework. In this paper,

we use the SMT solver Yices [5] from Stanford Research In-

stitute (SRI) to solve the HW/SW partitioning problem, as an

alternative to more conventional optimization techniques such

as ILP. Yices handles linear arithmetic constraints by using a

Simplex-based linear arithmetic solver that is integrated effi-

ciently in the DPLL(T) framework. The solver gains efficiency

with a number of features such as fast backtracking, a priori

simplification to reduce the problem size, and an efficient form

of theory propagation. We refer the interested reader to [5] for

details of the algorithm.

This paper is structured as follows: we first introduce the

HW/SW partitioning problem in Section 2, then discuss the de-

tails of modeling with SMT and ILP in Section 3. We give

performance evaluation results in Section 4, and discuss related

work in Section 5. Finally, we draw conclusions in Section 6.

2 Problem Formulation

2.1 HW Task Scheduling

A task graph is a directed acyclic graph where each vertex

represents a task, and each edge represents precedence relation-

ship between two tasks. Each task Ti has a tuple of attributes

(Ei, Ri,Wi), where Ei is its computation time, Ri is its recon-

figuration delay, and Wi is its width, i.e., the number of contigu-

ous FPGA columns it occupies. A task’s reconfiguration delay

Ri is proportional to its width Wi. Each task invocation con-

sists of a reconfiguration stage with length Ri followed by an

computation stage with length Ei. A task’s computation stage

can start when all its predecessors have finished their compu-

tation stages, i.e., precedence relationships in the task graph

constrain task computation stages, not reconfiguration stages,

which can occur in arbitrary order. Communication delays be-

tween tasks can be ignored in comparison to reconfiguration

delays and computation times.

Definition 1 An optimal schedule of a task graph on a FPGA is
the static schedule with the shortest possible length that satisfies
all task precedence relationships.

The optimal schedule may not be unique since multiple

schedules may have the same length but have different task in-

vocation sequences. Consider the problem of finding an opti-

mal schedule of a task graph on a FPGA with 3 columns. If each

2

54

1

3

Task ID i Ei Ri Wi

1 3 1 1

2 1 2 2

3 2 1 1

4 1 1 1

5 2 2 2

Table 1. Task graph example 1.

Figure 2. Some possible schedules of the task
graph in Fig. 1 on a FPGA with 3 columns. The
vertical axis is time, and the horizontal axis is
the column position on the FPGA. Dark boxes
denote the reconfiguration stage; white boxes
denote the execution stage; striped boxes de-
note the gap between a task’s reconfiguration
stage and its execution stage.

task occupies 3 columns, then it’s identical to a single-processor

scheduling problem, treating the entire FPGA as a CPU. If each

task occupies 1 column, then it’s identical to a multiprocessor

scheduling problem, treating each column as a CPU, and we

can use existing algorithms to find the minimum-length sched-

ule. But if each task can occupy 1, 2 or 3 columns, then it

becomes a more general and difficult problem than an optimal

task graph scheduling problem for multi-processors. Consider

the problem of allocating the task graph in Table 1 on a FPGA

with 3 columns. Fig. 2 shows four possible schedules. When

a task Ti’s columns have been reconfigured, they are reserved

for Ti and should not be allocated to other tasks, as indicated

by the shaded areas. However, Ti may not be able to start its

computation stage immediately since it have to wait for all its

predecessors to finish. For example, in schedule (d), reconfigu-

ration of column C3 for Task T3 is finished at time 2, but T3’s

computation stage E3 cannot start until time 3, since T1’s com-

putation stage E1 must finish before E3 can start, according to

the task graph specification in Table 1. Shaded areas denote

the gaps between a task Ti’s reconfiguration and computation

stages caused by precedence constraints, within which no other

297297297

task Tj should execute. Otherwise, Ti’s configuration will be

overwritten and it will needed to be reconfigured again.

Even though we only show one iteration of the task graph’s

execution, it is likely that the entire task graph is repeatedly

executed periodically. Initial tasks T1 and T2 start at time 0

and do not suffering any reconfiguration delays, because we

can pre-configure them on the FPGA before the start of each

periodic execution. This requires us to leave enough slack be-

tween the total schedule length and end of the execution period

to pre-configure the initial tasks. For example, if the schedule

in Fig. 2 (c)is repeated periodically, then the task period cannot

be smaller than 10, in order to leave enough slack at the end of

each period for reconfiguration of tasks T1 and T2 for the next

period.

2.2 HW/SW Partitioning

Table 2. Task graph example for HW/SW parti-
tioning.

1 62

4

3

5

Task ID i Ei SEi Ri Wi

1 3 12 1 1

2 1 4 2 2

3 2 8 1 1

4 1 4 1 1

5 2 8 2 2

6 1 4 2 2

Figure 3. A schedule of the task graph in Table 2
on a hybrid FPGA/CPU device.

Fig. 3 shows one possible HW/SW partition and schedule for

the task graph in Fig. 2. Each task has an additional attribute

SEi for its execution time on the CPU. Task 6 is assigned to

the CPU and the other tasks are assigned to the FPGA. The box

labeled “com” represents the communication delay between the

CPU and FPGA when SW task 6 sends a message to HW task

5.

2.3 Other Task Models

Some variations on the task model discussed above are pos-

sible, but we will not discuss them further due to space limita-

tions.

• Typed Task Graphs. Each task has a type, and tasks of

the same type have identical bitstream content, so it is not

necessary to reconfigure the task area if a task executes at

the same location after another task of the same type fin-

ishes. This is a fairly realistic task model [6], as many ap-

plications may invoke the same functional module several

times during its execution, e.g., in a for loop.

• Column-Wise Reconfiguration. The configuration con-

troller reconfigures a task that spans multiple columns in

a column-by-column manner, i.e., when one column of a

task is being reconfigured, the other columns of the same

task can be used for execution of other tasks. Reconfigu-

ration of each column takes the same amount of time.

3 Modeling with SMT and ILP

As a brief review, a Linear Programming (LP) problem is

one of maximizing or minimizing a linear function subject

to linear equality and inequality constraints, with this general

form:

Maximize c1x1 + c2x2 + · · · + cnxn

Subject to

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2
...

am1x1 + am2x2 + · · · + amnxn ≤ bm

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2
...

ln ≤ xn ≤ un

where x1, x2, · · · , xn are variables and the remaining elements

are input data. Maximize can alternatively be Minimize, and

each ≤ operator can alternatively be an = or a ≥ operator. If

the unknown variables are required to be all integers, then the

problem becomes an Integer Linear Programming (ILP) prob-

lem.

The linear arithmetic in SMT is more expressive than ILP,

as it support all boolean logic operators such as And (∧), Or
(∨), Not (¬) and Implies (=⇒), while ILP only supports the

And (∧) operator in conjunctive normal form. To transform

a SMT model to an equivalent ILP model, it is necessary to

add additional boolean variables to cope with ILP’s limited ex-

pressiveness. Next, we describe techniques for transforming a

SMT model into an equivalent ILP model by turning a general

boolean logic formula into conjunctive normal form with only

the And (∧) operator acceptable to the ILP solver.

298298298

• A set of disjunctive predicates, e.g., (x1 ≤ a1 ∨ x2 ≤
a2 ∨ · · · ∨ xn ≤ an), can be transformed into conjunctive

predicates as follows:

x1 − a1 ≤ LargeN ∗ v1

x2 − a2 ≤ LargeN ∗ v2

...

xn − an ≤ LargeN ∗ vn

0 ≤ v1 ≤ 1
0 ≤ v2 ≤ 1

...

0 ≤ vn ≤ 1
v1 + v2 + · · · + vn ≤ n − 1

(1)

where LargeN is a large integer (larger than any other

value in the model), and (v1, v2, . . . , vn) are newly-

introduced boolean variables. (v1 +v2 + · · ·+vn ≤ n−1)
guarantees that at least one of these variables must be

0, which in turn guarantees that at least one predicate

(xi ≤ ai, 1 ≤ i ≤ n) must be true, and the original dis-

junction is true.

• The expression l1 ∨ l2, where one or both of l1 or l2 are

equalities, e.g., (x = 2∨ y ≥ 3), is equivalent to (x ≤ 2∨
y ≥ 3)∧(x ≥ 2∨y ≥ 3), and then each of (x ≤ 2∨y ≥ 3)
and (x ≥ 2 ∨ y ≥ 3) can be transformed into conjunctive

form.

• The expression x �= y, where x and y are both integers, is

equivalent to (x ≤ y − 1 ∨ x ≥ y + 1), which can in turn

be transformed into conjunctive form.

• The Implies (=⇒) operator can be transformed into dis-

junctive form and then into conjunctive form, e.g., the ex-

pression (x = 2 =⇒ y ≥ 3) is equivalent to (x �= 2∨y ≥
3), which is in turn equivalent to (x ≤ 1∨x ≥ 3∨ y ≥ 3),

which can then be transformed into conjunctive form.

• All variables are assumed to be non-negative. We add

these constraints without explicitly mentioning them in the

rest of the paper.

3.1 SMT Formulation of HW Task Scheduling

In this rest of the paper, we follow the convention of using

lower-case letters to denote variables, and upper-case letters to

denote constants.

Consider a task graph with N tasks. For each task i, 1 ≤ i ≤
N , we define the following constants:

• Ri: HW task i’s reconfiguration time on the FPGA.

• Ei: HW task i’s execution time on the FPGA.

• Wi: HW task i’s size in terms of the number of contiguous

FPGA columns it occupies.

• SL: Upper bound of the schedule length of the task graph

As shown in Fig. 4, each HW task occupies a rectangular

area in the time-FPGA position chart, which consists of three

parts: reconfiguration stage, execution stage, and possibly a gap

between them due to configuration prefetching. For each task

i, 1 ≤ i ≤ N , we define the following variables:

• pli: position of task i’s leftmost column on the FPGA.

• tri: start time of task i’s reconfiguration stage.

• tei: start time of task i’s execution.

• ri: actual reconfiguration time of task i contributing to the

schedule length. For tasks that are not source nodes, ri =
Ri. For a task i that is a source node in the task graph

(it has no predecessors in the task graph), ri = 0 if task

i starts execution at time 0, and ri = Ri otherwise, as

discussed in Section 1 and shown in Fig. 2.

Figure 4. HW task i on the 2D time-FPGA position
chart.

We define the following constraints:

• C1 A task must fit on the FPGA’s area:

∀i (pli ≥ 1 ∧ pli ≤ N − Wi + 1) (2)

• C2 If a task is a source node in the task graph and it starts

at time 0, then it does not need the reconfiguration stage

(since the reconfiguration stage should have been finished

before time 0, as discussed in Section 1); otherwise, its ex-

ecution stage can only start after its reconfiguration stage:

∀i,(task i is not a source node) ri = Ri

∀i,(task i is a source node)
(ri = 0 ∨ ri = Ri) ∧
(ri = 0 =⇒ tei = 0)

(3)

299299299

• C3 A task can only start its execution stage after its re-

configuration stage. (This holds true even for the source

tasks that do not need the reconfiguration stage, since their

ri = 0):

∀i tei ≥ tri + ri (4)

• C4 Two tasks can overlap with each other on either the

vertical time axis or the horizontal position axis, but not

both:

∀i, j, tei + Ei ≤ trj

∨ tej + Ej ≤ tri

∨ pli + Wi ≤ plj

∨ plj + Wj ≤ pli

(5)

• C5 The reconfiguration controller is a shared resource, so

reconfiguration stages of different tasks must be serialized:

∀i, j, tri + ri ≤ trj

∨ trj + rj ≤ tri

(6)

• C6 If there is an edge from task i to task j in the task

graph, then task j can only begin its execution after task

i has finished its execution. (We do not need to explicitly

encode the precondition “there is an edge from task i to

task j”, since the constraint set is generated automatically

from a given task graph, and the knowledge about the task

graph is built into the code generator.):

tei + Ei ≤ tej (7)

• C7 Sink tasks must finish before SL:

∀i(task i is a sink node) tei + Ei ≤ SL (8)

Equations 2 to 8 form a constraint set that can be fed into a

SMT solver to determine feasibility.

Algorithm 1 Top-level binary search algorithm when using

SMT.
1: l = LB
2: u = UB
3: while l < u − 1 do
4: SL = (l + u)/2
5: hasSolution :=InvokeSMTSolver(GenSMTModel(SL))
6: if hasSolution then
7: u := SL, and record the task schedule.

8: else
9: l := SL

10: end if
11: end while
12: return u as the minimum schedule length, along with the

corresponding task schedule.

One drawback of SMT compared to ILP is that it does not

support optimization directly, but only provides a yes/no answer

to the feasibility of a given constraint set, so we need to use a bi-

nary search algorithm at the top-level to search for the shortest

schedule length SL, as shown in Algorithm 1. The SMT solver

is invoked as a subroutine to check the feasibility of each possi-

ble schedule length SL. LB and UB denote the minimum and

maximum possible values of the schedule length, respectively.

To ensure that LB is a safe lower bound, we set LB to be one

less than the length of the critical path in the task graph, i.e., the

longest delay path from the source tasks task to the sink tasks

assuming zero reconfiguration delays. To ensure that UB is a

safe upper bound, we set UB to be sum of the execution times

of all tasks and their reconfiguration delays. “GenSMTModel”

refers to our automatic code generator that takes as input the

schedule length SL currently being checked for feasibility, and

generates the SMT problem instance as input to Yices.

3.2 ILP Formulation of HW Task Scheduling

In this section, we present the ILP formulation of the 7 con-

straints discussed in Section 3.1. We need to transform the con-

straint set in SMT to an equivalent constraint set in ILP. We

focus on constraints C2, C4 and C5, whose SMT formulation

involves the Or (∨) operator not supported by ILP, while the

other four constraints can be directly supported by ILP without

modification.

• C2(Equation 3) We introduce a boolean variable bInitiali
for each task i to indicate if task i is an initial task, i.e., it

starts its execution at time 0. The constraint (ri = 0∨ri =
Ri) can be transformed into ri = Ri ∗ bInitiali. The con-

straint (ri = 0 =⇒ tei = 0) can be first transformed

into (ri ≥ 0∨ tei ≤ 0), (since all variables are assumed to

be non-negative integers), which is equivalent to the con-

straint set:

tei ≤ LargeN ∗ bri1

1 − ri ≤ LargeN ∗ bri2

bri1 + bri2 ≤ 1
(9)

• C4 (Equation 5): we introduce new boolean variables btij ,

btji, bpij , bpji:

tei + Ei − trj ≤ LargeN ∗ btji

tej + Ej − tri ≤ LargeN ∗ btij

pli + Wi − plj ≤ LargeN ∗ bpji

plj + Wj − pli ≤ LargeN ∗ bpij

btji + btij+bpji + bpij ≤ 3

(10)

• C5 (Equation 6): we introduce new boolean variables brij ,

brji:

300300300

tri + ri − trj ≤ LargeN ∗ brji

trj + rj − tri ≤ LargeN ∗ brij

brji + brij ≤ 1
(11)

Since ILP supports optimization directly, we no longer need

to use the binary search algorithm 1, but can use the ILP solver

to obtain SL, the minimum schedule length directly. Instead of

a constant in the SMT formulation, SL is now a variable to be

minimized as our optimization goal. The constraint set can be

fed into an ILP solver to solve for SL.

3.3 SMT Formulation of HW/SW Partitioning

In this section, we present an extension of the SMT model

in Section 3.1 for HW/SW partitioning on a hybrid FPGA/CPU

device. (Since the equivalent ILP model can be derived from

the SMT model, we omit the discussion of the ILP model.) We

need to define some additional constants and variables in addi-

tion to those defined in Section 3.1. For convenience, we list all

of them instead of only the additional ones.

For each task i, 1 ≤ i ≤ N , we define the following con-

stants:

• Ri: HW task i’s reconfiguration time on the FPGA.

• Ei: HW task i’s execution time on the FPGA.

• Wi: HW task i’s size in terms of the number of contiguous

FPGA columns it occupies.

• SEi: SW task i’s execution time on the CPU.

In addition, we define a new constant ComDelay to repre-

sent the communication delay between the FPGA and CPU.

For each task i, 1 ≤ i ≤ N , we define the following vari-

ables:

• pli: position of task i’s leftmost column on the FPGA.

• tri: start time of task i’s reconfiguration stage.

• tei: start time of task i’s execution.

• tfi: finish time of task i’s execution.

• ri: actual reconfiguration time of task i contributing to the

schedule length.

• hsi: a boolean variable. If hsi = 0, task i is a HW task on

the FPGA; if hsi = 1, task i is a SW task on the CPU.

The new formulation of the SMT constraints in the con-

text of HW/SW partitioning differ from those for task graph

scheduling by adding enabling conditions for each existing con-

straint based on whether the task is a HW task on the FPGA, or

the SW task on the CPU, and adding two new constraints C8
annd C9.

• C1 This only applies to HW tasks:

∀i hsi = 0 =⇒ (pli ≥ 1 ∧ pli ≤ N − Wi + 1)
(12)

• C2 This applies to both HW and SW tasks. Compared to

Equation 3, this condition says that a HW task that starts

at time 0, or a SW task, does not need to suffer the recon-

figuration delay.

∀i,(task i is not a source node) ri = Ri

∀i,(task i is a source node)
(ri = 0 ∨ ri = Ri) ∧
(ri = 0 =⇒ (tei = 0 ∨ hsi = 0))

(13)

• C3 This only applies to HW tasks:

∀i hsi = 0 =⇒ (tei ≥ tri + ri) (14)

• C4 This only applies to HW tasks:

∀i, j, hsi = 0 ∧ hsj = 0 =⇒
(tfi ≤ trj

∨ tfj ≤ tri

∨ pli + Wi ≤ plj

∨ plj + Wj ≤ pli)

(15)

• C5 This only applies to HW tasks:

∀i, j, hsi = 0 ∧ hsj = 0 =⇒
tri + ri ≤ trj

∨ trj + rj ≤ tri

(16)

• C6 This applies to both HW and SW tasks. If there is an

edge from task i to task j in the task graph, then task j can

only begin its execution after task i has finished its exe-

cution, taking into account communication delay between

the FPGA and CPU:

hsi = hsj =⇒ tfi ≤ tej

hsi �= hsj =⇒ tfi + ComDelay ≤ tej

(17)

• C7 This only applies to HW tasks, and is the same as

Equation 8:

∀i(task i is a sink node) tfi ≤ SL (18)

• C8 This applies to both HW and SW tasks to express the

relationship between a task’s start time tei and its finish

time tfi:

hsi = 0 =⇒ tfi = tei + Ei

hsi = 1 =⇒ tfi = tei + SEi

(19)

• C9 This only applies to SW tasks to model the shared CPU

resource:

∀i, j, hsi = 1 ∧ hsj = 1 =⇒
(tfi ≤ tej

∨ tfj ≤ tei)
(20)

301301301

4 Performance Evaluation

In [7], we addressed the optimal task graph scheduling prob-

lem with the UPPAAL model-checker [8], but that modeling

technique can also be adapted to address the HW/SW parti-

tioning problem. The scalability of UPPAAL is less than sat-

isfactory for this specific problem, which motivated us to look

for more scalable solutions. In this section, we conduct perfor-

mance evaluation experiments to compare Yices with the open

source ILP solver lpsolve [9], the commercial ILP solver [10],

and the model-checker UPPAAL on the same problem in-

stances.

We use the tool TGFF (Task Graphs For Free) [11] to gen-

erate random task graphs for our experiments. Optimization

performance depends on the search space size, which in turn

depends on many factors including number of tasks, task graph

shape, number of messages and task assignment. Generally,

task graphs that are “tall and skinny” tend to have a smaller

number of possible execution paths than task graphs that are

“short and fat”. For our experiments, we keep the task graph

shape to be relatively constant by setting both the maximum in-

put and max output degrees of each task node to be 2, so we can

compare the relative performance of different tools by varying

the number of tasks. For each task graph, the number of start

nodes is between 1 and 3; each task’s execution time is be-

tween 4 and 12; its width (the number of columns it occupies)

is between 4 and 14; its reconfiguration delay is assumed to be

numerically equal to its width. Whether these numbers are real-

istic is not that important for our purposes, since our main goal

is to compare the relative performance of the three tools. The

experiments are run on a Linux workstation with 4 × AMD
Opteron 844(1.8GHz) CPUs and 8GB RAM. We use the utility

tool memtime to measure the running time of the Yices, lpsolve,

CPLEX and UPPAAL, in order to compare how well they scale

up with the number of tasks. When using Yices, the binary

search algorithm 1 typically takes 7-9 iterations to converge to

the final optimal result, and the “time” entries for Yices refer

to the total time it takes to obtain the optimal solution for all

iterations.

Figs 5 and 6 show the growth of running time and peak mem-

ory usage of Yices with increasing number of tasks. (Note that

we are using different taskset parameters from those in [7], so

the performance results are not directly comparable to those

in [7].) We can see that the peak memory usage grows up

quite slowly compared to running time, so CPU time is the fac-

tor that limits its scalability instead of memory size for model-

checking.

Table 3 shows performance comparisons among different

tools. O.M. for UPPAAL denotes that UPPAAL has issued an

“out of memory” message. O.T. for lpsolve or CPLEX denotes

that the tool’s running time has exceeded 10 hours, at which

point it is terminated. Since CPLEX produces an initial result

quickly and incrementally improves upon it, we can still obtain

a schedule length (S.L.) value even if it is terminated after 10

hours, although it is not guaranteed to be the optimal solution.

4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Num. Tasks

Y
ic

es
 U

se
r

T
im

e(
S

ec
on

ds
)

Yices User Time Vs. Num. Tasks in Task Graph

Figure 5. Running time of Yices for HW/SW parti-
tioning on a hybrid FPGA/CPU device, where the
FPGA has 20 columns.

4 6 8 10 12 14 16 18 20
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Num. Tasks

Y
ic

es
 M

em
or

y
U

sa
ge

(K
B

)

Yices Memory Usage Vs. Num. Tasks in Task Graph

Figure 6. Peak memory usage of Yices for
HW/SW partitioning on a hybrid FPGA/CPU de-
vice, where the FPGA has 20 columns.

The experiment results show that Yices has significantly better

scalability than lpsolve, UPPAAL and CPLEX.

We have implemented the heuristic algorithm for HW-SW

partitioning in [12], which is based on the well-know KLFM

(Kernighan-Lin/Fiduccia-Matheyses) heuristic that iteratively

improves a HW/SW partitioning solution by moving tasks from

FPGA to CPU or vice versa. The quality of a move is evaluated

by a heuristic list scheduler, and each task’s priority is calcu-

lated as f = −A ∗ columns −B ∗ EST + C ∗ pathlength −
D∗EFT , where columns denotes the task’s size in terms of the

number of FPGA columns it occupies; EST and EFT denote

the earliest possible start and finish time points, respectively;

pathlength denotes the length of the longest path through the

task graph. This formula has 4 parameters, A, B, C and D,

as weights of the 4 terms. The task with the largest f value is

scheduled first during the list scheduling process. In our im-

plementation, we set the parameter values to be: A = C = 1,

302302302

N.T.
Yices lpsolve UPPAAL CPLEX

Time(s) S.L. Time(s) Time(s) Time(s) S.L.

4 0.1 33 0.1 0.6 0.1 33

5 0.1 32 0.4 7.8 0.2 32

6 0.2 56 42.8 2.6 0.2 56

7 0.2 45 256.5 42.7 2.7 45

8 0.3 60 17898.4 61.7 1.5 60

9 0.8 60 O.T. 254.3 2.2 60

10 0.8 63 O.T. 618.4 1273 63

11 1.8 81 O.T. 610.0 107.1 81

12 4.4 92 O.T. 415.7 O.T 92

13 7.0 87 O.T. 10519.8 O.T 87

14 8.1 92 O.T. 19033.5 O.T 93

15 7.4 97 O.T. O.M. O.T 97

20 356.2 128 O.T. O.M. O.T 132

25 7585.8 165 O.T. O.M. O.T 178

Table 3. Performance comparison of Yices, lp-
solve, UPPAAL and CPLEX for HW/SW partition-
ing on a hybrid FPGA/CPU device, where the
FPGA has 20 columns. N.T.: Number of Tasks;
S.L.: Schedule Length; O.T.: Out of Time; O.M.
Out of Memory.

Figure 7. Comparison of schedule lengths be-
tween Yices and the heuristic algorithm in [12].

B = D = 3, and fix the number of task moves to 10. Of

course, different parameter settings may lead to different re-

sults. As expected, the heuristic algorithm runs very fast, but

produces sub-optimal results. Fig. 7 shows the comparison of

the schedule lengths between Yices and the heuristic. We can

see that exhaustive search techniques such as SMT can lead to

a significant reduction in schedule length, especially when the

number of tasks grows large.

5 Related Work

Some authors have formulated boolean encodings for the

High-Level Synthesis (HLS) problem, i.e., finding the short-

est schedule length of a control/dataflow graph on a limited set

of HW resources, in order to use a SAT solver to obtain opti-

mal solutions. Memik et al [13] used the SAT solver Chaff [14]

to solve the HLS problem, and showed that Chaff outperforms

the ILP solver CPLEX in terms of CPU time by as much as 59

fold. Cabodi et al [15] developed a Bounded Model-Checking

(BMC) formulation of the HLS problem for control-intensive

control/dataflow graphs, and used the BerkMin SAT engine to

solve the BMC problem. These SAT-based encoding techniques

add a new set of boolean variables at each time step, hence the

number of boolean variables can grow quite large if the sched-

ule length (number of time steps) is large. This approach is

often adequate for HLS, where the maximum schedule length

is typically quite small in terms of the number of clock cycles,

but it is not very scalable for problems involving large timing at-

tributes. By handling integer or real arithmetic directly instead

of using a boolean encoding, SMT solvers are not sensitive to

absolute time attributes and can be much more efficient than

SAT solvers for such problems.

HW/SW partitioning is a well-studied problem, but most

prior work has not considered PRTR FPGAs, with a few ex-

ceptions. Banerjee et al [12] presented a heuristic algorithm

for partitioning and scheduling of a task graph on an execution

platform consisting of a CPU and a FPGA, which we compared

with in Section 4. He also presented an ILP encoding of the

problem, which works by using two boolean variables for each

FPGA column at each time point to describe the state of each

task and their position on the FPGA. Besides the fact that our

SMT formulation is more compact and efficient than our ILP

formulation, both our SMT and ILP formulations turn the task

graph scheduling problem into a rectangle placement problem,

and are much more efficient than the time-step-based ILP for-

mulation in [12], which adds a new set of boolean variables at

every time step, similar to the SAT formulation for the HLS

problem [13].

Ghiasi et al [6] developed an optimal polynomial algorithm

for minimizing runtime reconfiguration delay for a special type

of HW platform: either a multi-FPGA platform composed of K
identical fully reconfigurable FPGAs, or equivalently, a FPGA

with K identical plug-in locations. This is different from the

more general task model considered in this paper.

Fekete et al [16] addressed optimal placement of a task graph

on a 2D FPGA by treating each task as a 3D box in space and

time and converting the problem into an optimal box packing

problem, which is solved using an efficient search algorithm.

But if we allow configuration pre-fetch and consider task prece-

dence constraints, then there may be a gap between a task’s re-

configuration and computation stages as shown in Fig. 2. As

a result, the algorithm in [16] is no longer applicable, since

we cannot simply view the static scheduling problem as a box-

packing problem.

Perng et al [17] developed scheduling algorithms for mini-

mizing the energy consumption or the makespan of a taskset on

a multi-context FPGA with dynamic voltage scaling, which has

several configuration contexts, and different contexts can load

or execute tasks independently and simultaneously. Optimal al-

gorithms are developed for the case when a task partition over

303303303

contexts is given, and approximation algorithms are developed

for the case when no task partition is given.

Instead of offline static HW/SW partitioning, some authors

have used efficient heuristic algorithms for dynamic online task

allocation (partitioning) for a hybrid FPGA/CPU device. Pel-

lizzoni et al [18] developed a pseudo-optimal task allocation al-

gorithm and a relocation scheme for relocatable tasks, derived

feasibility conditions for both software and hardware schedul-

ing, and defined an admission control test based on such con-

ditions. Streichert et al [19] presented an operating system in-

frastructure for increasing fault tolerance and flexibility of dis-

tributed embedded systems where each node is a FPGA with

one or more built-in softcore CPUs, by using online HW/SW

partitioning, where task migration allows tasks to be moved be-

tween different nodes, and task morphing (same as relocation

in [18]) allows tasks to be moved between HW and SW.

6 Conclusions

In this paper, we formulate and solve the problem of opti-

mal HW/SW partitioning and static task scheduling for a hybrid

FPGA/CPU device, with the optimization objective of minimiz-

ing the total schedule length, in the framework of Satisfiability

Modulo Theories (SMT) with Linear Integer Arithmetic. Per-

formance evaluation shows that SMT is a promising alternative

to ILP for solving real-time scheduling problems.

References

[1] Z. Li and S. Hauck, “Configuration prefetching techniques

for partial reconfigurable coprocessor with relocation and

defragmentation.” in FPGA, 2002, pp. 187–195.

[2] G. D. MICHELI and R. K. GUPTA, “Hardware/software

co-design,” PROCEEDINGS OF THE IEEE, vol. 85,

no. 3, MARCH 1997.

[3] Altera. [Online]. Available: http://www.altera.com

[4] S. Banerjee, E. Bozorgzadeh, N. Dutt, and J. Noguera,

“Selective band width and resource management in

scheduling for dynamically reconfigurable architectures,”

in DAC. IEEE, 2007, pp. 771–776.

[5] B. Dutertre and L. M. de Moura, “A Fast Linear-

Arithmetic Solver for DPLL(T),” in CAV, ser. Lecture

Notes in Computer Science, T. Ball and R. B. Jones, Eds.,

vol. 4144. Springer, 2006, pp. 81–94.

[6] S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh, “An Op-

timal Algorithm for Minimizing Run-time Reconfigura-

tion Delay.” ACM Trans. Embedded Comput. Syst., vol. 3,

no. 2, pp. 237–256, 2004.

[7] Z. Gu, M. Yuan, and X. He, “Optimal static task schedul-

ing on reconfigurable hardware devices using model-

checking,” in Proc. IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), 2007, pp.

32–42.

[8] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a

Nutshell,” STTT, vol. 1, no. 1-2, pp. 134–152, 1997.

[9] lpsolve. [Online]. Available:

http://lpsolve.sourceforge.net/

[10] cplex. [Online]. Available:

http://www.ilog.com/products/cplex/

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task

graphs for free,” in CODES, G. Borriello, A. A. Jerraya,

and L. Lavagno, Eds. IEEE Computer Society, 1998, pp.

97–101.

[12] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Physically-

aware HW-SW partitioning for reconfigurable architec-

tures with partial dynamic reconfiguration.” in Design Au-
tomation Conference (DAC), 2005, pp. 335–340.

[13] S. O. Memik and F. Fallah, “Accelerated SAT-based

Scheduling of Control/Data Flow Graphs,” in ICCD.

IEEE Computer Society, 2002, pp. 395–.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and

S. Malik, “Chaff: Engineering an efficient sat solver,” in

DAC. ACM, 2001, pp. 530–535.

[15] G. Cabodi, A. Kondratyev, L. Lavagno, S. Nocco, S. Quer,

and Y. Watanabe, “A bmc-based formulation for the

scheduling problem of hardware systems,” STTT, vol. 7,

no. 2, pp. 102–117, 2005.

[16] S. P. Fekete, E. Köhler, and J. Teich, “Optimal FPGA

module placement with temporal precedence constraints.”

in DATE, 2001, pp. 658–667.

[17] N.-C. Perng, J.-J. Chen, C.-Y. Yang, and T.-W. Kuo,

“Energy-efficient scheduling on multi-context fpgas,” in

ISCAS. IEEE, 2006.

[18] R. Pellizzoni and M. Caccamo, “Adaptive allocation of

software and hardware real-time tasks for fpga-based em-

bedded systems,” in IEEE Real Time Technology and Ap-
plications Symposium. IEEE Computer Society, 2006,

pp. 208–220.

[19] T. Streichert, D. Koch, C. Haubelt, and J. Teich, “Model-

ing and design of fault-tolerant and self-adaptive reconfig-

urable networked embedded systems,” EURASIP Journal
on Embedded Systems, pp. Article ID 42 168, 15 pages,

2006, doi:10.1155/ES/2006/42168.

304304304

