
Hybrid-priority Scheduling of Resource-sharing Sporadic Task Systems∗

Sanjoy Baruah
The University of North Carolina

Nathan Fisher
Wayne State University

Abstract

A hybrid scheduling algorithm is proposed, which integrates
features of the Fixed Priority (FP) and Earliest Deadline First
(EDF) scheduling policies. It is shown that this hybrid schedul-
ing algorithm is a generalization of both FP and EDF, and tends
to retain most of the desirable properties and features of both in-
dividual policies. An exact (i.e., necessary and sufficient) test is
derived for the preemptive uniprocessor scheduling of resource-
sharing sporadic task systems using this hybrid scheduling algo-
rithm, with access to shared resources arbitrated using the Stack
Resource Policy (SRP).

1 Introduction

There has been much discussion within the real-time sys-
tems research community [23, 9] between the relative mer-
its of Fixed Priority (FP) and Earliest Deadline First (EDF)
scheduling. The pros and cons of each policy have been
listed and thoroughly discussed over the years — some of
the issues that have come up in this ongoing debate are sum-
marized in Section 2 below.

Since both scheduling policies appear to have benefits
and drawbacks, it would be beneficial to combine both into
a single comprehensive scheduling framework. This is not
a new insight, e.g., Zuberi et al. [29], and González Har-
bour and Palencia Gutiérrez [16], study scheduling policies
based on such integration of FP and EDF. In this paper, we
propose, and analyze, a hybrid scheduling policy that incor-
porates elements of both FP and EDF scheduling in the con-
text of the preemptive uniprocessor scheduling of resource-
sharing sporadic task systems (this task and platform model
are formally defined in Section 3). We argue (Section 2) that
such integration of FP and EDF combines the best features
of both policies. We then derive (in Section 4) an exact (i.e.,
necessary and sufficient) schedulability analysis algorithm
for systems scheduled according to this hybrid scheduling
policy, and demonstrate that this analysis generalizes the

∗Supported in part by NSF Grant Nos. CNS-0408996, CCF-0541056,
and CCR-0615197, ARO Grant No. W911NF-06-1-0425, and funding
from the Intel Corporation.

best previously-known FP and EDF schedulability analysis
algorithms. We place this work in the context of some other
related research in Section 6.

2 Background and Motivation

The debate among advocates of EDF and those of FP
scheduling has been long and contentious. Among the ben-
efits claimed for FP scheduling by its advocates are the fol-
lowing:

1. By corresponding to the actual importance of a task
in the overall system being designed, priorities can
be made to represent a relevant property of the sys-
tem. Hence priority-based scheduling exploits further
knowledge of the application, and is therefore a more
accurate representation of application semantics.

2. Embedded systems programmers have traditionally
programmed with priorities: the FP model is simply
providing them with what they desire. This helps move
results on FP scheduling out of academic environments
to the “real world” by making it more likely that pro-
grammers will actually make use methodologies and
tools based on these results; in contrast, many poten-
tially useful EDF results remain unused by actual pro-
grammers. This point of view was stated succinctly in
2002 by Joe Gwinn of Raytheon as follows [15]: In
the embedded realtime world, a commercial RTOS or
equivalent lacking hard (winner-take-all) realtime pri-
orities has always been dead on arrival.

3. Although FP scheduling is not optimal in the sense that
EDF is (see below), FP scheduling need not result in
too large a loss of processor utilization. For instance,
for systems of Liu and Layland (LL) tasks [21], the
worst-case utilization bound of FP scheduling under
rate-monotonic priority assignment is≈ 0.69 [21], and
the average-case bound is almost 0.88 [19].

On the other hand, advocates of EDF scheduling claim
the following benefits for their preferred scheduling policy:

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.7

248

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.7

248

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.7

248

1. EDF offers superior utilization of the processor: every
system that is FP schedulable is also EDF schedulable
while the converse is not true.

2. Since EDF is known to be optimal on a preemp-
tive uniprocessor [21, 13], it is often easier to prove
schedulability of EDF-scheduled systems by exploit-
ing this optimality. This follows from the observation
that rather than needing to trace the behavior of EDF
on a given system, it suffices to demonstrate the exis-
tence of a schedule –not necessarily an EDF-generated
one– for the system, since any system for which a
schedule exists is guaranteed to be scheduled correctly
by EDF. (Of course, since such claims are typically
made by advocates of EDF, it can be argued that such
ease of proof is illusory, in that it lies in the eye of the
beholder.)

3. The claim that there exist priority assignments under
FP scheduling (such as rate-monotonic) that result in
only a relatively small loss of processor utilization is a
bit of a red herring, since it contradicts the claimed
benefit that FP scheduling allows priorities of jobs
to reflect their semantic (real-world) importance. It
would be a happy coincidence if tasks in a system hap-
pened to be ranked by importance in rate-monotonic
order; otherwise, rate-monotonic assignment of priori-
ties ceases to be a meaningful reflection of application
semantics, and becomes a scheduling artifact (just like
deadlines for EDF). But in that case EDF should be
preferred, for the superior utilization/ optimality rea-
sons outlined above.

4. As Greg Bollella, who led the effort that developed
the Real-Time Specification for Java (RTSJ) under the
Java Community Process points out [5], Priorities are
a good dispatching metric but not[...] a good way for
an application to express its temporal demands. Ap-
plications should express their temporal requirements
in terms of cost, deadline, period, and minimum inter-
arrival times. The system is more properly the compo-
nent which should determine the execution order.

5. In any case, using what Gwinn [15] elegantly describes
as “winner-take-all” priorities to reflect semantic im-
portance may not be too meaningful, particularly in
hard-real-time systems. After all, what does it mean
to denote one task as being more important than an-
other if it is imperative that all deadlines must be met?
Even in soft/ firm real-time systems, notice that as-
signing a task a higher priority than others implies that
meeting a single deadline of the higher-priority task is
more important than meeting any number of deadlines
of lower-priority tasks. While there are indeed applica-
tions for which such an extreme winner-take-all inter-

pretation of priorities are justified for some tasks (e.g.,
all functionalities associated with the anti-lock brakes
in a car can be assigned greater priority than all func-
tions associated with the audio entertainment system),
we do not believe that applications are common with
semantics that mandate such a total ordering of all their
constituent tasks.

While each of the above reasons, in favor of FP and of
EDF scheduling, were well-founded when they were first
made, we believe that things have changed recently, and that
some of these points are somewhat outdated:

1. As real-time systems become more important and per-
vasive, they are increasingly coming to be developed
by general-purpose programmers. Such programmers
have no particular fondness of, or desire for, the prior-
ity concept (unlike traditional embedded-systems de-
velopers, who have tended to program at a relatively
low level close to the hardware). Hence, it is no longer
as important as before that a priority mechanism be
provided by a scheduling policy for the programmers’
comfort, or to facilitate adoption of the policy.

2. On the other hand, the rapidly falling price of comput-
ing capacity no longer makes it imperative that every
last bit of utilization be squeezed out of processors.

3. While superior tool and methodology support (e.g. the
rate-monotonic software methodology [18] strongly
supported by CMU’s Software Engineering Institute
and the real-time systems group at York1) have in the
past made it easier to use FP scheduling, this advantage
of FP scheduling is fast diminishing. For instance,

(a) While the Ada95 Real-Time Systems Annex had
only defined a complete facility for FP schedul-
ing, Ada 2005 includes native support for EDF.

(b) It has been shown [28] how EDF may be effi-
ciently implemented within the Real-Time Spec-
ification for Java (RTSJ).

(c) The York group is currently developing very so-
phisticated libraries that offer support for EDF
scheduling, for public release and distribution.

Taking all the above factors into account, our opin-
ion is that given a choice, priorities should be used rarely
in systems design and only when they unequivocally and
accurately represent system semantics. In particular, FP
scheduling makes most sense when only parts of the system
are hard-real-time, and it is possible to identify priorities
(“importances”) for tasks such that meeting a single dead-
line of the higher-priority task is more important than meet-
ing any number of deadlines of lower-priority tasks. Even

1See http://www.cs.york.ac.uk/rts/

249249249

in systems when FP scheduling is used, we expect that a
typical system will have relatively few distinct priorities as
compared to the number of tasks.

Proposed approach. We consider the scheduling of col-
lections of sporadic tasks [22, 4] upon a shared platform
comprised of a single preemptive processor and some ad-
ditional shared resources that may be accessed by at most
one task at any given time and that are serially reusable. For
such systems, we propose a hybrid scheduling policy, which
integrates features of FP and EDF, with access to shared re-
sources arbitrated using Baker’s Stack Resource Policy [1].
We assume that there are a few (say, p ≥ 1) distinct priority
levels, which are totally ordered with respect to each other:
as long as jobs in one priority are awaiting execution, no
lower-priority jobs may execute. We assume that there are
n tasks2, with each task assigned to one of the p priorities;
within each priority, tasks are scheduled using EDF.

Our expectation is that the system designer, who is re-
sponsible for determining the parameters that characterize
the sporadic tasks, does the priority assignment. (Hence, we
consider priorities to reflect the designer-determined impor-
tance of the task, instead of looking on them as a schedul-
ing artifact that is manipulated by the scheduling framework
to maximize the likelihood of meeting deadlines, as, e.g.,
the rate-monotonic or deadline-monotonic policies do,) Ob-
serve that in the absence of any priority information – e.g.,
when the system designer considers all tasks equally impor-
tant, (or in any event is unwilling to deem even a single job
of one task more important than all the jobs of all lower-
priority tasks), the designer could simply use the optimal
EDF algorithm by assigning all the tasks the same priority.
At the other extreme, a designer wishing to emulate FPS (on
a platform with at least as many priority levels as there are
tasks: p ≥ n) may do so by assigning at most one task to
each priority level.

3 Formal Model

For the purposes of this paper, hybrid-priority sporadic
task system τ is comprised of n sporadic tasks τ1, τ2, . . . ,
τn, and a priority function pri . Each task τi is characterized
by a worst-case execution requirement Ci, a relative dead-
line Di, and an inter-arrival separation parameter Ti (also
known as the period of the task). Each such task gener-
ates a potentially infinite sequence of jobs. Task τi’s first
job may arrive at any instant, and subsequent job arrivals
are separated by at least Ti time units. Each such job has
an execution requirement of at most Ci units, which must

2Although the relationship between the values of n and p does not play
a role in the algorithms we develop, we are implicitly assuming that n is
typically far greater than p (n � p).

complete by a deadline that is Di time-units after its arrival
time.

There are p ≥ 1 distinct priority levels, and priority func-
tion pri maps each task to one of these p priority levels, with
the interpretation that pri(i) = � if and only if τi is assigned
the �’th-highest priority level3. All jobs generated by task τi

are assigned priority level pri(i)). The relative priorities of
jobs is determined according to their priority levels — the
smaller the value, the greater the priority; if two jobs have
the same priority level, the one with the earlier (absolute)
deadline is accorded greater priority; if both priority level
and deadline are equal, the tie may be broken arbitrarily but
consistently (i.e., always in favor of the same task’s job).

The execution platform is comprised of a single preemp-
tive processor and m non-preemptable serially reusable re-
sources R1, R2, . . . , Rm. Without loss of generality, we as-
sume that the processor is of unit computing capacity. That
is, any job completes one unit of execution by executing
on the processor for one time unit. The resource require-
ments of the sporadic tasks may be specified in many ways
(see, e.g., [1, 20, 24]); here we let Cjk denote the maximum
length of time for which each job of τj may hold some re-
source that is also needed by τk’s jobs (j �= k).

We define the utilization U(τi) of τi to be the ratio of the
task’s execution requirement to its period: U(τi)

def= Ci/Ti,
and the system utilization U(τ) to be the sum if the utiliza-
tions of all the tasks: U(τ) =

∑
τi∈τ U(τi). The system uti-

lization U(τ) denotes the maximum fraction of the time for
which the processor could be required to be executing; con-
sequently, U(τ) ≤ 1 is a trivial necessary condition for τ to
schedulable under any uniprocessor scheduling policy. We
find it useful to consider as a special sub-case those sporadic
task systems whose system utilizations are a priori bounded
by a constant strictly less than one:

Definition 1 (bounded-utilization systems) A bounded-
utilization sporadic task system is one whose system
utilization is a priori bounded from above by a known
constant c < 1.

By definition, any given sporadic task may generate in-
finitely many different sequences of jobs; by extension, so
may any given sporadic task system. One particular job ar-
rival sequence, which we will refer to as the synchronous
arrival sequence, has proven to be of particular interest in
prior research into sporadic task systems:

Definition 2 (synchronous arrival sequence) With re-
spect to a specified time-instant to, the synchronous arrival
sequence of jobs at to for a sporadic task τi consists of the
first job of τi arriving at to, and subsequent jobs arriving

3We stick with the convention of having smaller numbers represent
greater priority: tasks assigned priority level one have the greatest priority,
and tasks assigned priority level p have the least priority.

250250250

Let τ1, τ2, . . . , τn denote the tasks, and R1, R2, . . . , Rm denote the non-
preemptable resources. Tasks are assumed to be indexed according to non-
decreasing priority levels, and according to relative deadlines within the
same priority level (as explained in Condition 1).

1. Each resource Rj is statically assigned a ceiling Π(Rj), which is
set equal to index of the lowest-indexed task that may access it:

Π(Rj) = min{i | τi accesses Rj}

2. A system ceiling is computed each instant during run-time. This is
set equal to the minimum ceiling of any resource that is currently
being held by some job.

3. At any instant in time, a job generated by τi may begin (or resume)
execution only if it is the active job of greatest priority, and i is
strictly less than the system ceiling.

Figure 1. Hybrid-priority scheduling with the
SRP

exactly Ti time units apart. The synchronous arrival
sequence at to for a collection of tasks consists of the
union of the synchronous arrival sequences at to of each
individual task in the collection of tasks.

The Stack Resource Policy (SRP). The Stack Resource
Policy (SRP) was proposed by Baker [1] for arbitrating ac-
cess to shared non-preemptable serially reusable resources
in uniprocessor real-time systems. SRP may be used in con-
junction with priority-based scheduling algorithms in which
the priority assigned to each job does not change between
the job’s arrival and the instant that it completes execution
(this includes FP scheduling as well as EDF). It is shown
in [1] that SRP-scheduled systems are deadlock free.

As shown in [1], SRP leverages a total ordering which
can be defined on the tasks in the task system, depending
upon whether a task may or may not preempt another. To
facilitate the presentation of SRP in the context of hybrid-
priority scheduling let us assume, without loss of generality,
that tasks are indexed in decreasing order of priority and
by increasing relative-deadline parameter within the same
priority level:

(i < j) ≡ (pri(i) < pri(j))
��

(pri(i) = pri(j))
�

(Di ≤ Dj))
�

(1)
(Thus, τ1 is the task with the smallest relative deadline from
among all those that are assigned the greatest –i.e., lowest-
numbered– priority, and τn is the task with the largest rel-
ative deadline from among all those that are assigned the
lowest priority.)

Suppose that a job of some task τi is executing at some
instant in time. Observe that if a newly arrived job of some
task τk is given priority over this job of τi, it must be the
case that k < i, since either (i) the priority level of τk is
strictly less than that of τi: (pri(k) < pri(i)), or (ii) the pri-
ority levels are the same, but τk’s job has an earlier deadline

(which can only be if τk has a smaller relative parameter):
((pri(k) = pri(i)) and (Dk < Di)).

In order to be able to arbitrate resource access using the
SRP, it must a priori be known which tasks access which
shared non-preemptable serially reusable resources.

• For each such shared resource Rj , let its ceiling Π(Rj)
denote the index of the smallest-indexed task that may
access the resource.

• At each time-instant t during run-time, let system ceil-
ing Π(t) denote the minimum from among the ceilings
of all resources that are locked at time-instant t.

Under the SRP, a job is selected to begin execution (or
resume execution, if it had previously executed and been
preempted) at time-instant t if and only if it is the job of
greatest priority awaiting execution, and the index of the
task that generated it is strictly less than the system ceiling
Π(t). (This is represented in pseudo-code form in Figure 1.)
A job that is not executing while some job of lesser priority
is executing is said to be blocked by the lesser-priority job,
which is referred to as the blocking job.

Ending Critical Section (ECS). With respect to fixed-
priority scheduling, more accurate schedulability tests can
often be designed (see, e.g., [8, 12]) by giving special con-
sideration to jobs that end in a critical section – i.e., jobs of
tasks in which the last executable line of code is the release
of the lock on a non-preemptable serially reusable resource.
We will refer to such a critical section in a job, if one exists,
as an Ending Critical Section (ECS) of the job.

4 Conditions for unschedulability

In this section we derive (Theorem 1 below) an exact –
i.e., both necessary and sufficient– condition that must be
satisfied by any hybrid-priority sporadic task system that is
unschedulable. Our approach towards developing this test is
as follows. We obtain (Lemma 6) conditions that must nec-
essarily be satisfied by any hybrid-priority task system that
may miss a deadline. We then show that these conditions are
also sufficient for a deadline miss by demonstrating a job
arrival sequence for any system satisfying these conditions
that must necessarily miss a deadline, thereby demonstrat-
ing that they represent an exact schedulability condition.

Suppose that hybrid-priority task system τ is not schedu-
lable. By definition, there exist collections of jobs that could
legally be generated by τ , upon which deadline misses oc-
cur. We will now study a specific such collection of jobs,
characterized as follows. Consider the greatest (i.e., lowest-
numbered) priority level at which a deadline miss can occur,
and a collection of jobs of minimum cardinality J of τ on

251251251

which a deadline miss occurs at this priority level. Let tf
denote the time-instant of the earliest deadline miss in J ’s
schedule. Suppose that the job that misses its deadline at
tf is generated by task τi. Let to denote the earliest arrival
time of any job in J with priority level < pri(i), or priority
level = pri(i) and (absolute) deadline≤ tf .

An idle instant is said to occur in a schedule generated
by our hybrid algorithm (Figure 1) at time-instant t if the
processor is idled at t.

Lemma 1 There are no idle instants in the interval [t0, tf),
in J ’s schedule.

Proof Sketch: Because SRP is guaranteed deadlock
free [1], it must be the case that all jobs that arrived prior
to an idle instant t have completed execution by t. Remov-
ing from J all the jobs that completed execution prior to
any idle instant would not affect the schedule after the idle
instant; the deadline miss in the resulting reduced collection
of jobs contradicts the claimed minimum cardinality of J .

Definition 3 (blocking execution) Consider the schedule
for J . Within the context of this schedule, a blocking ex-
ecution is a maximally contiguous chunk of execution of
any job within the interval [to, tf), that either has priority
level > pri(i), or priority level equal to pri(i) and absolute
deadline > tf .

Lemma 2 The schedule for J contains at most one block-
ing execution. If such a blocking execution exists, it begins
at time-instant to.

Proof: The proof is by contradiction: we assume that there
are several such blocking executions, and demonstrate how
we could obtain a collection of jobs of smaller cardinality
than J which also misses a deadline.

Consider the instant ts (ts > to) at which the last of these
blocking executions begins executing in the schedule. Let
Jj denote the job which is being executed in this blocking
execution, and τj the task that generates it. By the rules of
SRP, it must be the case that

1. Jj is the job with greatest priority that is awaiting exe-
cution at time-instant ts; and

2. at this time-instant, the system ceiling Π(ts) > j (i.e.,
no jobs of {τ1, τ2, . . . , τj} are blocked at time-instant
ts).

Suppose that job Jj has executed for x time units prior to
time-instant ts. Consider the collection of jobs J ′ obtained
from J , by (i) removing all jobs that arrived prior to time-
instant ts (including Jj), and (ii) adding a job J ′

j of τj that
arrives at time-instant (ts − x). We make the following
observations about the state of job J ′

j in J ′’s schedule at
time-instant ts:

1. Job J ′
j will have executed for x time-units prior to ts,

hence, its remaining execution at time-instant ts in the
schedule of J ′ is the same as that of job Jj in the
schedule of J ′, at the same instant.

2. Since the absolute deadline of J ′
j is ≥ the absolute

deadline of Jj while the priority levels of both jobs
is the same, the priorities of all jobs relative to each
other in J ’s schedule at ts is identical to the priorities
of all jobs relative to each other in J ′’s schedule at ts
(with job J ′

j replacing job Jj).

Therefore, the schedule over [ts, tf) remains the same
for J ′ and J ′ (with job J ′

j replacing job Jj).
But J ′ contains strictly fewer jobs than J , since jobs in

J that had arrived prior to ts are not included in J ′ (there
must be at least one such job, since we have assumed that
there are multiple blocking executions in J ’s schedule, of
which the one beginning at ts is only the last). This contra-
dicts our assumption that J is a collection of jobs of mini-
mum cardinality to miss a deadline.

For notational convenience, let us set to to zero4. As is
conventional, we will use the term interference to denote
the amount that tasks with priority-level less than pri(i)
execute over [0, tf), thereby preventing τi from executing.
More specifically, for each τk such that pri(k) < pri(i), let
the interference Ik denote the amount that jobs of τk execute
over [0, tf).

As a consequence of Lemmas 1 and 2, it follows that
in order for a job of τi to miss a deadline at time-instant
tf upon a minimum-cardinality collection of jobs J legally
generated by task system τ ,

1. There are no idle instants in [0, tf);

2. There is at most one blocking execution over this in-
terval. If there is such a blocking execution, then it be-
gins at zero, and it is part of a job generated by a task
τj with priority level pri(j) > pri(i), or with priority
level pri(j) = pri(i) and relative deadline parameter
greater than tf : Dj > tf .

3. All other jobs that execute over [0, tf) have priority
level strictly less that pri(i), or priority level equal to
pri(i) and deadline≤ tf .

We thus see that J ’s schedule consists of (i) zero
or one blocking executions; (ii) interference by greater-
priority tasks — i.e., executions of jobs of priority level
less than pri(i) (collectively represented by the term∑

k:pri(k)<pri(i) Ik); and (iii) executions of jobs of priority

4While this may require the job that generates the blocking execution
to arrive at a negative time-instant, there is no loss of generality since the
entire time line could be considered shifted rightwards).

252252252

level pri(i) and deadlines ≤ tf . In Lemmas 3, 4 and 5 be-
low, we provide upper bounds on each of these three terms.

Definition 4 (blocking function) For any priority level �
and any interval-length L, the blocking function B(�, L) is
defined as follows:

B(�,L) = max{Cj,k |
[(pri(j) > �) or ((pri(j) = �) and (Dj > L))]

and [(pri(k) < π) or ((pri(k) = π) and (D� ≤ L))]} (2)

Informally, B(�, L) represents the largest blocking that
could be experienced by a job of priority level � and rela-
tive deadline ≤ L, by either a job of lower priority level
(i.e., of a priority level > �), or a job of the same priority
level (i.e., of priority level �) but relative deadline > L.

Lemma 3 The duration of the blocking execution in
J ’s execution over [0, tf) is bounded from above by
B(pri(i), tf).

Proof: Follows directly from Definition 4 — the blocking
execution must belong to a job Jj of a task τj such that
either pri(j) > pri(i), or pri(j) = pri(i) and Dj > tf .
And in order for it to be able to block under the SRP, it is
necessary that it hold a resource needed by some task τ�,
such that pri(�) < pri(i), or pri(�) = pri(i) and D� ≤ tf .

Lemma 4 The cumulative execution requirement of all the
jobs of priority level pri(i) in J with arrival times and
deadlines in [0, tf) is bounded from above by the cumulative
execution requirement of the synchronous arrival sequence
of all tasks in priority level pri(i), starting at time-instant
0, over [0, tf).

Proof: If any such job can have its arrival-time moved ear-
lier, it can only contribute more to the cumulative execution
requirement.

Lemma 5 The total execution by the jobs in J of priority
greater than τi’s over [0, tf) is bounded from above by the
amount that the synchronous arrival sequence of all jobs in
priority levels 1, . . . , (pri(i) − 1), starting at time-instant
0, would execute over [0, tf).

Proof Sketch: This is proved in essentially the same man-
ner as the “critical instant” proof in pure FP scheduling (see,
e.g., [10]) for a textbook description), by demonstrating
that the total execution cannot decrease if any such higher-
priority job has its arrival-time moved forward. We provide
a few additional details below, for the sake of completeness.

We distinguish between two separate cases, depending
upon whether or not τi’s job is holding a lock at time-instant
tf .

1. Suppose that τi’s job is not holding a lock at time tf . In
that case, it cannot possibly be blocking the execution
of any job of any task τk that has pri(k) < pri(i)
— all the jobs of such tasks that arrived during [0, tf)
would execute before τi’s job could resume execution.
Hence, Ik for each such τk is maximized when each
job arrives as soon as legally permitted to do so – i.e.,
under the synchronous arrival sequence at time-instant
zero.

2. Suppose that τi’s job is holding some lock[s] at time
tf . It is then possible that some jobs of some tasks
τk, with pri(k) < pri(i), are blocked from executing
due to the potential effect on the system ceiling Π(t)
of the locks held by τi’s job. But the (negative) impact
of such blocking is felt by τk’s jobs, not τi’s. Hence,
moving τk’s jobs arrivals forward in time, if possible,
cannot increase (although it may decrease) the amount
of execution received by τi So once again, the inter-
ference Ik for each τk is maximized when each job of
τk arrives as soon as legally permitted to do so – i.e.,
under the synchronous arrival sequence at time-instant
zero.

Hence regardless of whether τi’s job is within a criti-
cal section or not at time-instant tf , we see that the Ik is
maximized for each k if τk’s jobs arrive according to the
synchronous arrival sequence at zero.

We have thus established that if τ is not hybrid-priority
schedulable and τi’s job is the greatest-priority job that
could possibly miss a deadline, a deadline miss for a job
of τi will occur for the synchronous arrival sequence of
jobs starting at time zero for all tasks with priority level ≤
pri(i), plus at most a single blocking computation that starts
at time-instant zero and ends at time-instant B(pri(i), tf).
More formally,

Lemma 6 If τ is not hybrid-priority schedulable and τi’s
job is a greatest-priority job that could possibly miss a
deadline, then a job of τi misses a deadline at some time-
instant tf if:

1. All the tasks in τ of priority-level ≤ pri(i) generate
jobs according to the synchronous arrival sequence
starting at time-instant zero;

2. tf is of the form (k×Ti +Di) for some integer k ≥ 0;
and

3. There is one blocking execution over the time-interval
[0, B(pri(i), tf)).

The converse of Lemma 6 is easily seen to be true. That
is, τ is unschedulable if the conditions 1-3 of Lemma 6 are

253253253

satisfied, since the particular job-arrival sequence that is de-
fined by these conditions bears witness to the fact that τ is
not hybrid-priority schedulable. We consequently have the
following exact (necessary and sufficient) characterization
of hybrid-priority schedulability:

Theorem 1 A necessary and sufficient condition for τ to
not be hybrid-priority schedulable is that there exists a τi ∈
τ and a time-instant tf > 0 such that:

1. All the tasks in τ of priority-level ≤ pri(i) generate
jobs according to the synchronous arrival sequence
starting at time-instant zero;

2. tf is of the form (k×Ti +Di) for some integer k ≥ 0;
and

3. There is one blocking execution over the time-interval
[0, B(pri(i), tf)).

5 Schedulability testing

Theorem 1 above identified necessary and sufficient con-
ditions for a resource-sharing hybrid-priority sporadic task
system to not be schedulable. In this section, we build and
analyze an exact schedulability test based upon this result.
In Section 5.1 below, we use the results of Section 4 above
to derive an exact – necessary and sufficient – algorithm
for schedulability analysis of hybrid-priority sporadic task
systems. In Section 5.2, we discuss the relationship of our
algorithm to algorithms that have previously been proposed
for schedulability analysis of sporadic task systems sched-
uled using “pure” FP or pure EDF.

5.1 A schedulability-testing algorithm

In Theorem 1 above, we identified very precise condi-
tions that must be satisfied, in order that τ not be hybrid
priority schedulable. We will now exploit these conditions
to devise a schedulability test. Our test proceeds as follows.

1. Initially, �← 1. It is trivially true that no job generated
by any task with priority-level < � can possibly miss a
deadline.

2. Under the assumption that no job generated by any
task with priority-level < � can possibly miss a dead-
line, determine whether any job generated by some
task with priority-level � could miss a deadline.

3. If the answer is “yes,” then we declare that τ is not
schedulable, and are done. If the answer is “no” and
all tasks in τ have been considered (i.e., the largest
priority-level of any task in τ is �), we declare τ
schedulable and are done. Otherwise, we increment
� and repeat the step above.

We now focus upon the second step listed above. Let
us assume that no job of tasks with priority-level < � can
possibly miss a deadline. By Theorem 1, a deadline miss
by a priority-level � job is possible if and only if a deadline
miss occurs in the synchronous arrival sequence of all tasks
with priority-level ≤ � starting at time-instant zero, cou-
pled with the maximum blocking (as given by condition 3
of Theorem 1). Furthermore, by condition 2 of Theorem 1,
the possible values of tf in the statement of Theorem 1 are

⋃

pri(i)=�

{k × Ti + Di | k ≥ 0} . (3)

How many such possible values can there be? Since the
interval [0, tf) contains no idle instant (Lemma 1), all po-
tential values of tf are bounded from above by the length
of the longest possible busy interval for task system τ (note
that this may, in fact, be a loose bound since only those
tasks that have priority level ≤ pri(i), plus the blocking
execution, contribute to the busy interval). Techniques are
known for computing the length of the largest possible busy
interval for a given system of sporadic tasks. An obvious
bound is the least common multiple of the period parame-
ters. In general, the least common multiple of the periods
may be exponential in the representation of the task sys-
tems. By using techniques that are virtually identical to
the ones used in the analysis of “pure” EDF scheduling [4],
better bounds may be obtained for bounded-utilization spo-
radic task systems (see Definition 1). For such systems, it
has been shown [3, 4, 14] that the length of the largest busy
interval is bounded from above by a function that is pseudo-
polynomial in the representation of task system τ .

For each such candidate value of tf , we may determine
whether a deadline miss would occur by

1. Computing B(�, tf), the maximum size of the block-
ing computation that may be encountered, according
to Equation 2.

2. Simulating the schedule on the synchronous arrival se-
quence starting at time zero for all the tasks with prior-
ity level≤ � out to tf , keeping in mind that the interval
[0, B(�, tf)) is consumed by a blocking computation.
Each such simulation could be done in time polyno-
mial in the length of the interval being simulated (and
hence pseudo-polynomial in the representation of the
task system).

Hence, checking whether a deadline is missed for a
given tf takes pseudo-polynomial time, and there are
pseudo-polynomially many distinct values of tf that need
to be tested. Since the composition of a pair of pseudo-
polynomial functions is itself pseudo-polynomial, this im-
mediately yields a pseudo-polynomial algorithm for deter-
mining whether any priority-level � deadline can possibly be

254254254

missed. This observation, in conjunction with the fact that
there are polynomially many possible values for � (since
the number of priority levels that need to be considered is
necessarily no more than the number of tasks), immediately
yields the following result:

Theorem 2 Exact schedulability analysis of hybrid-
priority resource-sharing bounded-utilization sporadic task
systems takes time pseudo-polynomial in the representation
of the task system.

Additional optimizations. The focus in this section (in-
deed, in this paper), has been on demonstrating that ex-
act schedulability analysis of bounded utilization hybrid-
priority sporadic task systems can be done in pseudo-
polynomial time. The goal has not been to come up with
the most efficient implementation possible within this broad
class of pseudo-polynomial run-times. Neither has it been
to do the “tightest” analysis (again, in terms of run-time)
of the algorithm we have derived. For instance, our algo-
rithm re-generates the schedule for every candidate value of
tf , at each priority-level � — we went with this description
because it seemed the simplest, while retaining the desired
pseudo-polynomial time complexity. It would be very sim-
ple to improve upon the implementation by re-using some
of the results from one simulation run in subsequent runs, so
that only relatively small parts of the schedule would have
to be re-generated during any one run5. There are a large
number of such possible optimizations that would collec-
tively improve the run-time of the schedulability test — we
are working on describing them all in an extended version
of this paper, currently under preparation.

5.2 Relationship to EDF and FP schedu-
lability analysis

The algorithm we have derived in Section 5.1 above gen-
eralizes the currently best-known algorithms for schedula-
bility analysis of pure FP scheduled or pure EDF scheduled
systems, as we explain below.

FP. Response Time Analysis (RTA) [17, 27, 18, 8] is
the algorithm of choice for the schedulability analysis of
resource-sharing sporadic task systems that are scheduled
using fixed priorities. As with our approach, RTA is
also based on the idea of generating schedules to deter-
mine whether deadlines are missed, and also has pseudo-
polynomial time complexity. However, the schedule gener-
ation is done implicitly via the solution of recurrence equa-

5Since there are pseudo-polynomially many runs, note that doing so
does not improve upon the pseudo-polynomial run-time bound stated in
Theorem‘2.

tions rather than explicitly, and typically has very fast con-
vergence time in practice. It is known that for systems in
which all tasks have their deadline parameters no larger than
their periods (i.e., Di ≤ Ti∀i), RTA need only simulate the
schedule out until the first deadline of each task — while
this remains pseudo-polynomial in the representation of the
task system, maxi{Di} may typically be quite a bit smaller
than the maximum length of a busy interval.

However, it is known [8] that RTA is not exact when
jobs may have ending critical sections (ECS’s) – under such
circumstances, RTA becomes a sufficient but not necessary
test. Fixes were proposed [8, 26, 25] to render it exact, but
these fixes were subsequently shown to be incorrect [6, 7].
These errors have since been corrected [12]; however, the
corrected algorithm presented in [12] requires that the sim-
ulation be conducted out to the end of the busy interval even
when Di ≤ Ti ∀i. Specializing the algorithm presented in
this paper to the special case where all tasks are assigned
distinct priorities yields essentially the same algorithm as
the one in [12] – the sole difference is that we have chosen
to present the algorithm as a simulation-based one rather
than on the basis of solving recurrence equations (of equiv-
alent computational complexity).

EDF. The Enhanced Processor Demand Test (EPDT) [2,
20, 24] does exact schedulability analysis of EDF-
scheduled uniprocessor resource-sharing sporadic task sys-
tems. The algorithm presented in this paper is a (non-trivial)
extension of the algorithm in [2], which is also simulation-
based. It was shown in [2] that EPDT, too, has pseudo-
polynomial run-time for bounded-utilization sporadic task
systems.

6 Additional Related work

As we have stated in Section 1, ours is not the first at-
tempt at integrating the FP and EDF scheduling policies.
We now briefly describe some previous such attempts, and
explain how our work differs from these prior efforts.

The Combined Static and Dynamic (CSD) scheduler was
proposed by Zuberi, Pillai, and Shin [29] as a scheduler
for the EMERALDS small-footprint RTOS. In addition to
the fact that CSD does not allow for the sharing of non-
preemptable serially reusable resources, its design criteria
were also quite different from the ones we consider here.
In CSD, hybrid priorities is essentially a means of using
EDF to enhance the schedulability of systems that are not
schedulable under (the preferred) FP scheduling. Among
other differences to our hybrid policy, CSD requires that all
EDF-scheduled tasks have highest priority (in our frame-
work, this maps to there being at most one task in every
priority level other than priority-level one, and all the re-

255255255

maining tasks being assigned priority level one).
In [11], Crespo et al. propose a scheduler for use in con-

trol applications, that adopts a strategy opposite to CSD’s –
EDF-scheduled tasks are all assigned to the lowest priority
level. This choice is again dictated by the unique require-
ments of their application domain: operating system and
control kernel processes are assigned high, fixed, priorities,
while control and other tasks are scheduled at the lowest
priority using EDF.

González Harbour and Palencia Gutiérrez [16] consid-
ered the implementation of EDF-scheduled systems upon
platforms that only offer support for fixed priorities. They
envisioned a hierarchical scheduler implemented upon such
a platform, in which different sub-systems could be imple-
mented upon different (fixed) priorities, with each such sub-
system having the choice of an EDF or a FP scheduler. For
such implementations, they derived formulas for comput-
ing the worst-case response time of each task in the system.
Our work differs from this in several ways. First, our moti-
vation is completely different from that of [16]: while they
consider hierarchically scheduled systems, we are consid-
ering integrated systems in which there are relatively few
priorities, and in which the priorities are used for convey-
ing semantic information about the application being de-
signed. Second, we have an integrated schedulability test
that is simulation based, while [16] derives formula-based
worst-case response times of individual tasks. Third, there
are some significant holes (although not errors) in the proofs
in [16] – this is mainly a consequence of the fact that re-
sults for “pure” EDF have been imported and used directly
for the schedulability analysis of hybrid systems, without
demonstrating that these results can indeed be applied for
such hybrid systems. Fourth, the approach in [16] is pes-
simistic (sufficient but not necessary) for the same reason
that original RTA is pessimistic for task systems including
jobs that have ending critical sections (ECS’s) — the pro-
posed optimizations of [26, 25, 12] have not been incor-
porated into the analysis in [16]. And finally, the approach
in [16] mandates that each task have its relative deadline pa-
rameter be no larger than its period (Di ≤ Ti∀i) — this is
a direct consequence of the fact that they use the response-
time equations from FP analysis, which hold for such tasks
only, while our schedulability test places no such restric-
tions.

7 Conclusions

We believe that that priorities have a restricted, though
important when applicable, role to play in real-time sys-
tems design and implementation. To this end, we have pro-
posed here a scheduling policy that is EDF-based, but al-
lows for the use of (hopefully, just a few) distinct priorities
to reflect semantic information about the system being de-

signed. This scheduling policy may be used upon platforms
comprised of a single shared preemptive processor plus ad-
ditional non-preemptable shared resources that are serially
re-usable. We have derived and analyzed an exact schedula-
bility test for the scheduling of sporadic task systems under
our hybrid scheduling policy. We have demonstrated that
this test generalizes the previously-known best tests for FP
and EDF schedulability analysis, at comparable computa-
tional complexity.

Acknowledgements. Many of the ideas in Section 2 were
motivated by discussions with Ted Baker, Alan Burns, Gior-
gio Buttazzo, Lui Sha, and Tullio Vardanega.

References

[1] BAKER, T. P. Stack-based scheduling of real-time pro-
cesses. Real-Time Systems: The International Journal of
Time-Critical Computing 3 (1991).

[2] BARUAH, S. Resource sharing in EDF-scheduled systems:
A closer look. In Proceedings of the IEEE Real-time Systems
Symposium (Rio de Janeiro, December 2006), IEEE Com-
puter Society Press, pp. 379–387.

[3] BARUAH, S., HOWELL, R., AND ROSIER, L. Feasibility
problems for recurring tasks on one processor. Theoretical
Computer Science 118, 1 (1993), 3–20.

[4] BARUAH, S., MOK, A., AND ROSIER, L. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11th Real-Time Systems Symposium
(Orlando, Florida, 1990), IEEE Computer Society Press,
pp. 182–190.

[5] BOLLELLA, G. Priorities considered harmful (schedul-
ing algorithms considered). Usenet posting, 2002.
Archived at URL http://cio.nist.gov/esd/emaildir/lists/rtj-
discuss/msg00356.html .

[6] BRIL, R. Existing worst-case response time analysis of real-
time tasks under fixed-priority scheduling with deferred pre-
emption is too optimistic. Tech. Rep. 06-05, Technische Uni-
versiteit Eindhoven (TU/e), Feb. 2006.

[7] BRIL, R. Existing worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred
preemption refuted. In Work in Progress (WiP) session of
the 18th Euromicro Conference on Real-Time Systems (July
2006), pp. 1–4.

[8] BURNS, A. Preemptive priority based scheduling: An ap-
propriate engineering approach. In Advances in Real-Time
Systems, S. H. Son, Ed. Prentice- Hall, 1994, pp. 225–248.

[9] BUTTAZZO, G. Rate-monotonic vs. EDF: Judgement day.
Real-Time Systems: The International Journal of Time-
Critical Computing 29, 1 (2005), 5–26.

[10] BUTTAZZO, G. C. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications, sec-
ond ed. 2005.

256256256

[11] CRESPO, A., ALBERTOS, P., BALBASTRE, P., VALLS, M.,
AND SIM, M. L. J. Schedulability issues in complex em-
bedded control systems. In IEEE Computer Aided Control
Systems Design Symposium (2006), IEEE Computer Society
Press, pp. 1200–1205.

[12] DAVIS, R. L., BURNS, A., BRIL, R. J., AND LUKKIEN,
J. J. Controller area network (CAN) schedulability analysis:
Refuted, revisited, and revised. Real-Time Systems: The In-
ternational Journal of Time-Critical Computing 35 (2007),
239–272.

[13] DERTOUZOS, M. Control robotics : the procedural control
of physical processors. In Proceedings of the IFIP Congress
(1974), pp. 807–813.

[14] GEORGE, L., RIVIERRE, N., AND SPURI, M. Preemp-
tive and non-preemptive real-time uniprocessor scheduling.
Tech. Rep. RR-2966, INRIA: Institut National de Recherche
en Informatique et en Automatique, 1996.

[15] GWINN, J. Priorities considered harmful (schedul-
ing algorithms considered). Usenet posting, 2002.
Archived at URL http://cio.nist.gov/esd/emaildir/lists/rtj-
discuss/msg00353.html .

[16] HARBOUR, M. G., AND GUTIRREZ, J. C. P. Response time
analysis for tasks scheduled under EDF within fixed priori-
ties. In Proceedings of the IEEE Real-Time Systems Sym-
posium (Cancun, Mexico, December 2003), IEEE Computer
Society Press, pp. 200–209.

[17] JOSEPH, M., AND PANDYA, P. Finding response times in a
real-time system. The Computer Journal 29, 5 (Oct. 1986),
390–395.

[18] KLEIN, M., RALYA, T., POLLAK, B., OBENZA, R., AND

HARBOUR, M. G. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers, Boston, 1993.

[19] LEHOCZKY, J., SHA, L., AND DING, Y. The rate mono-
tonic scheduling algorithm: Exact characterization and aver-
age case behavior. In Proceedings of the Real-Time Systems
Symposium - 1989 (Santa Monica, California, USA, Dec.
1989), IEEE Computer Society Press, pp. 166–171.

[20] LIPARI, G., AND BUTTAZZO, G. Schedulability analysis of
periodic and aperiodic tasks with resource constraints. Jour-
nal Of Systems Architecture 46, 4 (2000), 327–338.

[21] LIU, C., AND LAYLAND, J. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM 20, 1 (1973), 46–61.

[22] MOK, A. K. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD the-
sis, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

[23] MOSSE, D., BAKER, T., BARUAH, S., BUTTAZZO, G.,
BURNS, A., SHA, L., AND STANKOVIC, J. Fixed or dy-
namic priority? that is the question. In Real-Time Systems
Symposium (Panel discussion) (Lisbon, Portugal, December
2004), IEEE Computer Society Press, p. 9.

[24] PELLIZZONI, R., AND LIPARI, G. Feasibility analysis of
real-time periodic tasks with offsets. Real-Time Systems: The
International Journal of Time-Critical Computing 30, 1–2
(May 2005), 105–128.

[25] TINDELL, K. W., BURNS, A., AND WELLINGS, A. Cal-
culating controller area network (CAN) message response
times. Control Engineering Practice 3, 8 (1995), 1163–1169.

[26] TINDELL, K. W., HANSSON, H., AND WELLINGS, A. J.
Analysing real-time communications: Controller area net-
work (CAN). In Proceedings of the IEEE Real-Time System
Symposium (December 1994).

[27] WELLINGS, A., RICHARDSON, M., BURNS, A., AUDS-
LEY, N., AND TINDELL, K. Applying new scheduling the-
ory to static priority pre-emptive scheduling. Tech. Rep.
RTRG/92/120, Real Time Systems Group, Department of
Computer Science, University of York, 1992. Submitted to
the UK Software Engineering Journal.

[28] ZERZELIDIS, A., AND WELLINGS, A. Getting more flex-
ible scheduling in the RTSJ. In Proceedings of the Ninth
IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC’06)
(2006), IEEE Computer Society Press, pp. 3–10.

[29] ZUBERI, K. M., PILLAI, P., AND SHIN, K. G. EMER-
ALDS: A small-memory real-time microkernel. In Operat-
ing Systems Review 34(5): Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles (Decme-
ber 1999), pp. 277–291.

257257257

