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Abstract

Multiprocessor scheduling problems are hard because of
the numerous constraints on valid schedules to take into ac-
count. This paper presents new schedule representations in
order to overcome these difficulties, by allowing processors
to be fractionally allocated. We prove that these represen-
tations are equivalent to the standard representations when
preemptive scheduling is allowed. This allows the creation
of scheduling algorithms and the study of feasibility in the
simpler representations. We apply this method throughout
the paper.

Then, we use it to provide new simple solutions to
the previously solved implicit-deadline periodic schedul-
ing problem. We also tackle the more general problem of
scheduling arbitrary time-triggered tasks, and thus in par-
ticular solve the open multiprocessor general periodic tasks
scheduling problem. Contrary to previous solutions like the
PFair class of algorithms, the proposed solution also works
when processors have different speeds.

We complete the method by providing an online schedule
transformation algorithm, that allows the efficient handling
of both time-triggered and event-triggered tasks, as well as
the creation of online rate-based scheduling algorithms on
multiprocessors.

1. Introduction

Optimally scheduling real-time tasks on multiprocessor,
i.e. constructing a schedule when one exists, or studying
feasibility are hard problems that have solutions only for
a few particular task systems. The fact that a job cannot
be executed simultaneously by more than one processor is
a complicating constraint on the placement of the jobs on
the different processors. For instance, this is why online
optimal scheduling of arbitrary job sets is impossible [11,
8].

To cope with this problem, researchers have built rela-
tively complex solutions to solve particular problems; for
instance the PFair class of algorithms [4] for implicit-
deadline periodic tasks on multiple identical processors cuts
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jobs at every time quanta and dispatches them on the multi-
ple processors.

The idea behind this algorithm is that the problem is sim-
ple if “in each unit of time a task may use a fraction f of a
[processor], 0 ≤ f ≤ 1 : [one just has to] allocate a frac-
tion x.w of a [processor] to each task [x] during each time
unit”[4], where x.w is the utilization of x, i.e. the “fraction
of processor time spent in executing task [x]” [16]. This
kind of ideal scheduling where tasks can receive only a frac-
tion of the computing power of a processor is called fluid
scheduling, and the PFair algorithms try to follow closely
this ideal allocation for the implicit-deadline periodic task
problem.

In this paper we prove formally that preemptive schedul-
ing is as powerful as fluid scheduling, i.e. any scheduling
problem is solvable using fluid scheduling if, and only if,
it is also solvable using preemptive scheduling. Moreover,
this property is true not only when time is modelled in a dis-
crete way, but also in the more general continuous model of
time; and we prove that it still works for uniform multipro-
cessors, i.e. processors of the same type that have different
(but constant) speeds.

We derive from this property an efficient algorithm for
solving the problem of scheduling a set of implicit-deadline
periodic tasks in the continuous model of time for identi-
cal multiprocessors, for which we only gave a proof sketch
[14] and which was independently solved by Cho et al.[6].
As this algorithm also works when processors have differ-
ent speed we also solve the problem of scheduling implicit-
deadline periodic tasks on uniform multiprocessors.

If the implicit-deadline periodic scheduling problem can
be solved using fluid scheduling where each task has a con-
stant fractional allocation of the CPUs, it is not the case
for more complicated task systems, such as in the general
periodic scheduling problem. We allow this fractional allo-
cation to vary in two different ways: in the general weighted
scheduling representation the fractions can vary at any time;
in the more constrained job-boundary weighted scheduling
representation, the fractions vary only when a job arrives
or reaches its deadline. We prove that these representations
are equivalent (i.e. equally powerful) and show how the
latter can be used either to prove infeasibility or to find cor-
rect weights, i.e. the fraction of allocation of a processor,
in more complicated task systems such as the general time-
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triggered task systems, as used in OASIS [2]. In particu-
lar this is also the first solution of the problem of optimally
scheduling general periodic task sets (that may have dead-
lines different than their periods). Our task model is de-
liberately “simple”, i.e. our tasks are fully preemptive and
do not use any mutex nor semaphore (“shared resources”).
Such task models could be studied in further articles. This
does not mean that our paper has no practical applications:
by an appropriate system design, e.g. using only wait-free
buffered communications primitives and wait-free system
services, one can eliminate any need for synchronization
primitives in a real-time application and operating system;
this has been done in OASIS, which has been deployed in
safety-critical nuclear systems [7]. OASIS is a real-time
programming paradigm with associated tools (dedicated op-
erating system and offline tools for specific-language com-
pilation, memory protection, feasibility proof and buffer
sizing), which uses time as the sole mean of synchroniza-
tion. There are many advantages in using such a simple
task model: it not only makes schedulability analysis a lot
easier and allows reaching full utilization of the processors,
but also it avoids unnecessary thread commutations or waits
between processors, all these problems being amplified on
multiprocessor computers. This makes the OASIS system
well suited for SMP computers.

In the last section, we provide and prove an algorithm
for online schedule transformation for identical multipro-
cessors, i.e. that takes a set of weights expressed in the
fluid scheduling model and transforms them efficiently into
a concrete multiprocessor schedule at runtime, provided the
next job boundary is known. This has several uses; in par-
ticular, it allows writing scheduling algorithms in the fluid
scheduling model, but also safely using free CPUs to cope
with tasks not expressed in this model (e.g. sporadic tasks).

Related work

The first multiprocessor scheduling problems that were
addressed were the optimal finish time problems, in which
one tries to minimize the total computation time of a batch
of jobs. It is related but distinct to real-time scheduling; in
the real-time context, we can perceive optimal finish time
algorithms as the scheduling algorithms to use when full
utilization of the processors is required and when the jobs’
start times and deadlines are all equal. This problem is well
known: in 1959, McNaughton [18] gave an optimal finish
time algorithm for identical multiprocessor; later Horvath
et al. [13] provided one for uniform multiprocessor, and
Gonzalez and Sahni [9] gave a more efficient one which is
now the most commonly used.

Then the problem of scheduling finite job sets with start
time and deadline constraints was solved by Horn [12] (in
the identical multiprocessor case) and Martel [17] (in the
uniform case).

For infinite job sets, Hong and Leung [11] proved that
online optimal scheduling on multiprocessor of arbitrary
job sets is impossible, and Dertouzos and Mok showed [8]

that a job sets can be optimally scheduled only if there is
an a priori knowledge of their given start time, deadlines
and execution time before execution. This explains why re-
search on multiprocessor scheduling of infinite job sets has
been mostly focused on periodic tasks, for which all these
parameters are completely known.

Most known optimal real-time scheduling algorithms for
multiprocessors try to follow the fairness ideal property [4],
in which all jobs have a constant fractional allocation of a
processor equal to their respective utilization. For instance,
the PFair class of algorithm for implicit-deadline periodic
tasks divides time in quanta and ensures that actual proces-
sor allocation for a task is always close to the ideal alloca-
tion at each quanta [4]. Zhu et al. realized [20] that the fair-
ness property must only be applied at job boundaries (the
BFair condition), and thus derived a more efficient algo-
rithm that causes less preemptions.

Also, some sufficient or necessary bounds on the uti-
lization of tasks using non optimal scheduling algorithms
have been derived, e.g. for Global-EDF [19]. These bounds
stress the considerable performance increases of using an
optimal scheduling algorithm over a generic online one.

These sufficient bounds also give sufficient conditions
for scheduling a set of tasks using an online algorithm,
when coupled with feasibility analysis. Few methods of
feasibility analysis for multiprocessors exist; the only other
general one we are aware of is based on demand-bound
functions [3]. This is an interesting abstraction which can
be viewed as an approximation of our weighted schedules
conditions (see Definition 7). Unfortunately, it leads to a
test which is only sufficient, meaning in practice that the
test works only for weakly constrained jobs sets.

In Section 3, we show how we use our main theorem
as a method for getting exact feasibility tests, which also
give the exact maximum load of the system and allows ex-
act CPU sizing. For that we use the method for exact fea-
sibility analysis of time-triggered tasks for single processor
presented by Aussaguès and David [2], whose extension has
been the original motivation for the creation of this theory.

2. The schedule representations

A schedule is usually represented as the mapping of a
set of jobs to a set of processors; this mapping varies with
time. This representation is important because it models the
actual execution of the job set; this is why we name it the
concrete representation.

However, this is not the only possible representation. For
instance, a set of fixed priorities is a simple way to represent
a schedule: from a set of jobs and their corresponding pri-
orities, we can retrieve the concrete schedule. But this rep-
resentation is limited, because there exists feasible concrete
schedule that are not feasible in this representation [16].

This paper focuses on three other schedule representa-
tions that are interesting because they are capable of rep-
resenting any feasible schedule; and from any schedule in

238238238



Job 1 Job 2 Job 3
1/8 1/8 1/8

0 1

J1

requirement

start time deadline
execution

J2 J3

(a) Execution requirements; x axis represents time. For instance, Job 3
has to execute for 4/8 between dates 2/8 and 7/8.
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(b) Concrete representation: to each job, at each moment is associated the
processor on which it runs (Proc. 1 or Proc. 2), or none.
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(c) Anonymous representation: tells whether a job is elected at each mo-
ment, i.e. processor allocation is required to be 0 or 1.
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(d) Weighted representation: represents the fraction of a processor allo-
cated for a job at each moment. Weights may vary arbitrarily.
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(e) Job-boundary weighted representation: the fraction of allocation may
be fractional but may change only at job boundaries.

Figure 1. A job set and four correct sched-
ules for it in the four representations. (Each
row contains the complete schedule for a job set, and
each column contains different equivalent schedules
in different representations for the same job. The x
axis represents time.)

these representations one can also extract a feasible con-
crete schedule. That is why these representations are said to
be equivalent.

Instead of considering a schedule as a mapping on the
processors, these three representations can be viewed as a
function of time representing the rate of needed processor
resource, with some constraints on the values of the func-
tion.

The weighted representation is the most general of them;
the job-boundary weighted representation is a restriction of
the weighted representation where weight changes can oc-
cur only at certain moments, and the anonymous represen-
tation is a restriction of the weighted representation where
the weights must correspond to the processors speeds (frac-

tional allocation is forbidden).
Figure 1 represents a task system and four correct equiv-

alent schedules in the four representations.

2.1. Formal definitions

Definition of standard terms of scheduling are needed to
formally specify the notion of scheduling representation:

Definition 1 (Job and job set). A job J is characterized by
three parameters:

• Its start time J.s
• Its deadline J.d, so that J.s ≤ J.d
• Its needed execution time, J.e

A job is active at time t if J.s ≤ t ≤ J.d
A job set J is a countable set of jobs.

Definition 2 (Schedule representation). To a given job set
J , a schedule representation associates two objects:

• The set of its valid schedules SJ

• An execution functionXJ : SJ×J×R+ → R+; such
that for s and J fixed, XJ (s, J, t) is monotonically
increasing.

XJ (s, J, t) represents the time spent executing J at
time t in the schedule s.

Note: When there is no ambiguity on J , we simply note
X for XJ and S for SJ .

Definition 3 (Correct execution). A job J is correctly
scheduled in a schedule s when it is scheduled for J.e be-
tween J.s and J.d, and is not scheduled otherwise; i.e. when
the following conditions are fulfilled:{

∀t ≤ J.s, X(s, J, t) = 0
∀t ≥ J.d, X(s, J, t) = J.e

A job set J is correctly scheduled by s when all its jobs
are correctly scheduled.

A job set J is feasible in a schedule representation
(S,X ) when there exists a correct schedule in SJ .

Definition 4 (Weight function). Let J ∈ J be a job and
s a schedule for J . As t 7→ X(s, J, t) is monotonically
increasing, it is differentiable, except on a countable set of
discontinuities.

Its derivative is called the weight function of J and is
noted wJ(t).1 w is the set of weight functions for s.

The intuitive notion of weight is the execution rate of a
process. For a concrete execution on identical processors,
wJ(t) is 1 if the job is executing at time t and 0 otherwise.

1wJ should in fact be a distribution because of the possible disconti-
nuity points of X . We ignore this problem because this paper only use
schedule representations that have differentiable X functions.
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Notes: • For a given schedule, giving all the weight func-
tions wJ , J ∈ J of a job set is equivalent to giv-
ing its execution function XJ .

• When s is a schedule, w, the set of weight func-
tions for s is a schedule by itself in a particular
schedule representation; in this case SJ is a sub-
set of RJ+ and:

XJ (w, J, t) =
∫ t

τ=0

wJ(τ) dτ

w is called the anonymization of s.
The anonymization represents a loss of informa-
tion, as it will be seen in the next section.

2.2. Important schedule representations

In this section we detail the four schedule representations
previously introduced:

Definition 5 (Concrete schedule representation). For a M -
multiprocessor computer C, a concrete schedule (CS) is a
function s : J × R+ → [| 0,M |].

Its meaning it that sJ(t) = m if at time t, J is executing
on m, and sJ(t) = 0 if J is not executing.

Moreover, s is valid iff a processor always executes at
most one job, i.e.

∀t, ∀m ∈ [| 1,M |], |{ J : sJ(t) = m }| ≤ 1

The execution function X is defined by:

X(t) =
∫ t

τ=0

α(sJ(τ)) dτ

Where α(0) = 0 and α(i) = αi ∈ R∗+ is the speed
of processor i. For identical multiprocessors, the standard
convention is to take αi = 1.

Notes: • Schedule representations are thus also
parametrized by the CPU speed and number; by
a slight abuse of notation this parametrization is
made implicit.

• Another condition on s is that α ◦ s is integrable.
Given the other restrictions on s, this in fact
means that s is piecewise constant.

A large part of the complexity of multiprocessor schedul-
ing comes from this elementary definition. Checking that a
schedule is valid or correct is not easy, so constructing one
is even more difficult.

Definition 6 (Anonymous schedule representation). An
anonymous schedule (AS) is the anonymization of a con-
crete schedule.

Notes: • Thus it is a function w : J × R+ →
{ 0, α1, . . . , αM }.

• The validity conditions for an anonymous sched-
ule, i.e. the conditions for a function w : J ×
R+ → R+ to be an anonymous schedule in
the general uniform processor case are complex.
They are simple only in the identical multipro-
cessor case, in which they reduce to: ∀t,

∑
J∈J

wJ(t) ≤ M

∀t,∀J, wJ(t) ∈ { 0, 1 }
Proof that these conditions are necessary and

sufficient is simple. If given w fulfilling these
conditions, it is easy to construct a concrete
schedule s such that its anonymization is w: it
suffices to arbitrarily choose the processors exe-
cuting the elected jobs every time one of the w
functions change.

• These validity conditions make the checking that
an identical multiprocessor schedule is valid and
correct easily computable. However, construct-
ing one remains difficult.

This schedule representation is already much simpler to
use than the standard, concrete schedule representation, and
makes checking the validity and correctness of a schedule
practically computable. These two representations illustrate
the idea of what is equivalence between two representations
(which is formally described in section 2.3): as there is a bi-
jection between a schedule a in the anonymous representa-
tion and the set of concrete schedules whose anonymization
is a, a job set is feasible in one representation if, and only
if, it is also feasible in the other.

The next important representation is a “relaxed” version
of the anonymous schedule. The following notation will be
useful:
∀k ∈ N, we name (when defined) Smaxk(u) the sum of

the k greatest elements of a countable set u, i.e. if we sort u
such that u1 ≥ u2 ≥ · · ·, then

Smaxk(u) =
k∑
i=1

ui

Definition 7 (Weighted schedule representation). A
weighted schedule (WS) of C is a function w : J × R+ →
R+, with the additional restrictions:
w is a valid weighted schedule iff, ∀t:

Smax1(w(t)) ≤ Smax1(α) (1)
Smax2(w(t)) ≤ Smax2(α) (2)

...
...

SmaxM−1(w(t)) ≤ SmaxM−1(α) (M − 1)∑
J∈J

wJ(t) ≤ (α1 + . . .+ αM ) (M)

In the identical multiprocessor case, these conditions re-
duce to:  ∀t,

∑
J∈J

wJ(t) ≤ M

∀t,∀J, wJ(t) ∈ [ 0, 1 ]

240240240



Note: We use Smaxk(w(t)) which is not Smaxk(w)(t) :
the greatest weight functions can change at each t,
as in e.g. jobs J1 and J2 Figure 1.

Intuitively, the first conditions state that the proces-
sors are sufficiently powerful for the most demanding jobs,
while the last condition states that the overall system must
be sufficiently powerful for all the jobs to run simultane-
ously.

Although the weighted representation is the most gen-
eral, it is not convenient for numeric computation. The fol-
lowing one solves this problem:

Definition 8 (Job-boundary weighted schedule represen-
tation). A job-boundary weighted schedule (BWS) is
a weighted schedule with the additional restriction that
weights can change only at job boundaries, i.e.

∀τ1 < τ2,∀J ∈ J , wJ(τ1) 6= wJ(τ2)
⇐⇒

∃K ∈ J , τ1 ≤ K.s ≤ τ2 or τ1 ≤ K.d ≤ τ2

In the next sections, we will note (tn) = (t0, t1, . . .) the
ordered sequence of the start times and deadlines of all jobs.

2.3. Conversion between schedule representations
and equivalence

The interest of having different “abstract” scheduling
representations lies in the relations between them:

Definition 9 (Conversion function). A conversion function
between two schedule representations SJ and S ′J is a
function c : SJ → S ′J such that if s is a correct sched-
ule of SJ , then c(s) is a correct schedule of S ′J .

Definition 10 (Equivalence between schedule representa-
tions). If there exists c : SJ → S ′J and c′ : S ′J → SJ
two conversion functions, then SJ and S ′J are equivalent.

This relation is obviously an equivalence relation.

This notion of equivalence between schedule representa-
tions lies at the heart of our paper. Although some conver-
sion functions between different schedule representations
have already been used on some job sets (for instance in
[17] for finite tasks), this is a new notion. Equivalence gives
a necessary and sufficient condition of the existence of a
correct schedule between schedule representations: if there
is a correct schedule in S, then there is a correct schedule in
S ′; but if there is no correct schedule in S, then there is no
correct schedule in S ′ either. In other words:

Theorem 11. Let S and S ′ be two equivalent schedule rep-
resentations. A job set J is feasible in S if, and only if, it is
feasible in S ′.

Proof. Proof is simple: if J is feasible in S, let s be a cor-
rect schedule and c a conversion function between S and S ′.
c(s) is a correct schedule in S′, and J is feasible in S ′.

Similarly, if J is feasible in S ′ then it is feasible if S.

This theorem allows the notion of schedule representa-
tion to be used for feasibility analysis; because it may be
simpler to prove that there is (or not) a schedule in one rep-
resentation than in another one.

Lemma 12. A schedule representation and its anonymiza-
tion are equivalent.

Proof. This is almost the definition of anonymization; the
c function is the one that transforms a schedule into its
anonymized schedule. A c′ function is defined by taking
one preimage for each anonymized schedule.

Here comes the most important theorem of this paper:

Theorem 13. The concrete, anonymous, weighted and job-
boundary weighted schedule representations are all equiv-
alent on a uniform multiprocessor.

The proof is derived by finding conversion functions be-
tween all the schedule representations. As they can be com-
posed, it is sufficient to find conversion functions between
some of the representations.

Lemmas 14 and 15 give the necessary remaining conver-
sion functions needed, then proof of the main theorem is
provided.

Lemma 14. The job-boundary weighted representation
(BWS) is equivalent to the weighted representation (WS).

Proof. As a job-boundary weighted schedule is a weighted
schedule, the conversion function is simply the identity
function in this case.

To convert a weighted schedule into a job-boundary
weighted one, we convert each weight function into its
mean value between two job boundaries:

Let (tn) be the series of start times and deadlines of all
the jobs in J , i.e. between any tn and tn+1 there are no new
jobs nor any deadline (the set of active jobs is constant).

Let J ∈ J , t ∈ R+ and n so that tn ≤ t < tn+1.
Let

〈wJ〉(t) = wnJ =

∫ tn+1

tn

wJ(τ) dτ

tn+1 − tn
the mean value of wJ between tn and tn+1.

Proof that (〈wJ〉)J∈J is a correct job-boundary
weighted schedule is in three steps:

1. It is a valid weighted schedule because it fulfills the va-
lidity inequalities of the weighted representation (see defi-
nition 7).

Let n ∈ N; we note 〈wJ〉 the value of 〈wJ〉(t) between
tn and tn+1.

Inequality (M) is still satisfied:∑
J∈J

wJ(t) ≤ (α1 + . . .+ αM )

⇒
∫ tn+1

tn

∑
J∈J

wJ(τ) dτ ≤ (tn+1 − tn) · (α1 + . . .+ αM )
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⇒†
∑
J∈J

∫ tn+1

tn

wJ(τ) dτ ≤ (tn+1 − tn) · (α1 + . . .+ αM )

⇒
∑
J∈J
〈wJ〉 ≤ (α1 + . . .+ αM )

∀i ∈ [| 1,M − 1 |], inequality (i) are also still respected:
Indeed let J1, J2, . . . , JM ∈ JM such that

〈wJ1〉 ≥ 〈wJ2〉 ≥ . . . ≥ 〈wJn
〉

for all t the sum of the weight of i jobs is lower than the
weight of the i most demanding jobs: ∀t,

wJ1(t) + · · ·+ wJi
(t) ≤ Smaxi(w(t))

≤ α1 + · · ·+ αi

⇒ 〈wJ1〉+ · · ·+ 〈wJn
〉 ≤ α1 + · · ·+ αi

So the new weight functions respect the weighted sched-
ule validity conditions of definition 7.

2. It is a valid BWS schedule because the weights change
only at job boundaries, by construction.

3. It is a correct schedule: As each job executes for
the same amount of time with w or 〈w〉 in each interval
[tn, tn+1[, we can prove by recurrence on n that the execu-
tion function has the same values on each job boundary:

∀tn,∀J ∈ J , X(w, J, tn) = X(〈w〉, J, tn) (1)

∀J , we have X(〈w〉, J, t0) = X(w, J, t0) = 0.
If we suppose that the relation (1) is true for n, then

X(〈w〉, J, tn+1) = wnJ ∗ (tn+1 − tn) +X(〈w〉, J, tn)
= wnJ ∗ (tn+1 − tn) +X(w, J, tn)
= X(w, J, tn+1)

We can then conclude that relation (1) is true for all n ∈ N.
As w is a correct schedule by hypothesis, for each job J ,

X(〈w〉, J, J.s) = X(w, J, J.s) = 0 and X(〈w〉, J, J.d) =
X(w, J, J.d) = J.e, almost fulfilling the correctness condi-
tions of definition 3; the fact that 〈w〉 does not execute the
job when it is not active is trivial.

Thus weighted schedules aren’t more “powerful” than
job-boundary weighted ones; i.e. if there are no job bound-
ary weighted schedule, then there are no weighted schedule
at all. This simplifies searching for weighted schedules and
proving infeasibility.

Lemma 15. There exists a conversion function from the job
boundary weighted schedule to the concrete schedule.

Proof. Let (tn) be the sequence of deadlines and start times
of J . As in the precedent proof, we build a new schedule s
so that each job is executed for the same amount of time at
each tn in both schedules.

†by the dominated convergence theorem.

Let n ∈ N. On the interval [tn, tn+1[, wJ(t) is a constant
that we name wnJ .

We want to build s so that it schedules all jobs in J on
the interval [tn, tn+1[ for an amount of wnJ ∗ (tn+1 − tn).

The theorem of Horvath et al. [13, Theorem 1] gives the
optimal finish time of a set of jobs for uniform multiproces-
sor; by applying their formula in our case the value of this
optimal finish time τ is found:

τ =
(
tn+1−tn

)
max

[(
max

1≤i<M

Smaxi(wn)
Smaxi(α)

)
,

∑
J∈J w

n
J∑M

k=1 αk

]
As τ is the optimal finish time, scheduling the jobs in J

for the given amount of time is only possible if τ is smaller
than the duration of the interval [tn, tn+1[.

τ ≤ (tn+1 − tn)

⇐⇒ max

[(
max

1≤i<M

Smaxi(wn)
Smaxi(α)

)
,

∑
J∈J w

n
J∑M

k=1 αk

]
≤ 1

⇐⇒



Smax1(w(t)) ≤ Smax1(α)
Smax2(w(t)) ≤ Smax2(α)

...
SmaxM−1(w(t)) ≤ SmaxM−1(α) (M − 1)∑

J∈J
wJ(t) ≤ (α1 + . . .+ αM )

These latter equations are the validity conditions we impose
on the weighted schedule (definition 7); as these conditions
are fulfilled by hypothesis, it is thus possible to construct s
between tn and tn+1. To construct it, we can either use Hor-
vath et al.’s optimal finish time algorithm or the Gonzalez
and Sahni [9] one.

Hence, s so constructed is a valid concrete schedule
by construction; the proof that it is also a correct sched-
ule is similar to the proof that 〈w〉 is a correct schedule in
Lemma 14 and, as such, is not reproduced here.

So s is a correct concrete schedule for J .

Note: Proof of Lemma 15 is constructive; if at time tn, the
weights and tn+1 are both known, it is possible to
incrementally build the concrete schedule from the
weighted schedule. Section 4 covers this subject.

Proof (of the main theorem). Figure 2 exhibits all the con-
version functions we have proved so far.

As conversion functions can be composed, it is clear that
it is possible to convert a correct schedule in any representa-
tion into another; thus all the four schedule representations
are equivalent.

2.4. Summary

Thanks to Theorems 11 and 13, scheduling problems
such as constructing an optimal schedule or performing fea-
sibility analysis can be done on the simpler weighted or job-
boundary weighted schedule representations instead of the
standard concrete schedule representation.
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CS

WS

AS BWS

(Lemma 12)

Id
(Lemma 14)

(Lemma 15)

Figure 2. Conversion functions. (Id is the iden-
tity function; the other conversions are given in the
different lemmas.)

The next section shows how this can be used to solve
important practical problems.

3. Applications

The equivalence between the schedule representations
greatly simplifies many scheduling problems; in this section
we provide several important examples where equivalence
between schedule representation is used both for feasibility
analysis and to construct multiprocessor scheduling algo-
rithms.

We call task an entity that can release jobs; this section
shows how the task constraints on job releases can be used
to compute correct weights and an optimal schedule.

3.1. Optimal schedule for periodic tasks

We consider the scheduling of a set of N implicit-
deadline tasks on M processors, i.e. each task T releases
jobs periodically every period T.p; each job has to execute
for T.e before the release of the next job.

We define the utilization of a job J.u to be the share of
the CPU that the job takes over its duration, i.e. J.e/(J.d−
J.s). For implicit-deadline periodic tasks, there is always
one active job with constant utilization T.u = T.e/T.p.

To construct a weighted schedule for this problem, it
simply suffices to set the weight of each released job to its
utilization. Such a schedule is called a fair schedule; thanks
to equivalence between schedule representations, proving
the feasibility is reduced to checking that the utilizations
fulfill the equations of Definition 7, which can be made in
O(N) time (N being the number of tasks).

The actual schedule can be built using the conversion
function of Lemma 15; and the result is an optimal on-
line scheduling algorithm which is absolutely fair at each
boundary. Some remarks are worth noticing:

• The weight of each function is constant on each in-
terval; only the duration of these intervals vary. This
means that if the number of tasks does not change, the
schedule conversion need to be done only once, and
the same schedule can be repeated by scaling it to fit in
each interval (figure 3(b)); this is why this method can
be classified as “quasi-static” scheduling.
• To decrease the number of preemptions, it is possi-

ble to apply a “mirror symmetry” technique [14, 1]

0 41

T1 : (3, 4)

T2 : (2, 3)

T3 : (2, 3)

0 121/12

×13/12

×1

CPU1

CPU2

T1 T2

T2 T3

(a) Execution requirements of the tasks, and their schedule (weights 3/4,
2/3 and 2/3) on each interval for a uniform biprocessor of respective speed
13/12 and 1.

t ≡ 0

t ≡ 1

t ≡ 2

t ≡ 3

t ≡ 4

t ≡ 5

t ≡ 6

t ≡ 7

t ≡ 8

t ≡ 9

t ≡ 10

t ≡ 11

(b) Complete schedule for the periodic tasks system of Figure 3(a). Job
boundaries are at t = 0, 3, 4, 6, 8, 9. Interval [0, 3] is three times the interval
in [8, 9]; interval [4, 6] is the symmetric of interval [6, 8].

Figure 3. Scheduling three periodic tasks on
2 different processors.

by using a reversed schedule every two intervals (e.g.
(t ≡ 0) is a symmetry axis in Figure 3(b)).
• This simple algorithm stands a qualitative comparison

with PFair when comparing the number of preemp-
tions: PFair hasM preemptions per time quanta which
is not as good as the given algorithm’s N preemptions
per interval except when N is big. However, when
there is a large number N of small tasks (and total uti-
lization is smaller thanM ), task migration is in general
not needed and partitioning algorithms perform well.
Other advantages of the algorithm is that it does not
require integer period nor execution time, and that it
works also on uniform multiprocessor.

These techniques are not reserved to periodic task sys-
tems, but can be used for every task system that has a con-
stant utilization and for which the next job boundary is al-
ways known. For these tasks, fair scheduling is always op-
timal. However, when tasks have varying utilization it is in
general not optimal; optimal scheduling for more general
tasks are studied in section 3.3.

3.2. Optimal schedule for finite job sets

Although most real-time processing need recurring jobs,
it is interesting to study finite job sets with real-time con-
straints because it is a good introduction for more compli-
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cated tasks generating an infinite job set, presented in sec-
tion 3.3.

Here by using the equivalence between the BWS rep-
resentation and the concrete one, the problem of optimally
scheduling finite job sets is transformed to the simpler one
of finding a set of weights in each interval between job
boundaries satisfying the conditions in Definition 7 and 8.

Identical multiprocessor case. The problem of finding an
identical multiprocessor boundary weighted schedule for a
job set J is eased by the fact that the validity and correct-
ness conditions of a schedule w of J can be expressed by
a set of linear equalities and inequalities. That way, the
problem of finding a correct schedule (of finding whether
one exists) is transformed into a simple linear programming
problem, solvable using the simplex algorithm.

Indeed, the validity equations are the following ones:

∀n,


∑
J∈J

wnJ ≤ M

∀J, 0 ≤ wnJ ≤ 1

The correctness equations are these ones (we note, when
defined, n(t) as being the n such that there is tn = t) :

∀J ∈ J ,


n(J.d)− 1∑
k=n(J.s)

wkJ ∗ (tk+1 − tk) = J.e

∀k s.t. k < n(J.s) or k ≥ n(J.d), wkJ = 0

These correctness equations simply state that

∀J ∈ J ,
∫ J.d

J.s

wJ(t) dt = J.e

They are rendered simpler because the wn are constants
on the intervals [ tn, tn+1 ].

Any solution (i.e. a set of wnJ ) satisfying these equations
is a job-boundary weighted schedule ofJ ; andJ is feasible
if, and only if, the system of equalities and inequalities has
a solution (i.e. it is an exact feasibility test).

For instance, the set of equations for the job set of Fig-
ure 1 would be:

w0
1 ∗ 2 + w1

1 ∗ 5 + w2
1 ∗ 1 = 6 w0

1 + w0
2 ≤ 2

w0
2 ∗ 2 + w1

2 ∗ 5 + w2
2 ∗ 1 = 6 w1

1 + w1
2 + w1

3 ≤ 2
w1

3 ∗ 5 = 4 w2
1 + w2

2 ≤ 2

w0
1, w

1
1, w

2
1, w

0
2, w

1
2, w

2
2, w

1
3 ∈ [0, 1]

Uniform multiprocessor case. The uniform multiproces-
sor case presents another difficulty, due to the non-linearity
of the Smaxk functions of definition 7. The set of inequali-
ties do not form a linear programming problem anymore.

This problem has already been studied by Martel [17]
and solved using a specific network flow instead of linear
programming. This technique offers a fast resolution and a
small number of preemptions, and can in fact be used also
in the case of identical multiprocessors [12].

This technique also acts as an exact feasibility test.

3.3. Optimal schedule for unpredictable tasks

The previous sections computed schedules of tasks for
which the three parameters of all released jobs could be
known before runtime. When this is not the case for a task
set (like sporadic tasks), it may not be optimally schedula-
ble [8]. However, it is still possible to use available partial
information on the job sets to schedule it “at best”, introduc-
ing the notion of task-optimality. To illustrate this problem,
the OASIS [5] task model is used, because it allows the ex-
pression of varying temporal behaviours while retaining a
finite set of possible behaviours (unlike sporadic tasks), al-
lowing to infer much information more easily.

The OASIS model uses temporal automatons that can de-
fine the behaviour of any time-triggered task. For the sake
of brevity only an informal description of OASIS automa-
tons and their manipulation is given in this paper; complete
coverage of the subject will be published in another one.

OASIS temporal automatons and their scheduling. An
OASIS task is represented by a (potentially infinite) tem-
poral automaton that releases jobs sequentially. Edges rep-
resent jobs and are labelled by their execution durations;
nodes are job constraints and the label of the node pointed
by an edge is the relative deadline of the job represented by
the edge.

T1: 2 2

1

0

T2: 4 2

T3: 2

1

1

2

0

1

0

0

2

T4: 2

1

1

1

0

1

0

0

2

Figure 4. A set of temporal automatons.

For instance, in Figure 4, T2 is an implicit-deadline pe-
riodic task of period 4 and T1 is a constrained-deadline task
of period 4 and relative deadline 2. T3 and T4 are more com-
plicated tasks with varying temporal behaviour, but whose
job releases (not counting jobs of duration 0) are the same;
they differ by the moment of choice. T3 chooses at the ear-
liest moment and T4 at the latest.

Scheduling OASIS tasks can be done as follows: from
these automatons one can extract constraint equations (or
flow network) similarly to the finite job set case (see Sec-
tion 3.2)2, using a synchronized product operator that com-
bines the temporal automatons [2]. Solving these equa-
tions give a task-optimal multiprocessor boundary weighted
schedule [14], which is convertible into a task-optimal mul-
tiprocessor concrete schedule. Note that the size of the syn-
chronized product and thus the number of constraint equa-
tions is bounded in the worst case only by the gcm of the

2In fact, finite job sets are a special case of OASIS automatons.
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sizes of the cycles of the original graphs. However, in prac-
tice as time is used for synchronization, there are many
common factors between these cycles’ size and the synchro-
nized product does not grow that much.

Task- and job-feasibility. A task set is called job-feasible
when every job set that can be released by the task set is
schedulable. It is called task-feasible when the task set is
schedulable. The difference is that task-feasibility takes into
account the fact that job parameters are not known at the
beginning of execution.

No such distinction exists on single processor computers
because in this case there are optimal online scheduling al-
gorithms for single processors such as EDF; also, no such
distinction exists for periodic and finite tasks whose job pa-
rameters are all known before runtime. But as no optimal
online scheduling algorithm exists on multiprocessor [11, 8]
this distinction becomes important when scheduling more
complex task sets with job releases only known at runtime.

Results. Our scheduling algorithm (offline weight finding
plus weight conversion) is task-optimal: if a task set is task-
feasible, it schedules it correctly. The weight-finding part
of the algorithm alone is also an exact task-feasibility test
(to our knowledge, this is the first time that a task-optimal
algorithm or task-feasibility test is found for task sets that
are not always job-feasible). In particular, as all job-feasible
periodic tasks are also task-feasible (because all their job
parameters are known at the beginning of execution), we
solve in particular the previously open problem of optimally
scheduling general periodic tasks.

Example. For instance, both task sets T1 =
(T1, T1, T2, T3, T3) and T2 = (T1, T1, T2, T4, T4) are job-
feasible on 2 processors; but only T1 is task-feasible (this
is a transcription in the OASIS model of the Hong and Le-
ung [11] proof that online scheduling of arbitrary tasks is
impossible). Our method computes an optimal schedule for
T2 and finds that T1 is schedulable when increasing each
processor’s speed by 11%. By comparison, using Global-
EDF or Partitionned-EDF requires here an increase of 25%
for both task sets; and proving that the system is schedulable
with Global-EDF using Phillips et al.’s result [19] requires
an increase of 50%.

So, despite the fact that optimal online scheduling is im-
possible [8, 11], it is still possible to schedule tasks at best
using all available information; and this can represent a con-
siderable gain over online algorithms.

4. Online schedule transformation

The previous section showed how transforming a sched-
ule from the BWS representation to the concrete one can be
used as a general method for constructing scheduling algo-
rithms. Such transformations were done offline, which al-
lowed using static or “quasi-static” scheduling algorithms.

Offline schedule transformation can be used when the
set of changes of weight of the tasks is finite; in other

cases when weights vary more dynamically it is necessary
to perform schedule transformation online. For instance,
the Least Laxity First algorithm for multiprocessor or CPU
bandwidth-based systems [10] can both be implemented us-
ing this technique.

Other uses of online schedule transformation include
saving memory space (weights takes less space to store than
complete schedule) or coping with unpredictable jobs ar-
rivals (e.g. to mix optimally-scheduled periodic tasks with
sporadic tasks).

The basic online schedule transformation requires only
to know the next job boundary; i.e., when tn is reached,
then tn+1 must be known. This is usually the case for time-
triggered tasks like OASIS or periodic tasks. A simple al-
gorithm, given in proof of Lemma 15, is to just apply the
McNaughton [18] or Gonzalez and Sahni [9] algorithm for
the sub-jobs between tn and tn+1.

4.1. Handling dynamic job arrival

The problem is that deciding the schedule for the interval
renders it unmodifiable for the duration of this interval, and
so unable to cope with unpredictable arrival of events.

The above basic online transformation algorithm, that
decides the whole schedule for the interval [tn, tn+1[ at time
tn, is perfectly fine when the next job boundary is always
known, for instance in a pure OASIS system or a set of pe-
riodic tasks. However, the current trend in the real-time in-
dustry is the integration of numerous tasks of different na-
tures in a single system; for instance, OASIS or periodic
tasks, event-triggered tasks and non real-time tasks.

For such systems, the above solution has two drawbacks:
first, as one cannot deal with unpredictable jobs (e.g. re-
leased by event-triggered tasks) before time tn+1, these jobs
are treated with a high latency; second, computational re-
sources are lost when a job finishes earlier than expected,
e.g. in the general case where the worst case execution time
(WCET) is not reached.

To deal with these problems on identical processors, one
can try to adapt the McNaughton algorithm to handle some
dynamicity:

• The best way to cope with unpredictable events is to
just “shift” schedules when such events appear. Long
events have to be split and migrated between the dif-
ferent processors (thus causing M − 1 supplementary
migrations). Figure 5(a) illustrates the method.

Note that the shift must be done in the same proces-
sor order than used with the McNaughton algorithm
to prevent simultaneous execution of the same job on
different processors (Figure 5(b)).

• However, handling early termination is impossible:
Figure 5(c) shows why. The only simple possible
adaptation would be to execute a completely unrelated
job between the end of a job and its expected end,
which is not a really efficient solution.
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0 101 planned schedule

J1 J2

J2 J3 ⇒

0 101
shifted schedule

J1 J1 J2

J2 J3 J3

U1

U1

(a) Dealing with unpredictable job arrivals can be done by shifting the sched-
ule on a processor to insert the unpredictable job when it arrives (here at time
3). When there is not enough room on it, migrate the unpredictable job on
another processor.

time0 101

J1 J2

J2 J3

(b) Shifting the schedule must be done in the same processor order than
used when applying the McNaughton algorithm: here a job of length 2.5
arriving at time 2 must be placed on the upper processor, before another
can be put on the lower one; else there would be a simultaneous execution
conflict.

time0 101

J1 J2

J2 J3

(c) Handling early job end is impossible: if at time 1 job J1 finishes early,
job J2 cannot start because this would cause simultaneous execution on two
processors

Figure 5. Adapting a McNaughton schedule
to handle unpredictable job arrivals.

Thus, there is a need for a dynamic schedule transforma-
tion algorithm that can cope with these problems.

4.2. An incremental online schedule transformation
algorithm

We propose Algorithm 1, that builds the schedule on the
interval [tn, tn+1[ incrementally: it determines the next pre-
emption or migration instant only at the previous one, which
allows it handling dynamic jobs arrivals by changing the
scheduling decision when these jobs arrive. It works by ob-
serving the biggest tasks and exclusively reserving proces-
sors to them when they need it, and is based on a previous
proof of Lemma 14 we made [14].

Although it causes more preemptions (2M − 2) than the
McNaughton algorithm (M − 1) in the maximum case, it
never causes more migrations than it (M − 1). Neverthe-
less, when the system is lightly loaded, it causes few or no
migration; whereas the McNaughton algorithm causes on
average M − 1 migrations.

Additional interesting properties of the algorithm is that
the M biggest jobs are never migrated, which is interest-
ing because they need a priori more cache and thus have a
higher migration cost; the “setup time” at the beginning of
the algorithm is O(M) instead of O(|J |) (which is impor-
tant because this setup time is lost for all processors for an
online algorithm); and execution time of each while loop
iteration is constant and in fact really small (the data struc-
tures can be arranged to be kept sorted).

Figure 6 provides an example of an execution of Algo-
rithm 1 for 8 jobs on 4 identical processors.

Algorithm 1 Incrementally build a concrete schedule for a
set of jobs J from their given weights wJ in the BWS rep-
resentation, between tn and tn+1 onM identical processors
Require: The job set J is feasible; tn is the current date

and tn+1 the next date when weight change
Ensure: At tn+1, each job J will have been executed for

(tn+1 − tn) ∗ wJ

T ← tn+1 − tn
P ← {1, 2, . . . ,M}
B ← J
for all J ∈ J do

5: τJ ← wJ ∗ T
end for

while B contains jobs with non-null τJ do
Jmin ← J ∈ B that has the smallest non-null τJ
Jmax ← J ∈ B that has the biggest τJ

10: Place the |P| jobs in B with smallest non-null τJ on
processors of P

Place the M − |P| jobs of B on processors of P
t← min(τJmin , T − τJmax)
Execute the placed jobs for t
for all K ∈ {placed jobs} do

15: τK ← τK − t
end for
T ← T − t
if t = τJmax then
P ← P \{processor were was Jmin}

20: B ← B \{Jmax}
end if

end while
Place the M − |P| jobs of B on processors of P
Execute the placed jobs for T

J1

J2

J3

J4 J1 J4 J6

J7

J5 J3 J5

J8

Figure 6. Typical run of Algorithm 1 on 4 iden-
tical processors. (Jobs are sorted by increasing
durations, i.e. J1 ≤ J2 ≤ · · · ≤ J8.)

Notes: • For simplicity’s sake, we assume that when no
job is placed on a processor, this processor idles.

• Handling unpredictable job arrival or premature
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end would require slight modifications of the al-
gorithm, but they depends on what one wants to
achieve (are the unpredictable jobs more critical
than the others? do they have deadlines?), so the
algorithm is given without them.

Proof of the algorithm and of its properties, as well as
its real implementation, can be found in a technical report
about this algorithm [15].

5. Conclusion
This paper proves that the intuitive notion of “fluid

scheduling”, in which jobs can execute at fractional rate, is
no more powerful than preemptive scheduling, even on mul-
tiple processors that have different speeds (uniform multi-
processors). Explaining the precise meaning of this result
and proving it require a formal framework named equiva-
lence between schedule representations.

Using this framework, we are able to provide new sim-
ple, efficient solutions to some already solved but hard prob-
lems, like optimal scheduling of implicit-deadline periodic
tasks [4] on identical multiprocessors; using the same tech-
nique we also solve the open problem of optimally schedul-
ing these tasks on uniform multiprocessor.

The framework makes accessible the solving of new,
harder problems, like optimally scheduling general peri-
odic tasks on multiprocessors, or even any time-triggered
task. As this latter problem cannot be optimally solved
[11, 8], we distinguish two notions of optimal scheduling,
the ideal job-optimality and the reachable task-optimality;
and we briefly sketch how to task-optimally schedule time-
triggered tasks using OASIS temporal automatons; a more
detailed paper on this problem will follow.

Finally, we discuss on the interest of online sched-
ule transformation, that allows expressing scheduling al-
gorithm using weights or “rates” even on multiprocessor
architectures. We then provide an efficient algorithm for
online schedule transformation on identical multiprocessors
that can handle event-triggered tasks.

As the framework greatly simplifies multiprocessor
scheduling problems (feasibility analysis and construction
of scheduling algorithms), numerous applications that need
multiple resource preemptive scheduling can be built upon
the framework even beyond multiprocessor scheduling, for
instance in QoS in telecommunications.We are also imple-
menting the task-optimal scheduling algorithm for OASIS,
which will provide us with quantitative benchmarks on the
performance increase compared to our current Global-EDF
and partitioned-EDF solutions on an industrial case study.
Further works will also cope with minimization of the num-
ber of preemptions and migrations caused by the algorithm.
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