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Abstract

A fundamental asset of a model-based development pro-
cess is the capability of providing an automatic implemen-
tation of the model that preserves its semantics and, at the
same time, makes an efficient use of the resources of the
execution platform.

The implementation of communication between func-
tional blocks in a synchronous reactive model requires
buffering schemes and access procedures at the kernel level.
Previous research has provided two competing proposals
for the sizing of the communication buffer. We demonstrate
how it is possible to leverage task timing information to ob-
tain tighter bounds for the case of sporadic tasks or peri-
odic tasks with unknown activation phase, and we propose
an approach that applies to a more general model.

Furthermore, we provide the description of the data
structures and constant-time access procedures for writer
and reader tasks, and an implementation compliant with the
OSEK OS standard.

1 Introduction

Model-based development of embedded real-time soft-
ware aims at improving quality by fostering reuse and sup-
porting high-level modeling and simulation tools. Syn-
chronous Reactive (SR) models have been used in the de-
sign of hardware logic and more recently for modeling con-
trols and control-dominated embedded applications. Syn-
chronous reactive zero-time semantics is very popular be-
cause of the availability of tools for simulation and formal
verification of the system properties.

An SR model can be defined in a declarative or impera-
tive way. For our purposes, we consider the dataflow part
of the commercial tool Simulink from Mathworks [9], con-
sisting of a network of functional blocks, each computing
a function on input signals arriving on input ports, sampled
at discrete time instants, and producing the result on the
output ports. In this paper, we focus on time-critical ap-
plications, modeled on the functional side as a network of
SR blocks. On the architecture side, single-processor exe-
cution platforms with priority-based preemptive scheduling

of tasks are the implementation target.
When implementing a high-level model into code, it is

often important to preserve its semantics so to retain the
validation and verification results. Preserving the semantics
of the model may be a non-trivial task and, in some cases,
even impossible for a given platform. The implementation
of an SR multirate model can use a single task executing at
the base rate of the system, or it can use a set of concurrent
tasks, with typically one task for each execution rate, and
possibly more. Single task implementations are easier to
construct, but often characterized by poor resource utiliza-
tion. Multi-task implementations allow for a much better
schedulability of the resources, but because of the possi-
ble preemption, communication may have integrity or non-
determinism problems and the implementation raises issues
with respect to the preservation of the zero time execution
behavior. These problems are illustrated in more detail after
the relevant definitions are introduced in Section 2.

Given the selected platform, the definition of a model
implementation consists of a set of tasks implementing the
blocks and their priority assignment, and also of correct and
efficient communication mechanisms. Communication of
data between concurrent tasks that cannot be made atomic
at the hardware level must be implemented using one of the
following communication methods.

• Lock-based: when a task wants to access the commu-
nication data while another task holds a lock, it blocks
on a semaphore [6]. When the lock is released, the task
is restored in the ready state and can access the data.

• Lock-free: each reader accesses the communication
data without blocking. At the end of the operation, it
performs a check. If it realizes there was a possible
concurrent operation by the writer and having read an
inconsistent value, it repeats the operation. The num-
ber of retries can be upper bounded [3].

• Wait-free: readers and writer are protected against
concurrent access by a replication of the communica-
tion buffers and by leveraging information about the
time instants when they access the buffer or other in-
formation that constrains the access (such as priorities
or other scheduling-related information).
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Wait-free protocols have been mostly studied from the
perspective of the programmers of concurrent real-time ap-
plications, interested in preserving the consistency of the
data and providing the freshest value at execution time,
meaning that each reader always obtains the latest data writ-
ten by the writer task. These mechanisms cannot guarantee
time determinism because the value read by the reader task
depends upon the scheduling and the possible occurrence
of preemption. In many control applications this is not a
concern, given the robustness of the control algorithm with
respect to time delays [16]. In other cases, the application
may be sensitive to the ensuing jitter, therefore the imple-
mentation needs to satisfy more stringent requirements.

Wait-free mechanisms have also been the preferred
choice for the implementation of semantics-preserving
communication for their simplicity and efficiency. Any cor-
rect implementation of an SR model requires that the data
item used by the reader be defined based on the activation
time of the writer and reader tasks. Both tasks, however, are
not guaranteed to start their execution at their release times,
because of scheduling delays. Therefore, the selection of
the data that is written or read must be delegated to the op-
erating system (or to a hook procedure that is guaranteed to
be executed at the task activation time).

At execution time, the writer and the readers will use the
buffer positions defined at the time of their activation. Task
priorities and deadlines ensure that each reader uses the
value produced by the correct writer instance. Of course,
there may be cases in which the writer produces multiple
outputs before the reader is guaranteed to finish reading the
data. In this case, the implementation consists of an array of
buffers in which pointers (indexes) are assigned to writers
and readers to find the right entry.

In general, the problem of defining a communication
mechanism that preserves the SR semantics consists of two
sub-goals. The first is to find the minimum number of re-
quired buffers. The next is to define the protocol that imple-
ments the read and write accesses to the data structure with
the minimum buffer size requirement. The protocol is fur-
ther divided into two parts: one executed at activation time,
the other at the task execution time.

Review of Previous Work In [11], a three-slot asyn-
chronous protocol is proposed for preserving data consis-
tency with execution-time freshest value semantics in the
communication between a single writer and a single reader
running on a shared-memory multiprocessor. No assump-
tions are made on task priorities or periods. In general,
three buffers are needed: one for the data being read, one
for the data last written (current) by the writer and another
when the latest written buffer has not been read yet, but the
writer wants to write a new data. To achieve data integrity,
a hardware supported Compare-And-Swap (CAS) instruc-
tion is used to assign atomically the reading position in the
buffer array to reader tasks and to update the pointer to the

last written value.
A one-to-one communication mechanism that preserves

the SR semantics is presented in [5]. A two-position buffer,
two buffer indexes and a reader execution flag are required.
In the case of single processor systems, the code that up-
dates the index variables is executed inside the kernel, at
task activation time, therefore, there is no need for a CAS
instruction, or a similar HW-level mechanism that ensures
atomicity when swapping buffer pointers or comparing state
variables. To guarantee that in the low to high priority com-
munication the latency is exactly a one-unit delay, the mech-
anism in [5] requires that each writer task instance com-
pletes before the next is activated.

In the general case of multiple reader tasks, wait-free
mechanisms and the corresponding buffer size can be de-
fined by analyzing the relationship between the writer and
its reader task instances. There are two main methods to
do so. The first method consists in preventing concurrent
accesses by computing an upper bound for the maximum
number of buffers that can be used at any given time by
reader tasks. This number depends on the maximum num-
ber of reader instances that can be active at any time. The
second method provides buffer sizing and access protocols
by using a general approach called temporal concurrency
control. The size of the buffer can be computed by upper
bounding the number of times the writer can produce new
values, while a given data item is considered valid by at
least one reader.

According to the first method, in the worst case, when
no additional information is available, and no delays are
defined on the communication links, the required size is
equal to the maximum number N of reader task instances
that can be active at any time (the number of reader tasks
if task deadlines are less than or equal to periods), plus two
more buffers that must be added for guaranteeing that the
writer can safely update the latest data. This bound has
been defined in [12], where the protocol in [11] was ex-
tended to a multi-reader asynchronous protocol for single
writer and multiple readers systems. The bound can be fur-
ther improved in the case of single processor systems [8]
if additional information is available. In particular, if all
reader tasks have priority lower than the writer, then only
N+1 buffers are needed, N used by the readers and the one
with the most recent update by the writer.

In [8] a semantics-preserving implementation of the
single-writer to multiple-reader case is proposed and the
buffer bound is further extended for the case of commu-
nication links with a unit delay. The proposed protocol is
called the Dynamic Buffering Protocol (DBP). When unit
delays are allowed on links, N+2 buffers are still demon-
strably sufficient, where N is the number of reader tasks
with lower priority. This bound is optimal for the general
case of any arrival/execution pattern, that is, when no in-
formation is available on the writer and reader tasks except
that each task instance terminates before its next activation

170170170



event, but can be improved - even substantially, as shown
in Section 4 - when information about task priorities and
minimum inter-arrival times is available.

The second method has been first introduced in [13]
and [10] (under the name of NBW protocol), assuming as
the validity time of the data the worst case execution time
of a reader. An upper bound for the buffer size based on
the concept of temporal concurrency control is also defined
in [1] for the case of SR semantics preserving communica-
tion. The bound makes use of a different definition of the
validity lifetime, based on the SR semantics. Details of this
bounding method are presented in Section 3

A different approach is used, in [7], where an optimum
number of buffers for the case of only periodic tasks with
known activation phases is obtained by simulating the ex-
ecution of the tasks in the least common multiple of their
periods to compute the required bound. Although this ap-
proach is optimal, it can only be used when all tasks are
periodic and when their activation phases are known.

A combination of the temporal concurrency control and
the bounded number of readers approaches can be used
to obtain an optimal sizing of the buffer. A combina-
tion of [12] and [13] was proposed in [14] for a non-
SR semantics-preserving implementation. Reader tasks are
partitioned into two groups: fast and slow readers. The
buffer bound for the fast readers leverages the lifetime-
based bound of temporal concurrency control, and the size
bound for the slow ones leverages information on the max-
imum number of reader instances that can be active at any
time. Overall, the space requirements are reduced. In [1]
a similar approach is proposed for SR semantics-preserving
implementations. However, the resulting buffer size is not
optimal and still subject to improvement.

Contributions This paper provides the following contri-
butions. First, we provide a better bound for the case of
priority-scheduled tasks activated with a minimum inter-
arrival time (sporadic) or periodically, but with unknown
phases. The bound shows how it is possible to improve
with respect to [8] by leveraging the additional information
about the minimum inter-arrival times and the task priori-
ties, and applies to a more general (and practically useful)
task model than [7]. Furthermore, our bound also applies
to a more general application model than the bounds pre-
sented up to now, namely by allowing the case of multiple
active instances of tasks at the same time, and communica-
tion links with arbitrary delays. For fairness, the bound only
improves on [8] when information on task periods and pri-
orities is available (which is however typical of most imple-
mentations). Finally, motivated by the lack of implementa-
tion details in the other theoretically-driven methods, we of-
fer an OSEK-compliant implementation of the buffer selec-
tion procedures characterized by constant execution time.
This implementation can provide additional insights to ex-
perimentalists who may be interested in inserting these pro-
cedures in industrial applications.

2 Definitions and Assumptions

Each block in an SR (Simulink) model computes two
functions: the output function and the state update func-
tion. In a synchronous reactive model, the execution of the
block functions happens in zero-time, that is, the result is
computed instantaneously at the time the block is activated.
A system is an acyclic network of blocks. For each block
bi we use bi(k) to represent the kth occurrence of block bi
and we associate a sequence of activation times ai(n) where
ai(1) < ai(2) < ai(3) . . . and ai(n) ∈ R

+. Because of
the zero-time assumption, the activation time captures the
release, start and finish times of a block execution. The
activation times of a block bi can be constrained to be pe-
riodic (i.e., released at multiples of a given period Ti) or
they can be event-triggered, possibly with a minimum inter-
arrival time. Given time t ≥ 0, we define ni(t) to be the
number of times that bi has occurred before or at t, that is:
ni(t) = sup{k|ai(k) ≤ t}, where the sup of the empty set
is taken to be 0, so that if bi has not occurred up to t, then
ni(t) = 0. We denote inputs of block bi by ii and outputs by
oi. If two blocks bi and bj are in an input-output relationship
(bj has as input the output of bi and the output of bj depends
on its input), there is a link bi → bj . The link can possibly

carry a p-unit delay, as indicated by bi
−p→ bj , where p ≥ 1.

In case of a zero-delay link, if ij(k) denotes the input of the

kth occurrence of bj , then the SR semantics specifies that
this input is equal to the output of the last occurrence of bi
before the kth occurrence of bj , that is:

ij(k) = oi(m), where m = ni(aj(k))

If bi has not occurred yet, then m = 0 and the default
value bi(0) is used. If the link has a p-unit delay, then:

ij(k) = oi(m), where m = max{0, ni(aj(k)) − p}
The absence of zero-delay cycles (and the corresponding
fixed point conditions) together with the definition of a par-
tial order of execution for the blocks ensures that the seman-
tics is always well-defined. The middle of Figure 1 illus-
trates the execution of a pair of blocks with the synchronous
reactive zero-time semantics. The horizontal axis represents
time. The vertical arrows capture the time instants when the
blocks are activated and compute their outputs from the in-
put values. In the figure, it is ij(k) = oi(m). The bottom of
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Figure 1. Preemption Changes the Values
Read by the Reader
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Figure 1 shows the possible problems with data transfers in
multi-task implementations. A fast writer, implemented by
a high priority task, communicates with a slow reader. The
writer finishes its execution producing oi(m) and the reader
is executed right after. If the reader performs its read opera-
tion before the preemption by the next writer instance, then
ij(k) = oi(m). Otherwise, it is preempted and a new writer
instance produces oi(m + 1). In case the read operation had
not been performed before, the reader reads oi(m + 1), in
general different from oi(m). Even worse, in case the signal
value is not read/written atomically, there is a finite proba-
bility that bi preempts the reader task/block bj while a read
is in progress, resulting in a data integrity problem. The
problem arises because each functional block bi, that is, the
code implementing its output and state update functions, is
implemented at run time in the context of a task.

Tasks are denoted as τi. The block to task mapping con-
sists of a relation between a block and a task and of a static
scheduling (execution order) of the block code inside the
task. M(i, k, n) indicates that block bi is executed as the
nth block in the context of task τk . For each instance of
index k of task τi (the same notation is used for a functional
block bi(k)), we define as activation time ai(k) the time in-
stant when the task is ready for execution (also defined as
release time), the start time, si(k), the time when it obtains
the control of the resource, and the finish time, fi(k), when
it completes its execution. The offset of ai(h) with respect
to aj(k), ohi,kj

, is defined as the time separation between
the release times of the two instances of the corresponding
tasks, i.e. ohi,kj

= ai(h)−aj(k). While the communication
is defined among blocks, in the following, we will define
bounds and rules based on the number of communicating
tasks. If multiple reader blocks communicating with the
same writer are mapped into the same task, they are counted
as one (use the same communication buffer).

Additional task attributes are the period or minimum
inter-arrival time Ti, the worst case computation time Ci,
and the priority πi. Ri is the worst case response time. Each
task τi may also have a relative deadline di, smaller, equal
to, or greater than Ti. When the relative deadline is larger
than the period, there may be multiple instances of the same
task active (but not executing) at the same time.

We assume that the runtime implementation of a block
only reads the input and writes the output once for each
block execution. Reads and writes can happen at any time
during the execution of the block and are not atomic.

After being mapped to a task, a block is executed with
the task priority. We define the following generalization of
the sets in [8], where only unit delay links are considered.
Each writer task can communicate with M higher priority
readers. Of those, M1 are connected with unit delay links,
M2 with 2-unit delays, and so on, until Mk. Also, the writer
has N readers with lower priority. Of those, N0 read data
with no delay, N1 with unit delay, and so on.

In any semantics preserving implementation of a link

NpN0

...

N1

−p
−1delay

no
Lower
priority

priority

Reader tasks

Reader tasksN

M1

−1
−2 ...

M2

−k

τw

unit delay

M

Higher

Mk

Figure 2. Writer and Reader Tasks with Link
Delays and Higher/Lower Priority Levels

bi → bj without delay, the reader block must have a priority
lower than the writer (or its scheduling must be constrained
by a precedence order) [1]. In the low to high priority com-
munication [8], it must be dw ≤ Tw for the writer task, to
guarantee that the latency is not higher than a one unit de-
lay. However, when deadlines can be greater than periods,
at least q units of delays are required in any link from a
writer to a high priority reader

Rw ≤ dw ≤ qTw, where q =

⌈
dw

Tw

⌉
.

3 Buffer Implementation Options

In the following, we define our improvements with re-
spect to the sizing methods in [8] and [1] based on the num-
ber of reader instances, and on temporal concurrency con-
trol, respectively. We provide extensions to the theory and
the code that implements the read and write operations in
the general case of multiple-unit delays and deadlines (or
better, response times) larger than periods. The proposed
implementation is very efficient, as required by its kernel-
level execution. For the following discussion, additional
definitions are required. Each writer task is labeled as τwi ,
and each reader as τri . NRwi and NBwi are the number of
readers and the number of buffers for task τwi , respectively.

The example shown in Table 1 consists of one writer and
seven readers. It will be used to demonstrate how the pro-
posed method improves upon the existing approaches. For
simplicity, we assume that the writer has a higher prior-
ity and no delays are defined on the links. The first four
columns refer to the task names, their periods, computa-
tion times and response times. The meaning of the columns
from the fifth to the last will be explained in the following
section. We assume the activation phases of the tasks are
unknown, hence, [7] is not applicable.

3.1 Bounding the Number of Reader In-
stances

In [8] the writer communicates with a unit delay with M

higher priority readers and N readers with lower priority.
Of those, N1 are on a link without delay and N2 = N −N1

172172172



τi Ti Ci Ri li
⌈

li
Tw

⌉ ⌈
x

Tr

⌉ i∑
k=1

⌈
x

Tr

⌉
Eq.(3) Eq.(6)

Rri li Rrk lk j = i j = i

τw 20 2 2 - - - - - - - -
τr1 8 1 3 23 2 1 3 1 3 16 8
τr2 10 2 5 25 2 1 3 2 6 13 7
τr3 12 2 7 27 2 1 3 3 9 10 6
τr4 22 4 16 36 2 1 2 4 11 8 5
τr5 40 4 35 55 3 1 2 5 13 7 5
τr6 80 5 77 97 5 1 2 6 15 7 6
τr7 240 10 235 255 13 1 2 7 17 13 13

Table 1. An Example Task Set

on a link with a unit delay. The data structures are illus-
trated in Figure 3 and the corresponding code is in Figure 4,

reader)

(one for each
lower priority 
reader)

HPR

Reading

current
previous

Buffer

(one for each
higher priority 

Figure 3. Data Structures for the Implementa-
tion in [8]

according to the logic outlined in [8]. The data struc-
tures consist of an array Buffer[] of buffers and an ar-
ray Reading[] containing one entry for each reader task
with lower priority. The entry contains the index of the
buffer item used by the corresponding reader or the key-
word free. Furthermore, two other variables contain the
index of the latest written entry, current, and the previ-
ous one, previous. The code implementing the opera-
tions of the writer and reader tasks is partly executed by the
kernel at task activation time and partly by the tasks at exe-
cution time. The termination code of a lower priority reader
flags its termination by setting its Reading value as free.

The code to choose a free buffer (in FindFree) pre-
sented in [8] only states the safety criteria for free buffer
selection. From the description shown in Figure 4, it seems
that a quadratic time implementation is required (the for all
statement embedded in the outer for loop). However, many
implementations satisfying the specification are possible,
with tradeoffs between space and time complexity. We pro-
vide one solution with constant execution time implement-
ing the general case (d ≥ R) as shown later in Figure 8. The
authors of [8] demonstrate how the M high priority readers
always use only one buffer (the one identified in the code
by the previous index) and all the others require, in the
worst case, a total of N+1 positions as illustrated in Fig-
ure 3. Furthermore, they assume that the deadline of each
task is smaller than or equal to its period (all tasks com-

Data Structures
char current, previous; char Reading[NLPREAD];
message Buffer[NBUFFERS]; char HPR[NHPREAD];
Writer
activation time execution time
previous = current; · · ·
current = FindFree(); Buffer[current] = · · ·

· · ·
FindFree() {

for (j=0; j<NBUFFERS; j++)
if (j != previous && for all k, Reading[k]!=j)
return j

}
Lower Priority Reader
activation time execution time
if (HasDelay[i]) · · ·

Reading[i] = previous; · · · = Buffer[Reading[i]]
else · · ·

Reading[i] = current; Reading[i] = free;
Higher Priority Reader
activation time execution time
HPR[i] = previous; · · ·

· · · = Buffer[HPR[i]]
· · ·

Figure 4. Writer’s and Readers’ Code in [8]

plete before their deadline). Hence, only one task instance
is active at any given time. In an implementation using the
OSEK automotive operating system standard [4], this is in-
deed the case for BCC1 and ECC1 class implementations,
but the case of response times larger than the period has
practical relevance (as in classes BCC2 and ECC2).

A generalization to the case Rj > Tj is indeed possible.
When response times can be larger than the periods, the sum
of the maximum number of instances of the lower priority
reader tasks τj , that can be active at any time is given by

Iwi =
∑

j∈Nwi

Irj =
∑

j∈Nwi

⌈
Rrj

Trj

⌉
,

where Rrj is the worst case response time of the jth reader
task and the set Nwi identifies the set of reader tasks with a
priority lower than writer task τwi . In this case, considering
a generalization to k-delay links, the buffer size bound can
be changed to

NBwi = Iwi + 1 + k.

The generalization to the case Rj > Tj also requires a dif-
ferent set of procedures for the reader and writer tasks to
access the communication data structures. The data struc-

by the current instance

1r

I
2r

=2

=3

=4

=1off =9
off =6

off =2

off =0R1

R2

R3

R4

Ri[i]Reading

Ir
Ir4

3

one entry for each reader task

points to the entry used

I

Figure 5. Data Structures for the Case d > T

tures need to be changed with respect to the version in [8].

173173173



Each reader task needs multiple entries in Reading, one
for each instance that may be active at the same time.
These may be folded into a single array, as described in
Figure 5 with each reader task using a subset at (con-
stant) offset Rioff as a circular buffer of indexes (one for
each instance) of size Iri . Furthermore, in case the de-
lay on each link can be up to k units, the current and
previous index variables are insufficient, and an array
of k + 1 elements is required to store the indexes refer-
ring the current and the last k elements written by the
writer. The array position in Figure 6 may be managed
as a circular buffer, with a variable cur marking the en-
try position[cur] of the index containing the current
item and position[(cur+j)%(k+1)] the index of the
element of Buffer containing the item with a j-unit de-
lay. The array Ri is used to assign an index into the array
Reading to each instance of a task at activation time. The
array Rii is used to recover the index at task execution time
(as shown in Figure 8). Finally, the array position pro-
vides an array of indexes to the buffer positions containing
the last k+1 values written by the writer task (generalizing
the case of current and previous).

Rii[i]

HPR

LPR (N)

(M)

cur

previous

current

−2

−3

−4

−5

position[] Buffer[] Reading[] Ri[i]

Figure 6. Data Structures for Generalized
DBP

The data declaration and the new functions for the reader
and writer tasks are illustrated in Figure 7 and defined in
Figure 8, respectively. The array Use is used to keep track
of how many references are currently using the correspond-
ing entry of Buffer. Such references include the active
reader task instances using the buffer or the possibility that
the buffer contains one of the last written k+1 instances (the
current and those with up to a k-unit delay). In a simple im-
plementation, a zero value of Use[i] means that the entry
of index i of Buffer is free and can be overwritten by the
writer (we will change this implementation shortly).

The array Use tracks the buffers currently in use and the
available ones, as shown in Figure 9. A simple linear time
implementation of the routine for finding the first available
buffer (FindFreeLT) is shown in Figure 7. However, a
for loop executed in kernel mode at task activation time is
highly undesirable and a constant time implementation of
the same routine is possible. A side array can be used to

Data Structures
char position[k+1];
char cur, FreeB; // position[cur] is current
message Buffer[NBUFFERS];
char Use[NBUFFERS]; // init with 0, # of users
char Reading[NINSTS];
char Ri[NR], Rii[NR]; // init with 0

Buffer Management Routines
char FindFreeLT() { char UseDec(char i) {

for (j=0; j<NBUFFERS; j++) Use[i]--;
if (Use[j] == 0) if (Use[i] == 0) {
return j; if (FreeB == -1)

} Use[i] = -1;
else

char FindFreeCT() { Use[i] = FreeB;
buf id = FreeB; FreeB = i;
FreeB = Use[FreeB]; }
return buf id; }

}

Figure 7. Data Structures and Routines for
Generalized DBP

Writer
activation time
cur = (cur-1)%(k+1); // k = max delay
UseDec(position[cur]);
position[cur] = FindFreeCT();
Use[position[cur]] = 1;

execution time
· · ·
Buffer[position[cur]] = · · · // write
· · ·
Low/High Priority Reader j = delay[i] ∈ 0..k
activation time
Ri[i] = (Ri[i]+1) % Ir[i];
i id = Ri off[i] + Ri[i];
Reading[i id] = position[(cur+delay[i])%(k+1)];
Use[Reading[i id]]++;

execution time
Rii[i] = (Rii[i]+1) % Ir[i];
i id = Ri off[i] + Rii[i];
· · ·
· · · = Buffer[Reading[i id]]; // read
· · ·
UseDec(Reading[i id]);

Figure 8. Writer’s/Readers’ Code for General-
ized DBP

construct a list of indexes of the free elements, as in Fig-
ure 9. The only elements of the additional array that are
used to keep the list organized are the elements that match
the free places in the Use array. Hence, the free elements of
Use can be used to maintain the list indexes, as on the right
side of Figure 9. The access routines FindFreeCT and
UseDec are used to find a free buffer and release a buffer
not used by any task as shown in Figure 7. FindFreeCT
does not have to check for the availability of a buffer item,
because this is guaranteed by the correct sizing of the array.

The writer has the responsibility of updating the index
to the element of position containing the index of the
buffer element that stores the next written value. Then the
writer calls UseDec to decrement the use count indexed
by position[cur] discarding the value with (k+1)-unit
delay. After calling FindFree to obtain a safe buffer po-
sition i, the writer increments the value of Use[i]. Also,
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Figure 9. Constant-Time Access

readers must increment Use[i] whenever they are going
to read data from the buffer position of index i, and decre-
ment the Use[i] counter when they are done with it by
calling UseDec. If Use[i] goes back to zero, the buffer
is freed and added to the free list. Similar to the DBP, the
termination code has to be treated as a critical section.

The code shown in Figures 7 and 8 can still be used when
the buffer size is optimized as shown in the following sec-
tion. The code is a general (and efficient) implementation of
an SR semantics-preserving single-writer to multiple-reader
communication. Before moving to the other possible meth-
ods for bounding the buffer size, we apply the DBP bound
presented in [8] to our example shown in Table 1. It results
in a buffer size bound of (7+1=8) items.

3.2 Temporal Concurrency Control
Bound

Temporal Concurrency Control (TCC) allows to bound
the number of buffers for reader tasks. Assume that some
arrival ai(k) of a writer task instance τi(k) happens at time
t0 and the writer updates a buffer position of index i as
shown in Figure 10. The item is used by all the instances
m of the reader tasks τj that are activated at time ai(k) ≤
aj(m) < ai(k + 1), and it will remain valid until any reader
activated in this interval has finished its execution. The fol-
lowing instances of the writer use buffer positions with in-
dexes i+1, i+2 and so on, until, eventually, the buffer index
wraps around the circular buffer and goes back to position
i − 1. The condition for a correct buffer size is that all the
readers that used the previous writer buffer at position i fin-
ished using the data (the lifetime of the data value expired)
when a following writer instance goes back to position i

and overwrites it. This bound includes the buffer item re-

r

wT

O wr

...

i
buf=i buf=i+1 buf=i−1

dr

Olifetime + max(R   )wrl    =wr i

Figure 10. Buffer Sizing Based on the TCC

served to the writer for updating its current value. Define li

as the lifetime of the data produced by the writer for reader
τri and Owr is the maximum offset between any activation
of the writer and its reader τri . If the writer is periodic or
sporadic, then Owr < Tw. The lifetime defined in [1] is:

l
′
ri = Owr + Rri .

If k is the delay on the communication link, then, an exten-
sion of the above definition gives the maximum lifetime for
a given reader ri:

lri = kTw + l
′
ri = kTw + Owr + Rri . (1)

The response time can be computed for each reader accord-
ing to the schedulability theory:

Rri = Cri +
∑

j∈hp(ri)

⌈
Rri

Tj

⌉
Cj , (2)

where Cri is the worst case computation time of the task
containing the reader block and the summation is extended
over hp(ri), which denotes all the tasks τj with priority
higher than τri .

A coarse bound can be obtained by adding the buffers
that are required by each reader τrj .

NBwi =
∑

τrj∈Nwi

⌈
lrj

Tw

⌉

This estimate is too pessimistic. A better bound is obtained
in [1]. For each reader, the number of required buffers is
upper bound by the minimum between the number of times
the writer is activated in the data lifetime and the number of
reader instances that may be active in the lifetime.

NBwi =
∑

τrj∈Nwi

min

{⌈
lrj

Tw

⌉
,

⌈
lrj

Tri

⌉}

This bound is further improved in [1]. The NRwi read-
ers of τwi are sorted by non-decreasing lifetime, so that
li ≤ li+1. According to temporal concurrency control, the
number of buffer items:

NBwi,j
=

⌈
lj

Tw

⌉

suffices for all the readers with lifetime ≤ lj . Hence, the
buffer bound can be improved by dividing the reader tasks
into two sets, fast and slow readers. The bound based on
the data lifetime is used for the fast readers subset, and a
different bound based on the number of reader activations
for the remaining tasks. The reader tasks with index i ≤
j belong to the fast readers group. Once j is chosen, the
bound on the buffer size provided in [1] is

NBwi =

⌈
lj
Tw

⌉
+

NRwi∑
i=j+1

⌈
li

Tri

⌉
, (3)

where the first term represents a buffer shared among all
readers such that li ≤ lj and the second term is based on the
number of reader instances inside the lifetime.
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In [1] it is proposed to select the partitioning index j that
defines the two groups as follows

j = max


i|

⌈
li

Tw

⌉
≤

i∑
k=1

⌈
lk
Tri

⌉
 . (4)

However, it is easy to show that this method leads to a
suboptimal solution. To explain the consequences, in our
example shown in Table 1, the partitioning index j would
be the index of the last task (Equation 4), with a buffer size
of 13 units as shown in the last third column of Table 1.
A much better solution can be found by considering all the
possible values of j in quadratic time.

j ∈ 0..NRwi |min




⌈
lj
Tw

⌉
+

NRwi∑
i=j+1

⌈
li

Tri

⌉
 (5)

In our example, there are two values of the partitioning in-
dex j, that is, j = 5 and j = 6, that minimize the right hand
side of Eq.5 and results in a buffer size bound of 7 units as
shown in the last second column in Table 1.

4 Improving on the Existing Bounds

Besides the possible improvement in the evaluation of
the index j, expressed by Equation (5), the main problem
with the bound expressed by Equations (3) and (4), how-
ever, is the definition of the number of buffers that are re-
quired by the slow reader tasks. Instead of considering
the upper bound on the number of instances that can be
activated for each reader task inside the lifetime and then
adding them, it is better to upper bound the maximum num-
ber of (slow) reader instances that can be active at any time.

A simple example from [8] highlights the issue. The sys-
tem consists of one writer and two reader tasks, with priority
lower than the writer. The periods are Tw = 2, Tr1 = 3 and
Tr2 = 5. Assuming that the response times of the readers
are equal to their period, then the bound in [8] is 3 buffers,
whereas the upper bound calculated according to [1] is 4.

In reality, each instance of a slow reader requires no more
than one buffer at any time. For the general case, allowing
for Ri > Ti, and delays up to k units, the bound can be
defined as

NBwi =

⌈
lj
Tw

⌉
+

NRwi∑
i=j+1

min

{⌈
Rri

Tri

⌉}
+ k, (6)

where j is chosen such that

j ∈ 0..NRwi |

min




⌈
lj
Tw

⌉
+

NRwi∑
i=j+1

min

{⌈
Rri

Tri

⌉}
+

NRwi
max

i=j+1
delay[i]




(7)

This improved bound is always demonstrably better than
the bounds in [8] and [1]. When the minimum value is

found for j = 0 the bound is exactly the same as in [8].
In all the other cases, the bound is lower than the one in [1]
given that it is always

Ri < li = Owr + Ri,

and, therefore, clearly⌈
Rri

Tri

⌉
≤

⌈
lri

Tri

⌉

For the two-task example in [8] the solution with 3
buffers is found. For our example in Table 1, the minimum
number of buffer is 5 as shown in the last column in Table 1,
lower than 8 (if [8] is used) and 7 (when using [1]).

5 OSEK/VDX

Starting with this section, we present an implementation
of kernel-level support for SR semantics-preserving com-
munication. To obtain portability of real-time application
software, we selected OSEK/VDX as the OS platform for
our implementation. The OSEK/VDX standard is widely
used in the automotive industry. The implementation is an
improved and revised version of the early code in [18].

To support design reuse and ease upgrade, four OSEK
conformance classes are defined according to the number
of active activations of a task, the task type, and the number
of tasks per priority level. Based on whether they can enter
a wait state by calling the WaitEvent service, tasks are
categorized as either basic or extended. A basic task is not
allowed to wait on an event. Minimum requirements for the
four classes are shown in Table 2. An application utilizes

Basic Extended
BCC1 BCC2 ECC1 ECC2

Multiple Active
No Yes

BT: No BT: Yes
Task Instances ET: No ET: No
# of Tasks not

8
16

Suspended (Any Comb. of BT/ET)
> 1 Task/Priority No Yes No Yes
# of Events/Task - 8
# of Priority Levels 8 16
Resources RES SCHEDULER 8(incl. RES SCHEDULER)
Internal Resources 2
Alarm 1
Application Mode 1

Table 2. Minimum Requirements for OSEK CC

kernel services by calling a set of standard APIs.
An OSEK task can be activated by either

ActivateTask or ChainTask and must call
TerminateTask for termination. An Interrupt Ser-
vice Routine (ISR) has a priority level higher than that of
a task. The OSEK OS standard specifies two categories
of ISRs. An ISR of Category 1 is not allowed to use any
kernel services and cannot be preempted. ISRs of Category
2 allow calling kernel primitives and, at the end of their
execution, rescheduling occurs if there is no pending
interrupt. Synchronization can be achieved by using events
or semaphores. An event is owned by an extended task and
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it can be set by either a task or an ISR of Category 2, but
WaitEvent can only be invoked by extended tasks.

At least one counter is generated from a hardware or soft-
ware timer. A counter is used as a time reference for alarm
generation. An alarm, associated with a counter, can be
used to activate a task, set an event, or call a call back rou-
tine. OSEK supports absolute and relative alarms, single
instance or cyclic. Finally, the hook mechanism allows ap-
plication specific functionality to be processed by the OSEK
OS when kernel events occur.

OIL (OSEK Implementation Language) [17] declara-
tions are used to configure the OS. The OIL file consists
of a set of OIL objects, characterized by attributes and ref-
erences and is composed of two parts: the implementation
and the application definition. The former defines all stan-
dard and application-specific attributes and their properties
for a particular OS implementation while the latter defines
the set of objects and their corresponding attribute values
for an OSEK application.

An OIL configuration file, coded manually or generated
automatically, is fed to System Generator (SG), which auto-
matically configures a kernel by choosing the required mod-
ules and customizing the data structures. The source code
of the application tasks, the selected module files from the
OSEK OS kernel library, and the additional application file
produced by SG are compiled and linked together to pro-
duce an executable file.

6 OSEK Implementation

We describe the OSEK implementation of SR semantics-
preserving protocols in a portable BCC1 conformance class.
Only standard features of OSEK are used and no modifica-
tion to the kernel is required. From Sections 3.1 and 3.2, we
know that part of the protocols needs to be executed at task
activation time at the kernel level. The kernel-level imple-
mentation is obtained by a task running with top priority or
OS hook routines that cannot be interrupted and can there-
fore guarantee atomicity.

Task Dispatcher and Initialization In BCC1 and BCC2,
events are not available and the alarm mechanism is the only
way to activate periodic tasks. Since the minimum require-
ments allow one alarm only, we use it to periodically acti-
vate a dispatcher task that, in turn, activates the appli-
cation tasks. The dispatcher is periodically activated by an
alarm, statically configured as cyclic with a period of GCDR,
the Greatest Common Divider of the application periods.

The data structures for the dispatcher are declared in Fig-
ure 11. The arrayTickL[] has dimensionLCMR, the Least
Common Multiple of the task periods. Each TickL[i]
entry has two fields: DispHd and size. DispHd points
to the first task on the dispatch table DTab[] and size
indicates the number of tasks that need to be activated at
the specific tick value. The array DTab[] contains the
tasks that need to be activated from tick = 0 to tick

Compute TSize Init w/o Phase Shift
char TSize = 0; tick = -1; i1 = 0;
for (i=0; i<NT; i++) { for (j=0; j<LCMR; j++) {

TSize += \ TickL[j].DispHd = -1;
LCMR/TaskL[i].rate; TickL[j].size = 0;

} for (i=0; i<NT; i++) {
if (j%TaskL[i].rate==0) {

Declaration i2 = TickL[j].size + i1;
struct TickEntry { DTab[i2] = i;

char DispHd; TickL[j].size++;
char size; } }

} TickL[LCMR]; if (TickL[j].size!=0) {
TickL[j].DispHd = i1;

char tick; i1 += TickL[j].size;
char DTab[TSize]; } }

Figure 11. Dispatcher Declaration and Initial-
ization

= LCMR - 1. The entries of DTab[] are used to index
the tasks in the task descriptor array, presented in Figure 14.
The right column in Figure 11 is the initialization of the data
structures used by the dispatcher. At each tick j, the dis-
patch table shows the tasks that need to be activated. The
fields DispHd and size are initialized to the task indexes
and the number of tasks to be activated.

The code in Figure 12, implemented as an initialization
OSEK task or inside the main function of the application
during the system startup, is responsible for the initializa-
tion of the dispatcher and communication data structures
(Figure 4).

· · · /* init DS and dispatcher as in Fig 11 */
SetRelAlarm(dispAlarm, 0, GCDR); /* set up alarm */

Figure 12. Initialization at System Startup

TASK(dispatcher) {
tick = (tick+1) % LCMR;
if (TickL[tick].DispHd != -1) {

for (k=0; k<TickL[tick].size; k++) {
idx = DTab[k+TickL[tick].DispHd]; /* task id */
for (i=0; i<TaskL[idx].NOP; i++) { /* writers */

idx2 = TaskL[idx].OPHd + i;
· · · /* kernel level writer code */

} }
for (k=0; k<TickL[tick].size; k++) {

idx = DTab[k+TickL[tick].DispHd];
for (i=0; i<TaskL[idx].NIP; i++) { /* readers */

idx2 = TaskL[idx].IPHd + i;
· · · /* kernel level reader code */

}
ActivateTask(idx);

} }
TerminateTask();

}

Figure 13. Dispatcher Code

The dispatcher implementation is shown in Figure 13.
During its execution, the counter tick is incremented
modulo LCMR. Then, the value of the field DispHd of
TickL[tick] is checked. If it is ”-1”, no task needs to be
activated. Otherwise, the tasks in DTab[], as specified by
the (DispHd, size) are processed. For each of them,
the dispatcher processes its input and output ports, perform-
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ing the read or write procedures that need to be executed at
the kernel level. Specifically, it calls FindFree() to find
a safe buffer slot for each output port. For each reader, it
defines the buffer slot that the task will be using during its
execution. Then, the dispatcher activates the task by calling
ActivateTask and, at the end, calls TerminateTask
to terminate.

Communication and Task Structures Figure 14 shows
the overall data structures, which are a combination of those
used for the dispatcher in Figure 11 and for the commu-
nication implementation in Figure 4 with additional fields
in the task descriptor. In particular, a field called done is
added for the purpose of detecting when a context switch
is executed upon the termination of a reader. A field called
owner is added to the port descriptors. The correspond-
ing declarations are shown in Figures 15 and 11. The
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Figure 14. Data Structures

struct TaskEntry { struct OPEntry { struct IPEntry {
char rate; char owner; char owner;
char pri; char FreeHd; char SrcPt;
char done; char cur; char delay;
char OPHd; char prev; char IsHPR;
char NOP; char BufHd; } IPL[SysNIP] = {
char IPHd; char NB; {X,X,X,X},
char NIP; } OPL[SysNOP] = { · · ·

} TaskL[NT] = { {X,0,0,0,0,X}, };
{X,X,0,X,X,X,X}, · · · };
· · · }; char UseFreeL[SysNB], Read[SysNIP];

Figure 15. Data Structure Declaration for DBP

task dispatcher has been shown in Figure 13: at activation
time it finds and assigns a safe buffer slot to the writer and
assigns the buffer index that the reader should use during
execution. For the DBP, the corresponding kernel-level ap-
plication code is on Figures 4 and 7. Figure 16 shows the
required application-level code. We use the hook mecha-
nism provided by OSEK to let readers atomically update
the buffer free list at termination time. Specifically, we use
the PostTaskHook to execute a critical section upon the
termination of these tasks. Since the PostTaskHook rou-
tine executes at each context switch and for all the tasks

TASK (AppTask i) { void PostTaskHook(void) {
TaskL[i].done = 0; char i,id,j,k,nip,t1,t2;
· · · GetTaskID(&id);
/* each writer k */ if (id>0 && id<=NT) {
Buf[OPL[k].cur] = · · · i = id - 1;
· · · if (TaskL[i].done) {
/* each reader k */ nip = TaskL[i].NIP;
· · · = Buf[Read[k]]; for (j=0; j<nip; j++){
· · · k = j+TaskL[i].IPHd;
TaskL[i].done = 1; · · · /* CS of Fig 4 */
/* atomic hook code */ }
TerminateTask(); }

} } }

Figure 16. OSEK Implementation of an App.
Task for DBP

in the system, a flag done is added to the task descrip-
tor. The flag indicates for which tasks the PostTaskHook
needs to be executed and also ensures that the operations in
the PostTaskHook are only executed at task termination
time. The done flag of each task is set to false at the be-
ginning of the task, and changed to true with the last task
instruction before calling TerminateTask.

The PostTaskHook routine defined in Figure 16, first
obtains the identifier of the active task by calling the OSEK
API GetTaskID. Then, it checks whether its done flag is
set to true. If so, the updates required by the communication
protocol are performed.

Implementation Complexity Table 3 shows bounds on
the memory requirements for the data structures of our
constant-time implementation. As for the time overhead,
the implementation requires computation time for finding
the free buffer and for accounting for the buffer usage, and
the necessity to update the shared use list. Furthermore,
since the hook mechanism is mainly designed for debug-
ging and error management, the use of PostTaskHook
introduces a time overhead at each context switch. The ex-
act amount of additional time depends on the OSEK RTOS
implementation and the execution platform.

char 7×NT+6×SysNOP+5×SysNIP+2×LCMR+TSize+2×SysNB+1
message SysNB+SysNOP

Table 3. Memory Requirement Bounds

6.1 OIL Configuration File

Figure 17 shows the basic structure of an OIL configura-
tion file. Inside the container CPU declaration, objects are
statically specified. The application tasks are defined by the
generic declaration of AppTask j. We set the SCHEDULE
attribute as FULL, indicating a fully preemptive scheduling
policy. Under the assumption that the deadlines of appli-
cation tasks are not greater than their respective periods,
the ACTIVATION attribute is set to one (as required in
BCC1). Application tasks are periodic and are activated
by task dispatcher, therefore the attribute AUTOSTART

178178178



OIL VERSION = "2.5"; TASK dispatcher {
PRIORITY = X d;

/* Implementation Def */ SCHEDULE = NON;
IMPLEMENTATION myOSEKOS { ACTIVATION = 1;

· · · AUTOSTART = FALSE;
}; // End of myOSEKOS };

/* Alarm Object */
/* Application Def */ ALARM dispAlarm {
CPU myCPU { // container COUNTER = SysTimer;

/* OS Object */ ACTION = ACTIVATETASK{
OS myOS { TASK = dispatcher;

STATUS = STANDARD; };
STARTUPHOOK = FALSE; AUTOSTART = TRUE {
ERRORHOOK = FALSE; ALARMTIME = 0;
SHUTDOWNHOOK = FALSE; CYCLETIME = GCDR;
PRETASKHOOK = FALSE; APPMODE = AppMode0;
POSTTASKHOOK = TRUE; };};
USEGETSERVICEID = FALSE; /* Counter Object */
USERESSCHEDULER = FALSE; COUNTER SysTimer {

}; MINCYCLE = x;
/* Task Object */ MAXALLOWEDVALUE = x;
TASK AppTask j { TICKSPERBASE = x;

PRIORITY = X j; };
SCHEDULE = FULL; /* Appl Mode Object */
ACTIVATION = 1; APPMODE AppMode0 {
AUTOSTART = FALSE; VALUE = AUTO;

}; };
· · · }; // End of myCPU

Figure 17. OIL Configuration File

is set to FALSE. Task dispatcher activates the appli-
cation tasks and performs part of the communication pro-
tocol operations on behalf of the kernel. Therefore, its
priority is higher than those of all application tasks, and
its SCHEDULE attribute is set to NON, indicating a non-
preemptive scheduling. dispatcher is activated by an
alarm, so its AUTOSTART attribute is set to FALSE. The
alarm object dispAlarm is specified accordingly. The
alarm is associated with a counter, which is an object de-
fined in the OIL file. The alarm is configured to acti-
vate task dispatcher by setting its attribute ACTION
as ACTIVATETASK. Finally the alarm’s AUTOSTART at-
tribute is set to TRUE and the period of dispAlarm is set
to GCDR. The atomicity of the termination code that updates
the shared use list is guaranteed by the PostTaskHook
mechanism, which is turned on by setting the attribute
POSTTASKHOOK to TRUE in the OS object as in Figure 17.

7 Conclusions

The paper presents a new bound for sizing the buffer in
an SR semantics-preserving implementation of a communi-
cation channel between a writer and multiple reader tasks
executing at different rates. The bound subsumes and in
general improves on existing bounds. Furthermore, the cur-
rent formulation is capable of handling a general model, al-
lowing for multiple active task instances at the same time
and communication links with arbitrary delays. The pro-
posed bound is not demonstrated as optimum and further
improvements may be still possible. Finally we presented
an OSEK BCC1 implementation of the protocol with con-
stant time complexity.
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