
Incorporating Resource Safety Verification to Executable Model-based
Development for Embedded Systems

Jianliang Yi, Honguk Woo, James C. Browne, Aloysius K. Mok

Dept. of Computer Sciences
The University of Texas at Austin

{jlyi, honguk, browne, mok}@cs.utexas.edu

Fei Xie
Dept. of Computer Science
Portland State University

xie@cs.pdx.edu

Ella Atkins
Dept. of Aerospace Engineering

University of Michigan
ematkins@umich.edu

Chan-Gun Lee
Dept. of Computer Engineering

Chung-Ang University
cglee@cau.ac.kr

Abstract

This paper formulates and illustrates the integration of
resource safety verification into a design methodology for
development of verified and robust real-time embedded
systems. Resource-related concerns are not closely linked
with current xUML model-based software development
although they are critical for embedded systems. We
describe how to integrate resource analysis techniques
into the early phase of an xUML-based development cycle.
Our hybrid framework for resource safety verification
combines static resource analysis and runtime monitoring.
A case study based on an embedded controller for
satellite simulation, TableSat, illustrates the benefits
obtained by incorporating resource verification into
design and combining static analysis and runtime
monitoring.

1. Introduction

Model-based development has been recognized as a
practical method for efficiently developing correct and
robust control-oriented real-time embedded systems.
Generally model-based development has focused on
verification and testing for functional or timeliness
aspects. However, embedded software also involves para-
functional resource-related aspects, termed resource
(bound) properties in this paper, such as enforcing
resource limits on CPU time, memory, battery power,
network bandwidth, etc. Yet verification and testing for
such resource properties has been rarely addressed in
executable model-based development. Resource-related
language constructs are not incorporated in the action
semantics of executable models since early design is
intended to be platform independent. Accordingly
resource properties have not been linked with functional
verification from the beginning of the development cycle.
This limitation often renders the process of resource
safety verification (the verification of resource bound
properties) non-systemic or ad hoc at best leading to

excessive cost for monitoring and analysis. Furthermore,
resource safety verification is usually deferred to testing
during/after the implementation phase. Resource safety
violations detected during implementation testing
commonly require redesign and reimplementation of the
system.

Figure 1. Development Cycle

In this paper, we propose a software engineering
discipline which incorporates resource safety verification
into a design and development methodology for
embedded systems (Figure 1). Specifically we show how
to incorporate the verification of para-functional resource
properties into the software development cycle of
executable model-based approaches. The methodology
integrates:
(a) xUML (eXecutable Unified Modeling Language [1])
modeling and simulation-based model testing processes
supported by the commercial software modeling and
simulation environment Objectbench [2]
(b) Automatic code generation from xUML models by
CodeGenesis code generator [4]
(c) Formal functional verification by model checking for
xUML models [3]

1. Architecture and
Property Specification

2. System Model
in xUML

3. Verified
Functional Model

4. Resource-annotated
Model

5. Executable Program
with Runtime Monitoring

6. Core Control
System

Manual engineering with Objectbench

Verification by ObjectCheck

Resource analysis by ResCheck

Code generation
by CodeGenesis

Testing

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.28

137

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.28

137

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.28

137

(d) Resource bound checking based on static analysis and
dynamic monitoring [7, 8]

ObjectCheck [3] is used to validate the xUML model
with respect to selected functional properties while the
resource verifier for embedded systems, named ResCheck,
deals with resource properties to provide the
comprehensive autonomous support for resource safety
verification. The development cycle of Figure 1 includes
the following steps:

• Architecture and property specification. The system
is mapped to an architecture where the software is
partitioned into core functionalities and none-core
functionalities. The goal is to design a core segment of
software which is sufficiently compact so as to be
amenable to formal analysis both by functional verifiers
and runtime monitoring methods. Our model-based
approach concentrates on the development of the core
segment.

• xUML model. The executable model in xUML for the
core segment is manually developed by using
Objectbench. Objectbench is a software development
tool that supports a UML-like OOA method [1] and
generates executable and compilable specifications for
analysis models. The model is executed and tested
under the control of the discrete event simulator in
Objectbench.

• Verified functional model. The model is formally
verified with respect to the selected functional
properties by the xUML model checking tool
ObjectCheck. The xUML specification of the model is
automatically translated to the S/R model specification
to be verified by COSPAN model checker [5]. The
details of xUML model checking can be found in [3].

• Resource-annotated model. The model is further
specified by manually adding resource-related
specification into the functional specifications. At
present our approach requires the developers to write
the partial implementation code of resource-related
operations and insert it to the executable state actions of
the state model in xUML. Language constructs to
provide the appropriate abstraction of resource
specification in xUML models are currently in progress.
The model is then analyzed by ResCheck. As a result,
violations of resource properties can be detected at
design time and the model revised accordingly.
Runtime monitoring code for resource safety
verification is automatically inserted in the action
specifications in the model for those resource properties
that cannot be statically verified. By using a low
overhead runtime monitoring scheme, ResCheck
supports efficient dynamic evaluation of resource
consumption upper bounds. The detailed procedure for
static analysis and runtime monitoring in ResCheck is
explained in Section 3 and 4.

• Executable program. The model is automatically
translated into executable program code via
CodeGenesis code generator [4] for a particular target
platform. Based on the resource-annotated model
specification derived from the static resource analysis
in the previous step, the generated program contains the
minimum necessary monitoring code. Then the
program is run and tested on the target platform.
Runtime violations of resource properties can be
detected and reported. Resource safety violation rates
above critical thresholds may require redesign.

• Core control system. The model satisfying all the
functional and resource properties is ready to be
extended with the further design and implementation
for non-core functionalities. It is important to note that
the development cycle in Figure 1 can be iterated until
the software implementation for the core segment is
verified by model checking (the task spanning box 2 to
3 in Figure 1) and testing with runtime monitoring (the
task spanning from the box 4, 5 to 6).

In the development methodology above, verification
for functional or resource properties is done by combining
model checking, resource analysis and runtime
monitoring. As mentioned, using xUML model checking
for functional properties has been well studied in the
previous work [3]. Therefore we address a
complementary problem, efficient runtime monitoring,
considering resource properties as our primary concern
for verification. Note that due to their inherently dynamic
nature, resource properties are not usually addressed in
the static-verification-only context.

Our work primarily aims at incorporating the
verification process for resource-related properties into
the early development cycle, thereby lowering
development cost and enhancing the quality of resource
critical embedded software. Resource safety verification
requires additional resource-related specification in the
model as input to further analysis at the design phase. It is
worthwhile to note, however, that in our approach, the
developer’s labor can be reduced by exploiting the
executable semantics of xUML and the autonomous tool
support for resource analysis and monitoring code
insertion. The executable semantics of xUML enables the
model specification to be tested in the simulation
environment and to be automatically translated into an
executable program [1, 3], and furthermore it allows
resource-related operations to be specified as part of state
actions in the state model.

Our approach for resource safety verification employs
a hybrid framework where static analysis and monitoring
techniques work cooperatively. The runtime monitoring
in ResCheck makes explicit use of static analysis results
to cope with the possible performance overhead of
traditional runtime monitoring mechanism. The static
resource analysis in ResCheck translates an executable

138138138

model containing resource-related code into a tree-based
resource evaluation structure. Note that the resource
evaluation structure may involve statically-unbounded
variables e.g., loop bounds that can only be dynamically
determined. This often renders the verification inherently
incomplete at analysis time and necessitates runtime
monitoring support. For monitoring efficiency, the static
resource analysis simplifies runtime operations by having
in-lined monitoring code that collects only selected high-
level runtime information (for updating the statically-
unbounded variables) and conducts simple arithmetic
calculation in the tree-based resource evaluation structure
with the collected information (for updating the resource
consumption upper bounds). Our runtime monitoring
relies on static analysis and thus monitors discrete updates
of a small set of specific variables in the program
execution, instead of directly tracking and managing
dynamic resource usage information. Since in practice
testing alone cannot completely guarantee system
correctness, it is natural that a product system employs
runtime monitoring support in the execution environment
as part of exception handling. This would in turn incur
inordinate performance overhead to the execution
environment unless the monitoring algorithm is carefully
designed. The hybrid framework specifically,
lightweight runtime monitoring based on static analysis
results addresses this problem of runtime overhead.
Moreover, it can cover a wide variety of property types in
software safety requirements.

The critical functionalities identified in a system
design can be verified by model checking and/or
completely tested in the development cycle above, and
then the corresponding software component can be treated
as a core segment. Our approach has been successfully
tested for modeling and developing the architecture of a
practical embedded system, an embedded controller for
satellite simulation (in Section 4). The hybrid, lightweight
monitoring technique is also naturally consistent with
desirable extension to the implementation and integration
of non-core segment where static verification may be
inherently limited. The monitoring technique for
providing the safe interplay between core and non-core
segments of a control-oriented embedded system is one of
our future research directions.

The rest of this paper is organized as follows: Section
2 reviews some previous work including xUML model
checking and resource bound verification. Section 3
describes our approach for incorporating the resource
safety verification to xUML model-based embedded
system development. Then Section 4 provides the case
study with detail examples and evaluations, and Section 5
concludes and suggests future research.

2. Related Work

2.1. Model Checking for xUML

xUML is a commercially supported object-oriented
modeling language which can specify action semantics
additionally. Xie et al. [3] present a tool ObjectCheck,
enabling a model checker to verify a software system
modeled by xUML. They find that extant model checkers
cannot directly support object-oriented modeling
languages due to syntactic and semantic differences. They
propose a solution for this by providing an automatic
translation technique, which is briefly introduced
following. In addition, they address large state space
issues by presenting a space reduction algorithm. In
ObjectCheck, designers of the system use the Property
Specification Interface and xUML Visual Modeler to
specify the properties of the system and xUML model. An
xUML-to-S/R translator converts them to S/R query and
S/R model respectively. The COSPAN model checker [5]
accepts these inputs and checks whether the query is valid
in the model. In case that the verification fails, COSPAN
model checker generates an error track and then the Error
Report Generator produces an error report in xUML from
the error track. To help the debugging process, Error
Visualizer creates a test case from the error report and
reproduces the error by running the xUML model with the
test case.

2.2. Resource Bound Verification

There have been many efforts toward providing the
capability of resource bound checking for program codes.
Ajay et al. [7] classifies the extant work into static,
dynamic, and hybrid approaches. The dynamic
approaches have an advantage in that they can be
implemented easily; however, they introduce extra run-
time overhead for monitoring. On the other hand, static
approaches do not impose the run-time overhead. But
they depend on program analysis requiring complex
implementations and sometimes they cannot be done
completely [7]. Furthermore if resource bounds depend on
dynamic data which are known only during runtime, then
pure static analysis may fail to check the resource bounds.
Recently Ajay et al. [7] and Mok et al. [8] proposed novel
techniques combining the static and dynamic approaches.
They are referred to as hybrid approaches. In the
following, we introduce major research results for bound
checking and highlight the unique features of ResCheck.
Crary and Weirich’s work [6] is a purely static approach.
It uses virtual clocks to augment a program and certifies
that the program does not exceed its resource boundary by
showing that the virtual clocks cannot expire. Dynamic
approaches include [9, 10, 11, 12]. Most of the research
taking the dynamic approach supports Java and converts
the byte code of the source program to a functionally
equivalent code appended with run-time monitoring for
resources. Since most languages lack fine-grained
resource control mechanism, many dynamic approaches
provide resource management interface so that users can

139139139

design various policies. The work in [8] focuses on
statically certifying the resource usage. Run-time
monitoring is only used to guarantee the validity of user-
provided information. Once the information is determined
to be invalid, the execution is simply terminated.
ResCheck uses static analysis to establish a resource usage
evaluation model, which is used to estimate the resource
consumption at runtime when more accurate information
is dynamically obtained.

One of the critical resource properties for embedded
system is timing constraints. A variety of WCET
computation strategies e.g., path-based [13], tree-based
[14], and IPET-based [15, 16] have been proposed. In
traditional WCET analysis [17, 18], the following
restrictions are made: (1) no recursion, (2) no function
pointers, (3) the upper bound of each loop has to be
known. Generally loop bounds can be treated as
undetermined factors in dynamic environments, and
resource consumption bounds can be updated at runtime
as more accurate information about such undetermined
factors is collected. Two-step WCET analysis for reusable
and portable code is proposed in [19]; the first step
computes the abstract WCET information and the second
step uses the abstract information to compute concrete
WCET bounds in a specific context. This approach is
referred to as distributed WCET computation [20]. The
tree-based, retargetable approach in [14] separates WCET
analysis and WCET evaluation, which is in a similar
direction to our design for resource evaluation. However,
this previous work neither addresses the statically-
unknown bound problem nor considers dynamic
evaluation mechanism.

3. Overview of Resource Safety Verification

In a critical embedded system, resource properties are
often considered as important as functional properties for
system correctness. Upon the emergence of platform-
independent languages that enable a single system to be
deployed on several different platforms, explicit
separation between resource analysis and resource
evaluation has accordingly been investigated [14, 19, 20].
This separation has been usually intended to address the
platform-independent design and implementation in that
resource analysis creates a parameterized resource
consumption skeleton for which the instantiation and
evaluation occurs at deployment time by binding the
parameters to specific platform-dependent configuration
values. This separation-based approach can be extended
to the temporal dimension for coping with environmental
dynamic nature. During the execution of an embedded
system, the environment settings might continuously
change and the system might need to be reconfigured
accordingly. In general, capturing all the situations in a
dynamic environment by a single static model would lead
to insufficient accuracy. Of course, “pure” runtime

monitoring (that monitors executions without any help
from static analysis) can be used in this case to enforce
resource properties, but normally at the price of
significant overhead. Therefore we formulate the resource
evaluation/verification for an embedded system into the
runtime monitoring problem, and exploits static resource
analysis techniques (on the xUML model) to minimize
runtime monitoring overhead.

 Executable Model Resource Properties

Resource-annotated
Model with Monitoring

Static ResourceAnalysis

Runtime Monitoring

code generation

Figure 2. ResCheck Architecture Overview

The architecture of ResCheck is shown in Figure 2.
ResCheck supports (1) static resource analysis for an
executable model in xUML and (2) runtime monitoring
for a program generated from the model. Note that code
generation is done by using the generic architecture
template of CodeGenesis [4]. The primary goal of
ResCheck is (1) to detect possible resource property
violation early in the system design and development
phases, thus allowing rapid prototyping of the core
software functionalities, and (2) to provide efficient
runtime monitoring support for the cases where the safety
decision on the system model cannot be completely made
by static analysis.

State Machine

Sate Machine
Analysis

Local Code
Analysis

Hierarchical CFG

Resource-related
Local Code

Resource
Upper bound
Evaluation

Monitoring Code
Insertion

Executable Model
with Monitoring

Figure 3. ResCheck Processing Flow

Figure 3 illustrates the processing flow of ResCheck,
the detail of which is described in the following
subsections.

3.1. Static Resource Analysis

Given an executable model with resource-related code,
ResCheck establishes an evaluation mechanism for
resource consumption at analysis time, by executing three

140140140

tasks: state machine analysis, local code analysis, and
resource (consumption) upper bound evaluation.

State machine analysis. This analysis is applied on
state machines in a xUML state model [1]. Each state
machine is treated as a Control Flow Graph (CFG) and
transformed into a hierarchical CFG where loop and
condition structures are abstracted out. Starting from a
given CFG, if a loop structure is found in the CFG, it is
replaced by a loop node. Then a sub-CFG is created and
associated with the loop node to represent the states in the
loop structure. This abstraction is repeated recursively
until a hierarchical CFG where each sub-CFG contains no
loop structure is constructed. Without loop structure, each
sub-CFG can be expanded to a tree. Calculating resource
consumption in a tree is very efficient. Conditional
structures can be processed in a similar way. If a
condition structure is found, it is replaced by a conditional
node. Each branch is represented by a sub-CFG and is
associated with the conditional node. This abstraction for
conditional structures can reduce the exponential growth
of the number of paths that must be evaluated, thus
reducing the resource consumption evaluation cost.

Local code analysis. Executable actions associated
with each state in hierarchical CFGs must be analyzed. In
doing so, we first construct hierarchical CFGs for the
actions. We use a term local code to denote analysis-
required actions in a state because we limit our
consideration to specific languages, e.g., C or Java, for
action specification in xUML. Since local code maintains
directly usable hierarchical structure information, when
parsing the local code, a simple translation is needed for
hierarchical CFG construction. By combining these local
hierarchical CFGs to the corresponding state machine
hierarchical CFG, finally we can construct a hierarchical
CFG capturing both state transitions and state actions.

Resource upper bound evaluation. Resource
consumption evaluation is based on a hierarchical CFG.
Here we consider an accumulative resource type as an
example and notate its upper bound estimation by RES.
Assume that the RES of basic blocks (i.e., the terminal
nodes of a hierarchical CFG) is calculated and known.
Since there is no loop in any sub-CFG, the RES of the sub-
CFG is equivalent to that of the corresponding expanded
tree. Given multiple paths in the tree, the maximum value
is given as the RES of the sub-CFG. For a loop node with
loop bound lp and loop body cfg_lb, the RES of the loop
node is given by lp * RES(cfg_lb). For a conditional
node with branch condition C and branches cfg_bri, the
RES is given by RES(C) + max{RES(cfg_bri)}. The
evaluation is hierarchical and tree-based, thus efficient.

Traditional static resource analysis is performed on the
code after the final system is developed. In contrast, we
apply static analysis one step earlier, on the xUML model
with partial implementation of related local code. If any
resource property violation is detected at this early stage,

the model can be accordingly modified. Then the new
model goes through the static analysis step again, until no
definite violation is found by the resource upper bound
evaluation.

3.2. Runtime Monitoring

The resource upper bound evaluation at analysis time
does not necessarily complete resource safety verification
since the statically-analyzed model can have resource-
related statically-unbounded variables. We term such
variables that require monitoring during the program
execution, dynamic bounds. Often a loop bound cannot be
precisely determined at analysis time but can be
determined only during the runtime execution; and the
loop body might contain heavily resource-related
operations, e.g., a real-time messaging software may have
different resource restrictions for encoding/decoding
messages depending on the actual runtime environment,
so the maximum possible number of messages per
connection or the maximum possible length of a single
message cannot be precisely known a priori, and then
must be treated as dynamic bounds. In general, developer-
provided estimates for such dynamic bounds would be
used to accomplish the initial evaluation. But this easily
could be too pessimistic or optimistic, leading to
inaccurate evaluation and verification.

Monitoring code insertion. In ResCheck, runtime
checking for dynamic bounds and resource evaluation
calls are automatically inserted into the local code in state
actions. For example, for a dynamic loop bound, the loop
counter is inserted into the loop to check whether or not
the current loop bound is valid. If the actual loop exceeds
the bound, the bound is expanded and the resource upper
bound evaluation function will be called by this bound
update. Resource properties are verified by this dynamic
resource evaluation mechanism, and if violations occur,
the violations can be detected by the new evaluation.

Comparing with pure runtime monitoring mechanism,
the runtime monitoring in ResCheck has several
advantages from automatically generated monitoring code.
First the number of monitoring operations can be safely
reduced by exploiting static analysis results. Moreover,
the cost of a single monitoring operation is even
minimized since the monitoring code simplifies runtime
resource monitoring to comparison checking for dynamic
bounds.

Consider the example program in Figure 4(a), and
assume there is no resource overrun during the execution.
Here suppose the function AllocMem(n) to perform n
bytes memory allocation. For a pure monitoring system in
figure(b), CheckMem(n) needs to be called to check if the
allocation of n bytes is safe at each memory allocation by
AllocMem(n); so 200N times of CheckMem operations can
be required. Assume that the outmost loop bound N is
unknown at static analysis time, and so it is a dynamic

141141141

bound here. Static analysis can find that the inner loop
consumes (100+200)*100 bytes. Then the outmost loop
needs to be monitored to control the total memory
allocation (in figure(c)), and so the total number of checks
significantly reduces to N. Furthermore, while for a pure
monitoring system, each runtime monitoring operation
involves an execution of the CheckMem function (that often
relies on underlying system support), in ResCheck, it
corresponds to the simple arithmetic operation, that is,
increasing the loop count and comparing the count with
the current bound. Therefore we can obtain lower
overhead for runtime monitoring by ResCheck.

 While (ReadData() != NULL) {

 for (int j = 0; j < 100; j ++) {
 AllocMem (100);
 ...
 AllocMem (200);
 }
}

(a)

int loopCount = 0;
While (ReadData() != NULL) {
 if (++ loopCount > BOUND)
 evaluation();
 for (int j = 0; j < 100; j ++) {
 AllocMem (100);
 ...
 AllocMem (200);
 }
}

(c)

While (ReadData() != NULL) {
 for (int j = 0; j < 100; j ++) {
 CheckMem (100);
 AllocMem (100);
 ...
 CheckMem (200);
 AllocMem (200);
 }
}

(b)

Figure 4. Example Programs

Since it is hard to recover the damage when resource
usage overrun has occurred and resources have been
consumed, last-minute violation detection by a pure
monitoring system is not attractive. ResCheck, in contrast,
can detect possible violations before they happen and
therefore leave margin for recovery and error processing.
Our runtime evaluation scheme is thus flexible in
providing fault tolerance against resource violations.
Consider the example in Figure 5 to illustrate this benefit.
First the program reads in some configuration value to
conf. Then the program enters a loop to input, process
and store data. Suppose here AllocMem(conf * conf)
asks for more memory than the limit and violates some
resource property. In a pure monitoring system, the
violation can be caught right before the allocation, after
inputting data. In this case, since the data has already been
consumed yet no output is generated, the appropriate
recovery step from such inconsistent state should be taken.
In ResCheck, the violation detection can happen as early
as right after getting the configuration value.

 int conf = ReadConf();
/* Monitor the value of conf */
while () {

ReadData();
AllocMem(conf * conf);
ProcessData();
StoreData();

}
Figure 5. Example Program

4. Case Study

In this section, a real-world application, the simulator
for control-oriented embedded satellite systems provided
by the Space System Laboratory in University of
Michigan, is used to illustrate our approach.

Figure 6. TableSat platform

4.1. TableSat: Control Simulator

TableSat [21] is a one degree-of-freedom “tabletop”
satellite that emulates to the extent possible the dynamics,
sensing, and actuation capabilities of a spacecraft.
Consistent with conventional control systems, TableSat
(as illustrated in Figure 6) is made up of the following
hardware components: sensors (4 sun sensors, a
gyroscope, and a magnetometer), processor (a Diamond
systems Prometheus PC/104 board with QNX operating
system), network (802.11b wireless network interface),
and thrusters (two computer fans providing clockwise and
counterclockwise torques). TablesSat onboard software is
composed of the following 4 threads, each of which
executes as a real-time task running periodically at
constant frequency:
• State Estimator thread that performs sensor readings

and estimates the current state of TableSat
• Controller thread that applies control laws to calculate

the input voltages of the two computer fans
• Actuator thread that sets the input voltages of the fans
• Communication thread that supports data and command

transmission from/to an external client program

4.2. Modeling in xUML

Currently we are focused on modeling the structure of
onboard TableSat software threads and the concurrency
mechanism for accessing global data, with the intention of
building an extensible framework for various experiment
scenarios. The TableSat xUML model developed in
Objectbench specifically includes:
• The class model that depicts the definitions and

relationships of threads and global data
• The state model that depicts the behavior of the threads

and the concurrency mechanism

The class model contains:
• 4 classes for TableSat threads: TS_ESTIMATOR,
TS_CONTROLLER, TS_ACTUATOR, TS_COMMUNICATION

• 7 classes for global data being shared by the above
threads: GD_ESTIMATOR, GD_STATEESTIMATOR,

142142142

GD_CONTROLLER, GD_ACTUATOR, GD_FANDATA,
GD_SENSORREADINGS, GD_STATUS

• A scheduler class with periodic time intervals for
TableSat threads: SCHEDULER

• A lock interface class to the global data being shared by
the threads: GD_LOCK_INTERFACE

The behavior of a class over time is formalized in a
state machine where a transition between states is
triggered by an event. An event can be generated within
either an inter- or intra-class relation. For example, the
state model for TS_ESTIMATOR (State Estimator thread)
class looks like the simplified one in Figure 7 where we
describe the partial actions only in Ready and
ReadSensors states.

//Action in ReadSensors
sr = ADScan();
GD_SENSORREADINGS=sr;
if (sr in error){
GD_STATUS.MODE=false;
Generate TES7:s_error;
} else
Generate TES4:s_ok;

StateEstimate-1

StateEstimate-2

StateCheck-1

Terminate

StateCheck-2

Ready

ReadSensors

Convert

Estimate

//Action in Ready
Generate GDM2:wrlock;

Idle

TES1: schedule

TES3: wrlock_rcv

TES4: s_ok

TES7: s_error

Figure 7. State Model of TS_ESTIMATOR

For example, the actions of the ReadSensors,

Convert, Estimate, and StateEstimate1-2 states in the
figure correspond to the respective primary functions of
State Estimator thread: (1) performing A/D scan of
sensors, (2) converting sensor readings into engineering
units, (3) filtering sensor data according to the specified
estimation strategy, (4) loading the filtered data to the
global data structure for the Controller thread. Each
action accesses different global data and so needs to
communicate with different lock interface instances.

The xUML model execution proceeds as follows:
SCHEDULER class advances the current time and
periodically generates schedule events to TableSat
threads according to the specified time intervals for cyclic
thread executions. For example, when a schedule event is
received by an instance of the TS_ESTIMATOR class, the
instance performs the associated action in the current
Ready state, that is, generating wrlock event to
GD_LOCK_INTERFACE to update GD_SENSORREADINGS class
value after conducting A/D sensor scan. Note that in the
xUML model execution, only a single action for a given
state machine can be in execution at any time during
model execution. A set of simultaneously enabled actions
in different state machines are executed by the simulator
at the same simulation time in a random order.

4.3. Examples by ResCheck

ResCheck is responsible for resource property
verification on a state model. If any possible resource
property violation is detected by static analysis, the state
model needs to be revised and the resource property is re-
examined, until no resource property violation can be
detected by static analysis.

We use the TS_ESTIMATOR class as an example in this
section. One resource property to be enforced on the
TS_ESTIMATOR state model is that the total amount of
memory consumption by the State Estimator thread is less
than the given MEM_MAX bytes.

Idle

Ready

Cond: ReadSensors
Br-1: CFG_br

StateCheck-1

StateCheck-2

CFG_loop
Head: Idle
Back From: StateCheck-2
Body: CFG_loop

Terminate

Hierarchical CFG

Convert

Estimate

StateEstimate-1

StateEstimate-2

CFG_br

C1

L1

Figure 8. Hierarchical CFG of the State Model

The state machine for the State Estimator thread is in
Figure 7. As described in Section 3, the state machine is
treated as a CFG, and the corresponding hierarchical CFG,
which is shown in Figure 8, is constructed during static
analysis. A loop structure L1 is detected at the top level,
within which a conditional structure C1 is found. Each
rectangular node in Figure 8 is a state node, which can be
associated with local code.

The TS_ESTIMATOR class needs to construct a sparse
matrix and input some sensor data in the ReadSensors
state. The corresponding functions are named MakeSparse
and ReadData. These two functions are the main source of
memory consumption. In order for accurate memory
consumption analysis and monitoring, the detailed code
must be available. After analyzing MakeSparse and
ReadData functions as local code, which will be
demonstrated below, their hierarchical CFGs are
associated with the corresponding state node in Figure 8.
This step constructs a final hierarchical CFG which
captures both state transition and relevant local operations.

By evaluating the final hierarchical CFG, the memory
consumption in local code is first evaluated, and is
combined at the state machine level. The evaluation

143143143

captures the memory consumption behavior of the whole
state machine, including related local operations.

void MakeSparse(int * data) {
 int i, j, pos = 0;
 CV * ptr, * tmp;

 for (i = 0; i < ROW; i ++) { /* L1 */
 sm.nvals[i] = data[pos ++];
 if (sm.nvals[i] == 0) sm.colVals[i] = NULL; /* C1 */
 else {
 ptr = NULL;
 for (j = 0; j < sm.nvals[i]; j ++) { /* L2 */
 tmp = (CV *)malloc(sizeof(CV)); /* B7 */
 tmp -> col = data[pos ++];
 tmp -> val = data[pos ++];
 tmp -> next = NULL;
 if (ptr == NULL) sm.colVals[i] = tmp; /* C2 */
 else ptr -> next = tmp;
 ptr = tmp;
 }
 }
 }
}

void ReadData()
{
 char * ptr, * tmp;
 int i, flag = 1, counter = 0;

 while (flag) {
 ptr = ReadBuf();
 if (* ptr != 0) {
 ptr ++;
 for (i = 0; i < FIELD_NO; i ++) {
 tmp = malloc(FIELD_SIZE);
 bcopy(ptr, tmp, FIELD_SIZE);
 sd[counter].field[i] = (double *)tmp;
 }
 counter ++;
 } else
 flag = 0;
 }
}

Figure 9. Program MakeSparse and ReadData

To illustrate the local code analysis, we use the
MakeSparse function as an example. The MakeSparse
function constructs a sparse matrix from given data. The
code is shown in Figure 9. The number of rows in the
matrix is fixed (defined as ROW in the example). Each row
is stored as a linked list. Each node of the linked list
represents a non-zero element in that row and contains the
column number and the value. The code of ReadData is
also shown in Figure 9.

We use memory consumption for the MakeSparse
function to illustrate the processing procedure of
ResCheck. The hierarchical CFG of the MakeSparse
function is constructed during static analysis, as shown in
Figure 10. CFG3, CFG5 and CFG6 are not included in the
figure because they are very simple one-node CFGs. The
memory consumption occurs in the basic block B7, which
contains the malloc function call. Every time B7 is
executed, a fixed number of bytes (12 bytes to be
specific) are allocated to store one element in the sparse
matrix.

The loop bound of the outside loop L1, which is equal
to the number of rows in the sparse matrix, can be
determined at analysis time since this number is fixed.

But the loop bound of the inside loop L2 cannot be
determined at analysis time. It depends on the sensor data
and system configuration at runtime, and can change
widely in extreme cases. A static bound that covers all
circumstances could be very loose. The strategy of
ResCheck is to start with a relatively tight bound, which is
provided by the developer, for normal situations, and to
rely on runtime monitoring to evaluate the resource
consumption upper bound in the extreme cases, to
guarantee total resource consumption stays within the
limit.

L1

B1

Head: B2
Back Edge: B13->B2
Loop Body: CFG1

B14

B3

B13

Cond: B4
Br-1: CFG2
Br-2: CFG3

B6

B11

Cond: B8
Br-1: CFG5
Br-2: CFG6

B5

Head: B6
Back Edge: B11->B6
Loop Body: CFG4

(b) CFG1(a) CFG0

(d) CFG4

(c) CFG2

L2

C1

C2

B2

B7

Figure 10. Hierarchical CFG of MakeSparse

During the initial evaluation of memory consumption
on MakeSparse, the hierarchical CFG in Figure 10 can be
further reduced to the hierarchical CFG in Figure 11,
based on which the runtime evaluation is performed.

Head: B2
Back Edge: B13->B2
Loop Body: CFG1

L1

Cond: B4
Br-1: CFG2

Head: B6
Back Edge: B11->B6
Loop Body: CFG4

(b) CFG1(a) CFG0

(d) CFG4(c) CFG2

L2

B7

C1

Figure 11. Reduced Hierarchical CFG

The runtime monitoring code is inserted into the
original code, as shown in Figure 12 (surrounded by
rectangular boxes). The variable _lb_L10_ stores the
current estimated bound of the inner loop, and is

144144144

initialized to the developer-provided loop bound (denoted
as INIT_VAL). The variable _lc_L10_ is the loop counter.
Once _lc_L10_ exceeds _lb_L10_, the validity of the
previous resource consumption evaluation no longer holds.
The loop bound needs to be expanded and a new
evaluation is performed at runtime. If the new evaluation
suggests possible memory consumption overrun, the
program will be terminated. Otherwise, the program is
still safe to continue execution.

 void MakeSparse(int * data)
{
 int i, j, pos = 0;
 CV * ptr, * tmp;

 for (i = 0; i < ROW; i ++) {
 sm.nvals[i] = data[pos ++];
 if (sm.nvals[i] == 0) sm.colVals[i] = NULL;
 else {
 ptr = NULL;

 for (j = 0; j < sm.nvals[i]; j ++) {

 tmp = (CV *)malloc(sizeof(CV));
 tmp -> col = data[pos ++];
 tmp -> val = data[pos ++];
 tmp -> next = NULL;
 if (ptr == NULL) sm.colVals[i] = tmp;
 else ptr -> next = tmp;
 ptr = tmp;
 }
 }
 }
}

Static int _lb_L10_ = INIT_VAL; // Loop Bound Initialization
int _lc_L10_ = 0; // Loop Counter Initialization

if (++ _lc_L10_ > _lb_L10_) { // Counter Update & Check
 _lb_L10_ += _lb_L10_; // Bound Expansion
 // Runtime Evaluation
 EvaluateBound(“H-MakeSparse”, “L10”, _lb_L10_);
}

Figure 12. MakeSparse with Runtime Monitoring

Now consider the performance of ResCheck
monitoring. In the following we use the MakeSparse
function and ReadData function as the examples and
consider the memory usage as the monitored property.
With pure monitoring mechanism, in order to enforce the
limit of memory usage, a check function is necessary
before each malloc function call to check if the following
malloc function call will push the total amount of
consumed memory over the limit. This is the main source
of overhead in pure monitoring. In ResCheck, the runtime
monitoring mechanism is inserted into the original code,
as shown in Figure 12. The main overhead is introduced
at runtime from two aspects: loop bound checking and
resource consumption evaluation.

The experiment results for performance overhead are
in Table 1 and Table 2. In the tables, the columns #Chk,
#Eva, and ExTim denote the number of runtime checks,
the number of resource consumption evaluations and the
overall execution time respectively. For the MakeSparse
function, the numbers of runtime checks are the same for
pure monitoring and ResCheck monitoring. The overhead
of the version with pure monitoring is more than 4%,
while that with monitoring and evaluation in ResCheck is
less than 2%. In this example, ResCheck reduces the

monitoring cost by simplifying resource checking into
loop bound checking.

Table 1. Performance of MakeSparse
(Number of executions: 104)

 #Chk(104) #Eva ExTim (s) Overhead
Original Code 0 0 1.063 ---

Pure Monitoring 1000 0 1.108 4.23%
ResCheck 1000 4 1.084 1.98%

In our current design, the bound is expanded in the
way that a certain percent of margin is left, e.g.,
exponentially. This strategy can minimize the number of
runtime resource consumption evaluation as shown in the
above table. For the MakeSparse example, the execution
time per evaluation is 5.958 * 10-6 s. Furthermore the
evaluation overhead is amortized to many execution times
over time.

For the ReadData function, the inner loop bound is
fixed. So only the outside loop needs to be monitored in
ResCheck. This reduces the number of runtime checks per
function execution to 16, comparing with 75 in pure
runtime monitoring. This further helps to reduce the
monitoring overhead in ResCheck. In our experiment, the
overhead of ResCheck is only 0.51%, while the overhead
of pure monitoring is more than 3%.

Table 2. Performance of ReadData
(Number of executions: 105)

 #Chk(104) #Eva ExTim (s) Overhead
Original Code 0 0 1.564 ---

Pure Monitoring 75 0 1.617 3.39%
ResCheck 16 3 1.572 0.51%

5. Conclusion

This paper presents and illustrates an xUML model-
based embedded software development method which
integrates a runtime verification scheme for resource
safety verification into a complete development
methodology. We use static resource analysis on
executable state models in xUML containing resource-
related code to enable systematic construction of low
overhead runtime monitoring. Our method is conceptually
consistent with today’s hybrid verifiers that combine
static analysis and formal verification for functional
properties and runtime monitoring for other non-verifiable
properties. Our study shows the advantages of such a
hybrid verifier at the design (xUML) that explicitly uses
resource analysis techniques in the context of
implementing and testing a resource critical embedded
system. The current implementation has achieved a high
degree of automation but not complete automation. Work
is ongoing to fully complete the automation of the
translation from the xUML specification to conform to the
input specification format of ResCheck.

There are several topics we have identified as future
work. It is desirable to adapt runtime verification in

145145145

core/non-core embedded system architecture [22]. The
present method focuses on the safe implementation of
core components by iteratively using model checking,
static analysis, and runtime monitoring within a combined
toolset. Incorporating non-core components in this
method may require black-box monitoring where in- and
out-stream of relatively unreliable components can be
input to runtime verification only in a limited way. We
are also interested in developing an adaptive policy for
controlling valid parametric resource bounds during
runtime evaluation of resource consumption. It would be
possible to formulate the problem of developing such a
runtime adaptive policy into that of dynamic bound
adjustment where multiple uncertain variables are
involved in some inequality expression. The update
patterns of the bounds and the pre-calculable influence
weight for each variable over overall resource
consumption can be used for providing the flexibility
between violation detection timeliness and false alarm
rates. Finally, we will extend the methodology to span
multiple implementations of core components to enable
continued safe operation with degraded resource
configurations.

6. Acknowledgement

This research was supported in part by the National
Science Foundation under Grant Number 0613665
"Collaborative Research: SoD-TEAM: A Feedback-Based
Architecture for Highly Reliable Embedded Software",
and by the grant CR070019 from Seoul R&BD Program.
This research was also supported in part by grants of
computer software from QNX Software Systems and
HyPerformix, Inc.

7. References

[1] S. J. Mellor and M. J. Balcer, Executable UML: A
Foundation for Model-Driven Architecture, Addison-Wesley,
New York, 2002.
[2] SES: Objectbench User Reference Manual, SES, 1996.
[3] F. Xie, V. Levin and J. C. Browne, “ObjectCheck: A Model
Checking Tool for Executable Object-Oriented Software System
Designs”, Proc. of FASE, 2002.
[4] SES: Code Genesis Manual, SES, 1996.
[5] R. H. Hardin, Z. Har'El and R. P. Kurshan, “COSPAN”,
Proc. of Computer Aided Verification, 1996.
[6] K. Crary and S. Weirich, “Resource Bound Certification”,
Proc. of Symposium on Principles of Programming Languages,
2000.
[7] C. Ajay, E. David and I. Nayeem, “Enforcing Resource
Bounds via Static Verification of Dynamic Checks”, ACM
Transactions on Programming Languages and Systems
(TOPLAS), volume 29 , issue 5, 2007.
[8] A. K. Mok and W. Yu, “TINMAN: A Resource Bound
Security Checking System for Mobile Code”, Proc. of the
European Symposium on Research in Computer Security
(ESORICS), 2002.

[9] L. Gong, G. Ellison and M. Dageforde, Inside Java 2
Platform Security 2nd ed: Architecture, API Design, and
Implementation, Addison-Wesley, 1999.
[10] M. Kim, S. Kannan, I. Lee and O. Sokolsky, “Java-MaC: a
Run-Time Assurance Tool for Java Programs”, Electronic Notes
in Theoretical Computer Science 55, 2001.
[11] W. Binder and J. Hulaas, “A Portable CPU-Management
Framework for Java”, IEEE Internet Computing, 8(5):74-83,
2004.
[12] G. Czajkowski and T. Eicken, “JRes: A Resource
Accounting Interface for Java”, Proc. of OOPSLA, 1998.
[13] F. Stappert and P. Altenbernd, “Complete Worst-Case
Execution Time Analysis of Straight-line Hard Real-Time
Programs”, Journal of Systems Architecture, 46(4):339-355,
2000.
[14] A. Colin and I. Puaut, “A Modular and Retargetable
Framework for Tree-Based WCET Analysis”, Proc. of ECRTS,
2001.
[15] P. Puschner and A. Schedl, “Computing Maximum Task
Execution Times – a Graph-Based Approach”, Journal of Real-
Time Systems, 13(1):67-91, 1997.
[16] Y. Li and S. Malik, “Performance analysis of embedded
software using implicit path enumeration”, Proc. of the ACM
SIGPLAN Workshop on Languages, Compilers, & Tools for
Real-Time Systems, 1995.
[17] P. Puschner and C. Koza, “Calculating the maximum
execution time of real-time programs”, Real-Time System,
1(2):159-176, 1989.
[18] M. Schoeberl and R. Pedersen, “WCET Analysis for a Java
Processor”, Proc. of JTRES, 2006.
[19] P. Puschner and G. Bernat, “WCET Analysis of Reusable
Portable Code”, Proc. of ECRTS, 2001.
[20] N. Aissa, C. Rippert and G. Grimaud, “Distributing the
WCET computation for embedded operating systems”, In Proc.
of RTSS, Work in Progress Session, 2004.
[21] M. F. Vess, “System Modeling and Controller Design for a
Single Degree of Freedom Spacecraft Simulator”, Master Thesis,
University of Maryland, 2005.
[22] S. Kowshik, G. Rosu, and L. Sha, “Static Analysis to
Enforce Safe Value Flow in Embedded Control Systems”, Proc.
of DSN, 2006.

146146146

