IEEE Real-Time and Embedded Technology and Applications Symposium

WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches

Jun Yan and Wei Zhang
Department of Electrical and Computer Engineering
Southern Illinois University Carbondale
Carbondale, IL 62901
{jun,zhang} @engr.siu.edu

Abstract

Multi-core chips have been increasingly adopted
by microprocessor industry. For real-time systems to
safely harness the potential of multi-core computing,
designers must be able to accurately obtain the worst-
case execution time (WCET) of applications running
on multi-core platforms, which is very challenging due
to the possible runtime inter-core interferences in us-
ing shared resources such as the shared L2 caches.

As the first step toward time-predictable multi-core
computing, this paper presents a novel approach to
bounding the worst-case performance for threads run-
ning on multi-core processors with shared L2 instruc-
tion caches. The idea of our approach is to com-
pute the worst-case instruction access interferences
between different threads based on the program con-
trol flow information of each thread, which can be
statically analyzed. Our experiments indicate that the
proposed approach can reasonably estimate the worst-
case shared L2 instruction cache misses by consider-
ing inter-thread instruction conflicts. Also, the WCET
of applications running on multi-core processors esti-
mated by our approach is much better than the esti-
mation by simply assuming all L2 instruction accesses
are misses.

1. Introduction

With the scaling of technology and the diminish-
ing return of complex uniprocessors, computer indus-
try is rapidly moving towards single-chip multi-core
processors or chip multiprocessors (CMP). Multi-core
processors have been widely used in servers, desk-

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.6

80

tops, and embedded systems. In particular, with the
growing demand of high performance by high-end
real-time applications such as HDTV and video en-
coding/decoding standards, it is expected that multi-
core processors will be increasingly used in real-time
systems for achieving higher performance/throughput
cost-effectively. Actually, it is projected that real-
time applications will be likely deployed on large-
scale multi-core platforms with tens or even hundreds
of cores per chip fairly soon [21].

For real-time systems, especially hard real-time sys-
tems, it is crucial to obtain the worst-case execution
time (WCET) of each real-time task, which will pro-
vide the basis for schedulability analysis. Missing
deadlines in those systems may lead to serious con-
sequences. While the WCET of a single task can be
measured for a given input, it is generally infeasible to
exhaust all the possible program paths through mea-
surement. Another approach to obtaining WCET is
to use static WCET analysis (or simply called WCET
analysis). WCET analysis typically consists of three
phases: program flow analysis, low-level analysis, and
WCET calculation. While the program flow analysis
analyzes the control flow of the assembly programs
that are machine-independent, the low-level analysis
analyzes the timing behavior of the microarchitectural
components. Based on the information obtained from
the program flow analysis and the low-level analysis,
the WCET calculation phase computes the estimated
worst-case execution cycles by using methods such as
path-based approach [5, 6] or IPET (Implicit Path Enu-
meration Technique) [7, 8, 9].

While there have been many research efforts on
WCET analysis for single-core processors [1, 5, 6,

IEEE
computer
® psouety

7, 8,9, 10], to the best of our knowledge, no prior
work has studied the WCET analysis of multi-core
processors. A major reason is probably the signifi-
cant complexity involved with the WCET analysis for
multi-core processors. Even for today’s single-core
processors, many architectural features such as cache
memories, pipelines, out-of-order execution, specula-
tion and branch prediction have made “accurate timing
analysis very hard to obtain” [15]. Multi-core com-
puting platforms can further aggravate the complex-
ity of WCET analysis due to the possible inter-thread
interferences in shared resources such as L2 caches,
which are very difficult to analyze statically. While
recently there have been some research efforts on real-
time scheduling for multi-core platforms [21, 22, 23],
all these studies basically assume that the worst-case
performance of real-time threads are known. There-
fore, it is a necessity to reasonably bound the WCET
of real-time threads running on multi-core processors
before multi-core platforms can be safely employed by
real-time systems.

As the first step towards WCET analysis of multi-
core processors, this paper examines the timing analy-
sis of shared L2 instruction caches for multi-core pro-
cessors. In this paper, we assume data caches are per-
fect, thus data references from different threads will
not interfere with each other in the shared L2 cache!.
We propose to exploit program control flow informa-
tion (i.e., loops) of each thread to safely and efficiently
estimate the worst-case L2 instruction cache conflicts.
Built upon the static cache analysis results, we inte-
grate them with the pipeline analysis and path analysis
to obtain the WCET for multi-core processors.

The rest of the paper is organized as follows. First,
we discuss the difficulty of WCET analysis for multi-
core chips with shared caches due to the timing anoma-
lies in Section 2. Then we describe our approach to
computing the worst-case shared L2 instruction cache
performance and the WCET for multi-core processors
in Section 3. The evaluation methodology is given in
Section 4 and the experimental results are presented
in Section 5. Finally, we make concluding remarks in

'Tt should be noted that this paper does not solve the full prob-
lem of WCET analysis for multi-core chips. However, we be-
lieve we have made an important step by reasonably bounding the
worst-case shared multi-core cache performance due to instruction
accesses.

81

Section 6.

2. Difficulties in WCET Analysis for Multi-
Core Chips with Shared L2 Caches

In a multi-core processor, each core typically has
private L1 instruction and data caches. The L2 (and/or
L3) caches can be either private or shared. While pri-
vate L2 caches are more time-predictable in the sense
that there are no inter-core L2 cache conflicts, each
core can only exploit limited cache space. Due to
the great impact of the L2 cache hit rate on the per-
formance of multi-core processors [16, 17], private
L2 caches may have worse performance than shared
L2 caches with the same total size, because each
core with shared L2 cache can make use of the ag-
gregate L2 cache space more efficiently. Moreover,
shared L2 cache architecture makes it easier for multi-
ple cooperative threads to share instructions, data and
the precious memory bandwidth to maximize perfor-
mance. Therefore, in this paper, we focus on studying
WCET analysis of multi-core processors with shared
L2 caches (by contrast, the WCET analysis for multi-
core chips with private L2 caches is a less challenging
problem).

2.1 A Dual-Core Processor with a Shared
L2 cache

Without losing generality, we assume a dual-core
processor with two levels of cache memories, and the
proposed static analysis approach can be easily ex-
tended to multi-core processors with multi-level mem-
ory hierarchy. As can be seen from Figure 1, in this
dual-core processor, each core has its own L1 instruc-
tion cache and L1 data cache, and both cores share the
same L2 cache to best utilize the aggregate L2 cache
space. As aforementioned, we assume the L1 data
cache of each core is perfect. Also, we assume two
threads consisting of a real-time thread and a non-real-
time thread are running on these two cores simulta-
neously, and our task is to safely and accurately es-
timate the WCET of the real-time thread (assuming
non-preemptive execution)? by taking into account the

?It should be noted that this paper focuses on analyzing the
WCET of a single real-time task running on a dual-core processor,
thus the study of the effects of context switching within a single

possible L2 cache interferences from the non-real-time
thread.

[Core 1 j [Core 2 j
\ \ \ \
[Li-1g] Li-pg [L1-18] [L1-Dg
\ \

‘ L2 Cache ‘

Memory

Figure 1. A dual-core processor with a shared
L2 cache.

2.2 Timing Anomalies in Multi-Core

Computing

The inter-thread cache conflicts in multi-core pro-
cessors with shared cache memories can lead to timing
anomalies. Timing anomalies were first discovered in
out-of-order superscalar processors by Lundqvist and
Stenstrom [24], where the worst-case execution time
does not necessarily relate to the worst-case behav-
ior. For instance, Lundqvist and Stenstrom [24] found
that a cache miss in a dynamically-scheduled proces-
sor may result in a shorter execution time than a cache
hit, which is counterintuitive. Similarly we find that
in a multi-core processor with a shared L2 cache, the
worst-case behavior of a single thread does not nec-
essarily lead to the worst-case execution time of that
thread, because of the inter-thread cache conflicts.

For example, Figure 2 shows the control flow graph
of a code segment, which contains two paths: Pl (A-
B-D) and P2 (A-C-D). Suppose PI is the worst-case
path of this code segment without considering the im-
pact of other threads. After we take into account the
inter-thread cache conflicts; however, P/ may not be
the worst-case path. For instance, if another thread
running on another core evicts several instructions of
the block C, while none or fewer instructions of block
B are replaced by other threads in the shared L2 cache,
then path P2 (A-C-D) may become the worst-case path
and thus lead to the worst-case execution time for this

core and/or across multiple cores falls out of scope of this paper.

82

Figure 2. An example of a timing anomaly in
a multi-core processor.

thread. The reason is that the penalty of the inter-
thread L2 cache misses occurring during the execu-
tion of the block B can be larger than the difference
between path lengths of P/ and P2, which is also the
necessary and sufficient condition for the aforemen-
tioned time anomaly to happen.

Because of the timing anomalies in multi-core pro-
cessors, the WCET analysis of each thread running on
each core cannot be performed independently, which
can significantly increase the complexity of the timing
analysis. In particular, although current timing anal-
ysis techniques [1] can reasonably bound the perfor-
mance of a single-core processor, they cannot be eas-
ily extended to compute the worst-case performance
of each thread running on a multi-core processor.
For instance, in Figure 2, while we can use existing
single-core WCET analysis techniques [1] to obtain
the worst-case path, i.e., P/ (A-B-D), we must update
this calculation by integrating the inter-thread cache
conflicts information. Therefore, the critical prob-
lem of WCET analysis for multi-core processors with
shared instruction caches is to safely and accurately
identify the worst-case inter-core cache conflicts.

3. Our Approach

We propose a WCET analysis approach for multi-
core processors with shared L2 caches with three ma-
jor steps, including cache analysis, pipeline analysis
and path analysis, which are built upon the extension
of a single-core timing analysis tool called Chronos
[2]. In this section, we first introduce the static cache
analysis to bound the worst-case L2 instruction misses

by considering the inter-core instruction interferences
in subsection 3.1. Then we explain pipeline analysis
and path analysis in subsection 3.2 and subsection 3.3
respectively.

3.1. Static Analysis of Inter-Core Instruc-
tion Interferences in the Shared L2
Cache

The most difficult problem of the multi-core WCET
analysis is to reasonably bound the worst-case inter-
core interferences in the shared L2 caches. The inter-
core L2 instruction interferences depend on several
factors, including (1) the instruction addresses of the
L2 accesses of each thread, (2) which cache block
these instructions may be mapped to, and (3) when
these instructions are accessed. While (1) and (2) can
be statically analyzed, (3) is challenging. In this pa-
per, we propose to efficiently identify the worst-case
inter-core instruction interferences by distinguishing
instructions that are in loops from those instructions
not in loops (i.e., used at most once).

L1 miss
NO @ YES

lYES N

[o]
calc L2 set
NO
Set Used by Other Cores?
ES

12-miss_| I2-hit

;

12-miss

12-miss

calc L2 set

NO

I

Set Used by Other Cores?

Ciemiss] Y

NO

¥

YES

‘ 12-miss ‘ ‘always-except-one‘

Figure 3. The flowchart of the multi-core
static instruction cache analysis algorithm.

Our approach to estimating the worst-case inter-
core instruction interference is shown in Figure 3,
which works on each basic block level. As can be seen,
when a L1 cache miss is determined (by using cache
static analysis proposed by C. Ferdinand and R. Wil-
helm [3]), this information is used as the input to de-

83

termine the worst-case number of L2 misses. Specif-
ically, when there is a L1 cache miss, we first check
whether or not this miss happens in a loop. If this miss
is not in the loop, then we determine whether or not it
is a L2 miss. If it is not a L2 miss but a L2 hit, then we
calculate its cache set number and the conflict set due
to L2 accesses from other core(s). If another core may
use this set during its execution time, then this L2 hit
becomes a L2 miss (in the worst-case). Otherwise, it
is still a L2 hit (i.e., “always hit” [3] in the shared L2
cache).

Another situation is when a L1 miss occurs in a
loop, as can be seen from Figure 3. If this L1 miss
hits in L2, we need to determine whether or not this
set is used by others cores and whether or not it is used
in a loop. If this cache set is used by other cores and
at the same time used in a loop, then this L2 hit is
classified as a L2 miss. However, if this cache set is
used by another core but is accessed by instructions
not in loops, then this L2 hit becomes “always-except-
one hits”. Otherwise, it is identified as a L2 miss.

Core 1

Cache Model
loop.

thread A

thread B

Figure 4. An example of WCET analysis of a
mult-core chip.

For instance, Figure 4 shows an example to illus-
trate our approach to bounding the worst-case shared
L2 instruction cache performance by considering the
inter-core interferences. As can be seen in Figure 4,
without loss of generality, we assume that two threads,
A and B, are running in a dual-core processor. In
this processor, core 0 is time-sensitive and is running

w/o thread B with thread B

L1 L2 L1 L2

a0 miss miss miss miss

e

al miss hit miss miss

a2 miss miss—hit _..-iss___ miss—miss

a3 miss missihit miss miss—miss

dooq

a4 miss miss—hit | miss misg—always-except-one |

a5 miss miss-»hit! miss miss—always-except-one’

miss miss miss

a6

miss

Figure 5. Status of each instruction in core 0
with and w/o considering interferences from
core 1.

thread A; core 1 is not time-sensitive and is running
thread B. The control flow graph of two threads are
also given in Figure 4. The cache model we use is
shown in Figure 4, in which L1 cache has 2 sets and
each set can hold 1 instruction, and L2 cache has 8 sets
and each set can hold 2 instructions. Each instruction
in Figure 4 is labeled as the follows. The starting letter
is the affiliated thread number. The number immedi-
ately following this letter is the number of this instruc-
tion. Then, the next number is the set number of the
L1 cache. The last number indicates the set number of
the L2 cache. For instance, b2.1.0 means that this is
the 2nd instruction in thread B, which refers to the set
1 of the L1 cache and the set O of the L2 cache.

The status of each instruction with and without con-
sidering inter-core interferences is shown in Figure 5.
For instance, without considering thread B, instruction
a0.0.7 is a cold miss of L1 in set 0 and a cold miss of
L2 in set 7. After that instruction, al.1.7 should only
suffer L1 miss, since it uses the set 1 in the L1 cache
and the set 7 in the L2 cache. However, if we consider
thread B that is concurrently running in core 1, instruc-
tion b0.1.7 may use the set 7 of L2 cache too. Thus it
may happen that when core O finishes instruction a0
but before the execution of instruction al, core 1 starts
to run instruction b0. In this case, contents in the set 7

84

of L2 cache will be evicted by core 1. Thus, the status
of instruction a.1.1.7 is changed to L2 cache miss in
the worst case.

Figure 5 also illustrates how to exploit loop infor-
mation to categorize the status of each instruction. For
example, loop.a in thread A contains 4 instructions,
i.e., a2.0.0, a3.1.0, a4.0.1 and a5.1.1. As can be seen,
a2 and a4 conflict with each other in the L1 instruction
cache, and so do a3 and a5. However their references
to L2 have no conflict. During each iteration of loop.a,
core 0 needs to fetch these 4 instructions from the L2
cache. Therefore, without considering thread B, the
number of L2 cache misses of thread A is 2 at the first
iteration and becomes 0 for the subsequent iterations.
If we take thread B into consideration, however, as can
be seen in Figure 4, in the worst-case, alternative run-
ning of instructions (a2, a3) and (b1, b2) will lead to
two extra L2 cache misses when accessing a2 and a3
from the L2 cache. In contrast, since instruction a4 and
a5 only interference with instruction b3 and b4, which
are not in any loop of thread B, their status become
“always-except-one hits”.

For each core in a multi-core processor, the num-
ber of L1 instruction cache misses can be easily ob-
tained by using static analysis techniques for instruc-
tion caches [3]. By using the algorithm depicted
in Figure 3, we can statically categorize the L2 in-
struction accesses for each basic block by considering
the possible inter-core interferences in the shared L2
cache, which are then used to compute the worst-case
number of L2 instruction misses for the program (i.e.,
the real-time thread) by using the ILP (Integer Linear
Programming) equation as shown in Equation 1.

In Equation 1, m; is the number of L2 cache misses
(i.e., “always misses” [3]) of basic block ¢, b; is the
number of times the basic block ¢ is executed, and
b_always_except_one; is the number of misses caused
by “always-except-one hits”’, which is only determined
by the execution of basic block . More specifically, if
the basic block 7 is executed, the number of misses
is the sum of “always-except-one hits” in this basic
block; if basic block 7 is not executed, then the num-
ber of miss is zero. Therefore, b} is 1 if basic block i
is executed or 0, otherwise.

Cache_Misses = Zmi x b; + Z b_always_except_one; x b;

3.2. Pipeline Analysis

The static analysis of both L1 and L2 caches pro-
vides basis for the pipeline analysis to determine
the worst-case latency of each instruction at different
pipeline stages, as depicted in Figure 6. For any L2 in-
struction access (which obviously must be a L1 miss),
the pipeline latency will be updated based on its cate-
gorization by considering possible conflicts from other
co-running threads. As can be seen from Figure 6,
function conflict_in_loop returns true if the set is used
by other cores and at the same time the references are
from loops, which will convert “always hits” to “al-
ways misses”. Similarly, function conflict_in_program
returns true if the ser is used in other cores no mat-
ter where it is used, which will convert “always hits”
to “always-except-one hits”. For each L2 reference
to an “always miss” instruction, the L2 miss penalty
will be added into the pipeline latency, in addition to
the L1 miss penalty. For L2 instruction that is catego-
rized as “always-except-one hits”, the L2 miss latency
is only added into the pipeline latency for the first time
this loop instruction is accessed. Also, for L2 accesses
that are statically categorized as “misses”, the L2 miss
penalty will be added into the pipeline latency.

Based on pipeline analysis, the cost of each basic
block can be determined, which is used in the objec-
tive function given in (2). In this function, ¢; is the
cost of basic block ¢, and b; is the number of execution
of basic block i. The objective of this function is to
maximize its value to obtain the worst-case execution
cycles.

ZCZ‘ X bi

3.3. Path Analysis

2

The path analysis determines possible paths of a
program based on the control flow constraints. As
shown in equation (3), in_flow; is the sum of the
edges coming into basic block i and out_flow; is the
sum of edges coming out of basic block i. Both of
them should be equal to the number of execution times
of basic block .

85

ey

Z mn_flow; = Z out_flow; = b; 3)

Finally, by put together equations (1), (2) and (3),
the WCET of the real-time thread can be calculated by
using a ILP solver.

4 Evaluation Methodology

The WCET analysis for multi-core processors is
based on extending Chronos timing analysis tool [2].
Chronos is originally a single core WCET analysis
tool, which targets SimpleScalar architecture. We have
extended it to implement the proposed inter-core cache
static analysis and pipeline analysis for multi-core pro-
cessors, as shown in Figure 7. We use gcc to compile
two threads (i.e. a real-time thread and a non-real-
time thread) into ELF format targeting MIPS R3000
architecture, which can be run on SESC simulator [18]
to obtain simulated performance. Since Chronos [2]
originally targets SimpleScalar binary code, which is
based on COFF format, the front end of Chronos has
been retargeted to support SESC binary code based on
ELF format, which has been implemented in the dis-
semble stage in Figure 7. After disassembling the bi-
nary code, the CFG (Control Flow Graph) for each in-
dividual procedure is constructed. Then Chronos [2]
translates the CFG into transformed CFG, which is
constructed by traversing the call graph of the program
and combining individual CFGs into a global CFG. We
extend the cache miss analysis in [3] to support the
shared L2 cache analysis for multi-core chips. We use
a commercial ILP solver — CPLEX [20] to solve the
ILP problem to obtain the estimated WCET.

To compare the worst-case performance with the
average-case performance (i.e., the simulated perfor-
mance based on typical inputs), we use SESC simula-
tor [18] to simulate a dual-core processor as depicted
in Figure 1, in which each core is a 4-issue superscalar
processor with 5 pipeline stages. The important pa-
rameters of the dual-core memory hierarchy are given
in Table 1. The benchmarks are selected from SNU
real-time benchmarks [19].

simu weet
Benchmarks | L1 miss | L2miss | Cycle | L1 miss | L2 miss | Cycle | WCET/Simu cycle ratio
bs 19 15 1738 43 27 3110 1.789
fibcall 13 11 1386 28 17 2247 1.621
insertsort 28 25 3407 58 33 4720 1.385
matmul 43 38 6287 71 48 9439 1.501
qurt 152 95 11511 287 175 20079 1.744

Table 2. Comparing the simulated L1 and L2 misses and execution cycles results with the analyzed

WCET results.

size | bsize | assoc | latency
Ll-i-cache | 512 16 1 10
L1-d-cache perfect
L2-u-cache | 2k | 32 [1 [100

Table 1. Configurations of the dual-core chip
memory hierarchy.

5 Experimental Results

Table 2 compares the execution cycles, the number
of L1 misses and the number of L2 misses between
the observed results through simulation and the esti-
mated results through WCET analysis. In this experi-
ments, we choose five real-time benchmarks (i.e., bs,
fibcall, insertsort, matmul and qurt) from
SNU benchmark suite [19], and another benchmark
adpcm-test is used as a non-real-time benchmark,
which is executed simultaneously with each real-time
benchmark on the dual-core processor. Since our con-
cern is to obtain the worst-case performance for the
real-time benchmarks, Table 2 only shows the sim-
ulated and analyzed results for those five real-time
benchmarks, by taking into account the L2 cache in-
terferences from adpcm-test.

As can be seen in the last column of Table 2, the
estimated WCET is not too far from the observed
WCET for most benchmarks. The overestimation in
our WCET analysis mainly come from three sources.
Firstly, the worst-case execution counts of basic blocks
estimated through ILP calculation are often larger than
the actual execution counts during simulation. Sec-
ondly, cache static analysis approach [3] used for the
L1 instruction cache analysis is very conservative. As
can be seen in Table 2, the estimated number of L1

86

misses is much larger than the simulated number of
L1 misses, which will not only directly increase the
estimated WCET, but also lead to overestimation of
L2 misses. Thirdly, our static L2 instruction miss
analysis does not consider the timing of interferences
from other threads (i.e., when other threads may in-
terference). In the actual simulation, although there
may be some L2 instruction interferences between two
threads, as long as the possible “sharing” of L2 cache
blocks occurs at separated time intervals, the actual L2
cache performance of the real-time thread will not be
impacted. Finally, because the miss latency of L2 is
much larger than that of L1, even slight overestimation
of L2 misses could have large impact on the estimated
WCET.

Due to the difficulty of analyzing the inter-thread
cache interferences and bounding the worst-case per-
formance of the shared L2 caches in a multi-core chip,
an obvious solution is to simply disable the shared
L2 cache (i.e., assuming that every access to the L2
cache is a miss), which provides the reference values
we compare the results of our analysis to. Table 3
compares the estimated WCET by assuming all L.2 ac-
cesses are misses with the WCET estimated by our ap-
proach. As we can see, by statically bounding the L2
cache instruction interferences, the estimated WCET
is much smaller than the results by assuming all the
L2 accesses are misses, indicating the enhanced tight-
ness of WCET analysis. This improvement is because
our approach can reasonably estimate the upper bound
of the L2 instruction misses by considering inter-core
interferences, which can be seen from Table 2 by com-
paring the simulated number of L2 misses (i.e., col-
umn three) with the estimated number of L2 misses
(i.e., column six).

Procedure Latency Calculation
INPUT: inst
OUTPUT: lat
BEGIN
IF inst IS 11_miss THEN
IF inst IN loop THEN
IF inst IS 12_hit THEN
set = calc_set(inst);
conflict = conflict_in_loop(set, other_cores);
IF conflict IS true THEN
lat = 11_miss_lat + 12_miss_lat + 1;
ELSE
conflict = conflict_in_program(set, other_cores);
IF conflict IS true THEN
lat = 11_miss_lat + 12_miss_lat + 1;
mark(inst,always_except_one);
ELSE
lat = 11_miss_lat + 1;
END
END
ELSE /* 12 miss already*/
lat = 11_miss_lat + 12_miss_lat + 1;
END
ELSE /* 11 miss not in the loop*/
IF inst IS 12_hit THEN
set = calc_set(inst);
conflict = conflict_in_program(set, other_cores);
IF conflict IS true THEN
lat = 11_miss_lat + 12_miss_lat + 1;

ELSE
lat =11_miss_lat + 1;
END
ELSE /*12 miss*/
lat = 11_miss_lat + 12_miss_lat + 1;
END
END
END
END

Figure 6. Algorithm to calculate worst-case
instruction latency in a dual-core processor
with a shared L2 cache.

6 Concluding Remarks

This paper presents a novel and effective approach
to bounding the worst-case performance of multi-core
chips with shared L2 instruction caches. To accu-
rately estimate the runtime inter-core instruction inter-
ferences between different threads, we propose to cate-
gorize L2 accesses by exploiting program control flow
information (i.e., instructions in loops vs. instructions
not in loops). The cache analysis results (including the
shared L2 cache) are then integrated with the pipeline
analysis and path analysis through ILP equations to
obtain the worst-case execution cycles. Our experi-

87

4{ CFG }—‘ ‘Architecture Model‘

Path Constraints

‘ ILP solver ‘

‘CacheConstraims‘ ‘ Block Cost ‘

Figure 7. Extension of Chronos to support
the WCET analysis of multi-core processors.
Note that the extended functions are shown
in dark color.

ments indicate that the proposed approach can reason-
ably bound the worst-case performance of threads run-
ning on multi-core processors by considering the inter-
thread interferences due to instruction accesses to the
shared L2 cache by different co-running threads. Also,
compared with the approach by simply disabling L2
caches to avoid interferences, our approach can pro-
vide much better worst-case performance for real-time
benchmarks.

In our future work, we plan to further enhance the
tightness of the static analysis for shared L2 caches.
Specifically, we would like to take into account the
time ranges of interferences to minimize the overesti-
mation of worst-case instruction interferences between
threads. Also, we plan to investigate shared data cache
analysis for multi-core chips based on prior work on
data cache timing analysis for single-core processors
[11, 12, 13, 14], which can then be integrated with this
work to fully analyze the worst-case performance of
shared caches for multi-core processors.

Benchmarks | All_misses | Our_approach | ratio
bs 4910 3110 0.633
fibcall 3347 2247 0.671
insertsort 7320 4720 0.645
matmul 12539 9439 0.753
qurt 32279 20079 0.622

Table 3. Comparing the WCET results by as-
suming all L2 accesses are misses and by us-
ing our static analysis approach. Column 4
(i.e., ratio) is the ratio of the results by our
approach to the results by assuming all L2

accesses are misses.

Acknowledgment

This work was funded in part by the NSF grant CNS
0720502 and IBM 2007 Real-time Innovation Award.
We would like to thank the anonymous referees for the
detailed comments that helped us improve the paper.

References

(1]

(2]

(3]

(4]

(5]

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckman, T. Mitra, F. Mueller, 1. Puaut, P.
Puschner, J. Staschulat, P. Stenstrom. The Worst-
case execution time problem - overview of meth-
ods and survey of tools. In ACM Transactions on
Embedded Computing Systems, January 2007.

X. Li, Y. Liang, T. Mitra and A.
Roychoudhury. Chronos: a tim-
ing analyzer for embedded software.

http://www.comp.nus.edu.sg/rpembed/chronos,
October 2007.

C. Ferdinand and R. Wilhelm. Fast and efficient
cache behavior prediction for real-time systems.
In Real-Time Systems, 17((2/3), 1999.

X. Li, A. Roychoudhury, and T. Mitra. Mod-
eling out-of-order processors for software tim-
ing analysis. In Proc. of the 25th IEEE
International Real-Time Systems Symposium
(RTSS’04), 2004.

C. A. Healy, D. B. Whalley, and M. G. Harmon.
Integrating the timing analysis of pipelining and

88

[6]

[9]

[10]

[11]

[12]

[13]

[14]

instruction caching. In Proc. of the IEEE Real-
Time Systems Symposium, December 1995.

F. Stappert, A. Ermedahl and J. Engblom. Effi-
cient longest execution path search for programs
with complex flows and pipeline effects. In Proc.
of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Sys-
tems (CASES), 2001.

Y. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumera-
tion. In Proc. of the ACM SIGPLAN Workshop
on Languages, Compilers, and Tools for Real-
Time Systems, 1995.

Y. T. S. Li, S. Malik and A. Wolfe. Cache mod-
eling and path analysis for real-time software.

In Proc. of the 17th Real-Time Systems Sympo-
sium, 1996.

G. Ottosson and M. Sjodin. Worst-case execution
time analysis for modern hardware architectures.
In Proc. of ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Real-Time Sys-
tems, June 1997.

P. Puschner and A. Burns. A review of worst-
case execution-time analysis. Journal of Real-
Time Systems, 18(2/3):115-128, May 2000.

R. White, F. Muller, C. Healy, D. Whalley, and
M. Harmon. Timing analysis for data caches and
set-associative caches. In Proc. of the IEEE Real-
Time Technology and Applications Symposium,
June 1997.

H. Ramaprasad and F. Mueller. Bounding worst-
case data cache behavior by analytically deriving
cache reference patterns. In Proc. of the IEEE
Real-Time and Embedded Technology and Ap-
plications Symposium, 2005.

T. Lundqvist and P. Stenstrom. A method to im-
prove the estimated worst-case performance of
data caching. In Proc. of the 6th International
Conference on Real-Time Computing Systems
and Applications (RTCSA’99), Dec. 1999.

J. Staschulat and R. Ernst. Worst case timing
analysis of input dependent data cache behavior.

[15]

[16]

[17]

[18]

[19]

[20]

In Proc. of the 18th Euromicro Conference on
Real-Time Systems (ECRTS06), 2006.

C. Berg, J. Engblom and R. Wilhelm. Require-
ments for and design of a processor with pre-
dictable timing. WDSPB, 2004.

C. Liu, A. Sivasubramaniam and M. T. Kan-
demir. Organizing the last line of defense before
hitting the memory wall for CMP. In Proc. of
HPCA, 2004.

J. Chang and G. Sohi. Cooperative caching for
chip multiprocessors. In Proc. of the 33rd Annual
International Symposium on Computer Architec-
ture, 2006.

J.. Renau et al. SESC
http://sesc.sourceforge.net, Jan. 2005.

simulator.

Homepage of SNU real-time benchmark suite.
http://archi.snu.ac.kr/realtime/benchmark/, Oct
2007.

CPLEX.
Oct

Homepage of
http://www.ilog.com/products/cplex/,
2007.

89

[21]

[22]

(23]

[24]

J. Calandrino, J. Anderson, and D. Baum-
berger. A hybrid real-time scheduling approach
for large-scale multi-core platforms. In Proc. of
the 19th Euromicro Conference on Real-Time
Systems, July 2007.

J. Calandrino, D. Baumberger, T. Li, S. Hahn,
and J. Anderson. Soft real-time scheduling on
performance asymmetric multi-core platforms.
In Proc. of the 13th IEEE Real-Time and Embed-
ded Technology and Applications Symposium,
April 2007.

J. H. Anderson, J. M. Calandrino, and U. Devi.
Real-time scheduling on multi-core platforms. In
Proc. of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, April
2006.

T. Lundqvist and P. Stenstrom. Timing anoma-
lies in dynamically scheduled microprocessors.
In Proc. of Real-Time System Symposium, 1999.

