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Abstract

A hybrid approach to deriving tight execution-time
bounds of program segments was proposed very re-
cently. This approach symbiotically combines analytical
and measurement-based methods to find a tight execution-
time bound falling between the maximum measured execu-
tion time and an analytically derived loose bound. It also
enables the estimation of the probability of the derived tight
bound not being exceeded at run time.

This paper provides a refined description of the hybrid
approach and presents techniques for measuring the execu-
tion times of acyclic-path segments (APSs), which are pos-
sible execution sequences of instructions that contain no cy-
cles and the basic units of analysis in the hybrid approach.
In this paper, we also report the results of the hybrid ap-
proach in the derivation of tight execution-time bounds of
three algorithms frequently used in the evaluation of WCET
analysis techniques.

1 Introduction

Demands for large-scale real-time distributed comput-
ing (RTDC) systems are steadily growing, even in safety-
critical applications. These demands are the major driver for
the development of a rigorous, broadly applicable method
for determining execution safety of RTDC systems (i.e., ab-
sence of possibility of violating hard deadlines) [16].

Determination of the execution safety of an RTDC sys-
tem involves analysis and validation of the timing behavior
of the system’s software components and their interactions,
including coordinated sharing of limited resources. A key
requirement here is the ability to obtain acceptable and cred-
ible upper bounds on the system’s service times. However,
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the problem of deriving tight service-time bounds (or equiv-
alently, guaranteeing response times) of large-scale RTDC
systems becomes highly complex because such systems are
frequently built in multiple layers (e.g., hardware subsys-
tems, operating system (OS) kernels, communication proto-
cols, middleware, and application software) and each layer
contains interplaying factors that influence overall timing
behavior. Moreover, even the derivation of tight execution-
time bounds (ETBs) of simple program-segments (i.e., non-
preemptable code sequences not including OS and middle-
ware calls) [18, 17, 13] is difficult because the acceleration
features present in modern high-performance microproces-
sors (e.g., Intel Pentium and multi-core processors) make
the execution time of an instruction strongly dependent on
surrounding instructions and the microprocessor’s state.

The research community has recognized the timeliness
assurance problem as one of the biggest challenges in the
area. The state-of-the-art related to it, however, remains
substantially short of being applicable to realistic RTDC ap-
plication systems.

1.1 Related Work

Industry practice in deriving service-time bounds of
RTDC systems has been to fully rely on a limited number
of test runs with randomly and massively generated input
data sets that may not necessarily cover the worst-case exe-
cution scenario. Thus, a margin value needs to be added to
the maximum service time observed during the test runs to
derive a credible bound. These approaches need to be opti-
mized much further. Moreover, a reasonable estimation of
the probability of the margin being insufficient at run time
should also be available.

On the other hand, static worst-case execution time
(WCET) analysis approaches [26, 11, 8, 20, 21], which have
been studied considerably for the basic research commu-
nity, often turn out to be very pessimistic (i.e., they pro-
duce excessively loose bounds) when applied to modern
fully-featured processors, even when subject programs are
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of single-layer type (i.e., not involving OS kernel and mid-
dleware calls). This fact has served as the motivation for
seeking ways to substantially improve measurement-based
approaches practiced in industry for deriving tight ETBs.

Some measurement-based approaches [19, 27, 28] fo-
cus on maximizing the probability of covering the worst-
case execution path, and others [23, 4] on conditioning
the execution environments in order to obtain more nar-
rowly varying execution-time measurements of program-
segments than the measurements produced in normal en-
vironments. In a complementary direction, Edgar and
Burns [1] estimate the confidence that can be given to de-
rived time bounds of simple, monolithic programs by apply-
ing extreme value statistics on measured execution times of
programs. Petters [23] extends that work to derive proba-
bilistic time bounds of simple programs based on a convo-
lution numerical solution for combining the extreme-value
distributions of the execution times of program-segments.
Bernat et al. [2] present a hybrid approach that uses a
program-structure based schema for computing a distribu-
tion of estimated maximum execution times for a single-
layer program from the collections of execution-time mea-
surements of involved basic blocks (i.e., straight-line pieces
of code with no jumps). The computation method involves
convolution-based operations.

In this paper, we discuss a different hybrid approach [12,
13] that combines measurements with loose but safe ETBs,
obtained from static WCET analysis, in order to produce
tight ETBs of program-segments and determine the levels
of execution safety of these tight ETBs.

1.2 Contribution

To facilitate the timing analysis of large-scale RTDC sys-
tems and cope with their inherent structural complexity, it
is essential to apply divide-and-conquer strategies [16] that
permit the determination and stepwise integration into ser-
vice time bounds of: 1) tight ETBs of program-segments,
and 2) tight bounds on the completion times of OS kernel
and middleware service calls, including calls involving the
communication infrastructure.

This paper focuses on the first point. Here we pro-
vide a refined description of a novel hybrid approach, orig-
inally proposed by Im and Kim [12, 13], for deriving non-
preemptive tight ETBs of program-segments involving no
OS kernel and middleware service calls. This hybrid ap-
proach has major distinguishing features summarized as
follows [12]:

e Execution-time measurements and an analytically de-
rived loose ETB of a given program-segment are used
together for determining the safety margin to be added
to the maximum observed execution time to produce a
tighter ETB for the program-segment. The approach
also enables estimation of the probability of the tighter
ETB not being exceeded at run time. During the analy-
sis, a curve-fitting technique is applied to relate the
measured data to the analytic loose ETB.

e An analysis technique, called the APS-based Path
Enumeration Technique (APET) [12], is applied to
produce the analytical ETB of the program-segment.
APET extends the Implicit Path Enumeration Tech-
nique (IPET) [20]. Unlike IPET that uses basic
blocks as basic units in the WCET calculation, APET
uses larger units called acyclic-path segments (APSs),
which are possible execution sequences of instructions
with no cycles. Since APSs contain partial execution
history information, they allow for derivation of tighter
ETBs of program-segments than the ETBs that can be
obtained from the use of basic blocks. Due to its inher-
ent pessimism, APET produces loose bounds that are
considered hard ETBs (i.e., the probability of violating
the bounds is near zero), but those loose bounds can be
tightened by reflecting measurement results.

e In conducting measurements, the approach is aimed at
exercising the most promising execution paths for ex-
hibiting the worst execution time. In identifying such
promising candidates for the worst-case execution path
(WCEPath) of a program-segment, we apply APET
multiple times. In each iterative step of APET, the pre-
viously identified WCEPath candidate is treated as an
infeasible execution path.

APSs are the basic units of analysis in the hybrid ap-
proach. Thus, the quality of the analytical bound of a
program-segment obtained with APET heavily depends on
the ETBs of the APSs. Due to the absence of reliable up-
to-date simulators of high-end microprocessors, the deriva-
tion of a tight ETB of an APS must only rely on extensive
measurements of the execution time of the APS. There-
fore, execution-time measurements of the APSs must be
taken carefully and as precise as possible, considering the
performance-enhancement features of the target processor.

In this paper, we discuss the key aspects that must be
considered and present several techniques for measuring
the execution times of APSs on fully-featured microproces-
sors. We also report the results of applying the hybrid ap-
proach in the derivation of tight ETBs of three algorithms
frequently used in the evaluation of WCET analysis tech-
niques. Additionally, we empirically demonstrate the ad-
vantage of using APSs instead of basic blocks in deriving
analytical ETBs of program-segments executing on fully-
featured microprocessors.

1.3 Paper Organization

This paper is structured as follows. Section 2 de-
scribes the hybrid approach. Section 3 presents the adopted
measurement-based techniques for deriving the ETBs of
APSs to be used for obtaining the analytical bound of a
given program-segment. The APS Analyzer, our prototype
tool for identifying APSs and deriving their ETBs through
measurements, and other tools used for implementing the
hybrid approach are presented in Section 4. The experimen-
tal results are discussed in Section 5. Finally, a conclusion
is drawn in Section 6.



2 Description of the Hybrid Approach

In this paper, a program-segment is a sequence of code
that contains no calls for operating system (OS) and net-
work communication services [18, 17, 13]. Furthermore,
we assume that program-segments execute in isolation, i.e.,
they are neither affected by background activities nor sub-
ject to preemption. Hence, the effects of the activities of the
OS, including message communication, need not be con-
sidered in deriving tight execution-time bounds (ETBs) of
program-segments.

ETB analysis approaches (e.g., [22, 20, 24, 21, 7, 26, 9])
involve: i) analysis of the logical structure of a given pro-
gram, and ii) application of carefully established ETBs of
instructions or execution primitives of the underlying phys-
ical or virtual machine. Due to conservative estimates fre-
quently employed in analytical approaches, the resulting
ETBs of program-segments tend to have large error mar-
gins. Consequently, analytically derived ETBs of program-
segments are considered hard bounds with a practically
negligible probability of being violated at run time [17].
In measurement-based approaches for deriving ETBs of
program-segments (e.g., [1, 5, 23, 2]), determination of the
safety margin to be added to the maximum among the mea-
sured execution times is a core area for improvement. If
the adopted safety margin is not sufficiently large, then
the resulting ETB becomes a soft bound, which is associ-
ated with a non-negligible probability of being exceeded at
run time [17]. Therefore, the basic idea in the hybrid ap-
proach discussed in this paper is to find an ETB falling be-
tween the maximum measured execution time and an ana-
Iytically derived loose bound. Thus, analytical methods and
measurement-based methods are combined in a symbiotic
form for deriving tight ETBs of program-segments.

The hybrid approach [12, 13] includes the following
steps:

1. A given program-segment PS; is divided into acyclic-
path segments (APSs), where each APS is a possible
execution sequence of instructions that contains no cy-
cles. The assembly code of each APS is slightly ma-
nipulated to enable its execution as a stand-alone code
unit while preserving its timing behavior as much as
possible. Then, tight ETBs of the APSs are determined
through extensive measurements.

2. A hard ETB of PS; is obtained by solving an integer
linear programming (ILP) problem formulated based
on the tight ETBs of the APSs (derived in Step 1)
and the control flow among the APSs. This tech-
nique, called the APS-based Path Enumeration Tech-
nique (APET) [12], is an extension of the Implicit Path
Enumeration Technique (IPET) [20].

3. The optimal solution of the ILP problem of Step 2 (i.e.,
the execution counts of the APSs that produce a hard
ETB of PS;) may be considered as a candidate for the
worst-case execution path (WCEPath) of P.S;. Then,
a new variation of the ILP problem in which the pre-
viously identified WCEPath candidate is treated as an
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infeasible path is formulated and solved. As a result,
another WCEPath candidate is obtained. This proce-
dure is repeated a few times to produce multiple can-
didates for the WCEPath of P.S;.

4. After verifying the feasibility of the WCEPath candi-
dates, the execution time of each feasible WCEPath
candidate is measured during a number of test runs
with generated input data sets. The candidate with the
maximum observed execution time is selected for fur-
ther analysis.

5. Finally, we identify a smooth model that approximates
the cumulative distribution function (CDF) of the mea-
sured execution times of the selected WCEPath candi-
date (Step 4), augmented with the hard ETB of PS;
(Step 2). Using this model, we can determine soft,
tighter ETBs of P.S; and estimate the probability of
such ETBs not being exceeded in runtime.

The following sections discuss our hybrid approach in
more detail.

2.1 Analytic Derivation of Loose
Execution-time Bounds of Program
Segments

Modern high-end microprocessors (e.g., Intel Pentium
and multi-core processors) contain sophisticated accelera-
tion features that enable better average performance (e.g.,
pipelining, out-of-order execution, instruction and data
caches, and branch prediction). Due to these features, the
execution time of an instruction depends on surrounding in-
structions as well as the microprocessor’s state when the
instruction is being executed.

ETB analysis approaches usually represent a program-
segment as a directed graph (i.e., a control flow graph
(CFQ)), and each node of this graph is a basic block that
consists of a sequence of consecutive statements in which
the control flow enters at the beginning and leaves at the
end without halt or possibility of branching before the
end. Moreover, ETB analysis approaches typically con-
sider basic blocks as the basic units of timing analysis
(e.g., [20, 7, 9]). But basic blocks are usually small code
units and thereby, their individual use in capturing the ef-
fects of the acceleration features of modern processors is
very limited.

A number of ETB analysis approaches (e.g., [22, 21, 6,
7,3, 10]) incorporate models of performance enhancing fea-
tures of processors to reflect the effects of those features
on the WCET estimates. These model-based approaches
produce ETBs much tighter than those obtained under con-
servative assumptions on how the acceleration techniques
affect the execution time of the program (e.g., memory ac-
cess always causes cache misses, instructions are executed
in order, and branch prediction always fails). Unfortu-
nately, these approaches are applicable to rather simple mi-
croprocessors only. Also, they frequently assume very little
or no interdependence among the acceleration features and
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Figure 1. Control flow graph of bubble sort.

analyze them separately; assumption that is not valid in gen-
eral for modern microprocessors [11].

To our knowledge, sufficiently validated models of high-
end microprocessors are not publicly available. Hence,
currently it is not possible for practitioners to apply
model-based approaches to derive tight ETBs of program-
segments executing on fully-featured microprocessors. Fur-
thermore, construction and validation of models of this
type of microprocessors are complex, time consuming, and
costly tasks that require detailed knowledge on the imple-
mentations of the performance enhancing features. Thus,
we do not expect that this situation will change in the near
future.

Acyclic-path Segments (APSs)

To better reflect the characteristics of fully-featured micro-
processors, we divide the program-segments into sequences
of basic blocks, called acyclic-path segments (APSs). An
APS is a possible execution sequence of instructions that
contains no cycles [12, 13]. Since APSs contain partial
execution history information, they allow for derivation
of tighter analytical ETBs than those obtained using basic
blocks as basic units of timing analysis. Thus, in this work
APS is the minimum unit of analysis and measurement.

APSs are obtained by analyzing the assembly code of
program-segments. The starting point of an APS is either
the entry point of a program-segment or the head of a loop
inside the program-segment, and its ending point is either a
loop-backward branch or the exit point of the encompass-
ing program-segment. Although there can be a number of
different procedures for identifying the APSs of a program-
segment, in this work we use a simple heuristic based on a
depth-first search procedure that seals an APS whenever ei-
ther the boundary of a program-segment or a loop-backward
branch is encountered. For example, Table 1 presents the
APSs identified from Figure 1, which represents the CFG
of the algorithm bubble sort. The edges L1 and L2 repre-
sent the outer and inner loops of bubble sort.

Due to the absence of reliable up-to-date simulators of
high-end microprocessors, the derivation of a tight ETB
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Table 1. APSs identified from Figure 1.

APS ID Sequence of basic blocks Connects to
1 #657  237-244-245 END
2 #658  237-244-238-242-239-241 242
3 #659  237-244-238-242-243 244
4 #6060  237-244-238-242-239-240-241 242
5 #661  244-245 END
6 #6062  244-238-242-239-241 242
7 #6063  244-238-242-243 244
8 #664  244-238-242-239-240-241 242
9 #665  242-239-241 242
10 #666  242-243 244
11 #667  242-239-240-241 242

of an APS must rely on extensive measurements of the
execution time of the APS. These measurements must be
taken carefully and as precise as possible, considering the
performance-enhancement features of the target processor.
Thus, special techniques for measuring the execution times
of ASPs (such as those described in Section 3) must be ap-
plied. In any case, the ETB of an APS can be obtained in
a much tighter form through such effort rather than through
mere summation of the execution-time estimates of the con-
stituent basic blocks. Moreover, tighter analytical ETBs of
program-segments are obtained when the analysis is based
on APSs instead of basic blocks. This claim is empirically
demonstrated in Section 5.

START
BB237
APS659
A
BB244 PS663 APS660 APS658 PS657
APS662 APSﬁAAPS()()b APS66I1
BB242 APS665/APS667 END

Figure 2. APS graph of bubble sort.

APS-based Path Enumeration Technique (APET)

Once the APSs of a program-segment are identified, an APS
graph (APSG), which represents the control flow among
APSs, is built. For example, Figure 2 shows the APSG of
the bubble sort. Each edge of the APSG represents an APS,
and each vertex represents the first basic block of one or
more APSs. APSs that start with the same basic block are
outgoing edges of the same vertex.

Then, an integer linear programming (ILP) problem is
formulated based on the APSG, the CFG, and the obtained
ETBs of the APSs of the program-segment. By solving



this optimization problem, we obtain the analytical (i.e.,
hard) ETB of the program-segment. This extension of
IPET [20] is called the APS-based path enumeration tech-
nique (APET) [12].

More formally, let z; be the number of times an acyclic-
path segment AP.S; is executed, and let e; be the derived
ETB of APS;. Provided that there are N APSs in the
program-segment, the general structure of the APET prob-
lem is as follows:

Mazimize vazl €;T;
subject to constraints of the form :
Gy N piwi = {0 | 1}; where p; = {~1,0,+1}
Hy :x; <lu;

Linear constraints of the first type (i.e., Gj) reflect the struc-
ture of the program-segment. They can be automatically
derived from the APSG following a basic principle: given a
vertex in the APSG, the sum of the execution counts of the
incoming APSs is equal to the sum of the execution counts
of the outgoing APSs. On the other hand, a constraint of
the second type (i.e., Hy) is a basic functional constraint
that usually specifies the upper bound lu; of the times that
APS; executes. The functional constraints are obtained
via flow analysis. This includes, for example, determin-
ing how many times loops iterate and identifying infeasible
sequences of basic blocks and thereby, infeasible APSs. In
particular, early detection of infeasible APSs typically re-
sults in important reduction of the analysis and measure-
ment efforts. For example, we present below the general
APET problem for bubble sort:

Maximize
€657T657 T €658T658 + €659T659+
€660T660 1T €661T661 + €662T662 1 €663T6631
€664T664 T €665L665 + €666L666 1T €667L667
subject to the constraints :

Te66 + T659 = Te61 + Te62 + Te64
662 T T664 T Te58 + T660 = T666
Tes7 + Tess + Tes9 + Teeo = 1
Tee1 + Tes7 = 1
Te66 — 1000
Tee7 < 500500 — Te60 — Te64
Tes57 = Te58 = Tesg = 0

Tee2 = T663 = Tees — 0

This problem was formulated assuming that the input is
an array of 1000 elements reversely sorted (i.e., the worst
case for bubble sort). The first four constraints are structural
constraints and the rest are functional constraints. Note that
6 APSs out of 11 (=~ 54%) are infeasible; they are: #657,
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#0658, #0659, #0662, #0663, and #665. The APS #657, for
example, represents the case in which the algorithm ends
without entering the loops even once. Clearly this cannot
happen because the input array is not empty. In the APSs
#659 and #663 the algorithm does not enter the inner loop
(L2). This situation cannot happen either since all the ele-
ments in the array are reversely sorted. Similar percentage
of infeasible APSs were found in other test functions (e.g.,
matrix multiplication and LU decomposition).

Once each term e; is substituted by the derived ETB of
APS;, the APET problem can be easily solved using an
ILP solver tool (e.g., 1p_solve'). The ILP solver tool re-
turns the hard ETB of the program-segment (i.e., the opti-
mal value) and the execution counts of the APSs that yield
such bound (i.e., the optimal solution).

APET can, however, produce solutions that correspond
to infeasible execution paths because some functionality
constraints may not have been included in the formulation
of the ILP problem [20, 3]. Hence, system designers may
decide to validate whether an APET solution is feasible or
not. If not, they may try to determine additional functional-
ity constraints to rule out such infeasible paths. Flow analy-
sis is often considered the first choice for deriving such
functionality constraints. In any case, both validating ex-
ecution counts and correctly determining additional func-
tionality constraints may require meticulous analysis of the
program-segment and thus, considerable effort.

2.2 Identification of Promising Path Can-
didates

It is possible that the optimal solution for the APET prob-
lem (i.e., the execution counts of the APSs that maximize
the objective function) does not correspond to the the ac-
tual worst-case execution path (WCEPath) of the program-
segment. The reason is that the execution time of a path
formed by a series of APSs is not as accurately estimated
as that of an individual APS, in particular when the path is
part of a loop. In that case, it is wise to identify the APS
execution counts of multiple WCEPath candidates and then
examine their execution times through various means in-
cluding not only analysis but also measuring [12, 13]. This
results in a better-quality tight ETB for a given program-
segment.

Multiple candidates can be easily identified by itera-
tively applying APET as follows. After formulating the
APET problem for a program-segment, the ILP solver tool
finds the analytical bound b; and the optimal solution {51 };
they both form the tuple (b1, {S1}) that represents the first
WCEPath candidate. Then, the constraint vazl e;r; <
(by — 0), where ¢ is a small number provided by the sys-
tem designers, is added to the APET problem and the ILP
solver finds the second WCETPath candidate (bo,{S2}).
This process continues until the specified stop criterion is
met, for example: i) an absolute number of candidates are

'http://sourceforge.net/projects/lpsolve/



found; or ii) b;, which is the latest WCET obtained by the
IPL solver, goes below the threshold th given by the sys-
tem designers; formally, b; < th-b; (0 < th < 1). The
definition of the stop criterion heavily depends on the appli-
cation, and system designers may use one of the aforemen-
tioned ways or a combination of them to specify when to
stop searching for WCEPath candidates of a given program-
segment.

2.3 Determination of Safety Margins and
Tighter Execution-time Bounds

Since APET may produce overly pessimistic ETBs, a
testing-based statistical approach is introduced as a comple-
ment to APET. In this work, we take a simple approach in
which the execution times of the identified WCEPath candi-
dates are measured during a number of test runs with gener-
ated input data sets on the target execution platform.> Then,
the candidate with the maximum measured execution time
is selected for further analysis. Thereafter, this maximum
value plus some margin will be considered as another ETB
of the program-segment. The next questions are then [12]:

e How to determine the margin value to be added to

the maximum measured execution time of the selected
WCEPath candidate of the program-segment?

e How to estimate the probability of such a soft ETB

being violated at runtime?

Assume the sequence 1" = t1,t9, -+ ,t;,--- ,tx con-
tains the measured values of the execution time of the se-
lected candidate, sorted in non-descending order. We can
derive the cumulative distribution function (CDF) of the
measured values using the expression:

Fo(t) = P(X < ti)icien =n(t <t;)/N

where n(t < ¢;) is the number of measurements that are
less than or equal to ¢;, and NN is the number of measured
values. Then, the analytical bound for the program-segment
(obtained from APET) is appended to the CDF data and as-
signed a cumulative frequency of 1. Finally, a curve-fitting
technique (based on nonlinear regression) is applied in or-
der to obtain a smooth model that approximates the aug-
mented CDF [12, 13].

Once identified, the approximation model can be used to
answer the two previous questions. For example, consider
the frequency distribution of 100 measurements of the exe-
cution time of a WCEPath candidate shown in Table 2, and
assume that the analytical ETB is 250 ms. A model that
approximately fits the augmented CDF is given by:

1
(1 4 ¢(4.9196-0.0552:1)

)1/0.2626

This sigmoidal model is called Richards model [25] and its
coefficients were obtained using a curve-fitting tool (e.g.,

2Issues related to obtaining appropriate input data sets are not discussed
here due to space limitations.
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Figure 3. Applying the curve-fitting technique for esti-
mating a soft execution-time bound of a program-segment.

Table 2. Relative and cumulative frequencies of the mea-
sured execution times of a WCEPath candidate

Execution time (ms)  Relative Frequency =~ Cumulative Frequency

100 0.15 0.15
110 0.25 0.40
118 0.20 0.60
122 0.35 0.95
140 0.05 1.00
250 Analytical execution-time bound

CurveExpert?). Figure 3 shows the CDF data, the aug-
mented CDF used for estimating the approximation model,
and the resulting model. The model’s saturation point is
approximately 200 ms, which means that the probability of
the actual execution time not exceeding 200 ms becomes
practically one (i.e., =0.9917). In addition, the model en-
lightens a way of estimating a soft ETB when the proba-
bility of the actual execution time not exceeding this soft
bound, «, is provided. For instance, if a=0.95, the esti-
mated ETB is 167.03 ms, and if «=0.98, the estimation be-
comes 183.98 ms.

In practice, application designers need to try with a num-
ber of models and then select the model that best fits the
augmented CDF of measured execution times. Moreover,
the approximation model identified using the curve-fitting
technique may go beyond or stay below 1; for instance,
Richards models often overstep 1. Hence, when the model
does not converge to 1, it must be normalized so that the
approximating curve is always below the CDF curve and
saturated before the analytical bound derived from APET.

Application designers must select the value of « very
carefully when determining a soft ETB of a program-
segment. If « is not sufficiently high, there will be a non-
negligible risk of the derived soft bound being exceeded by
the actual execution time.

3http://curveexpert .webhop.biz/



3 Derivation of Execution-time Bounds of
Acyclic-path Segments

The analytical ETB of a program-segment obtained with
APET heavily depends on the ETBs of the acyclic-path seg-
ments (APSs). Therefore, it is very important to estimate
the ETBs of the APSs from execution-time measurements
that have been taken carefully and as precise as possible.
Nevertheless, some overhead in the measurements is in-
evitable.

This section presents techniques for measuring the ex-
ecution times of APSs. These techniques are specific for
Intel processors; however, several principles discussed here
can also be applied to measuring execution times in other
processors. Moreover, the description of the techniques is
in the context of using a Linux-based operating system.

3.1 Code Translation

In order to facilitate the execution of a specific APS, one
needs to generate input data sets and identify at least one
set that makes the control flow take the execution path of
the APS [19, 27, 28]. The input data generation approach
requires relatively simple instrumentation for both path de-
tection and execution-time measurement and typically re-
sults in very little measurement overhead. However, very
often finding the data sets for some particular APSs is diffi-
cult and many tests need to be performed. Instead, we use
a different technique that eliminates the need for massive
input data search efforts, though with a more complex im-
plementation.

In our technique, called code translation [12], the ba-
sic blocks that compose an APS are extracted from the
program-segment and inserted into the body of a procedure.
Because the basic blocks of the APSs are taken out of their
“original context” (i.e., the program-segment), the assem-
bly code of the basic blocks is manipulated and a minimal
number of instructions are added to facilitate the execution
of those basic blocks in the order defined by the APS. For
example:

e Each conditional branch instruction (i.e., Jxx) is re-
placed by the instruction cmpl %$eax, $eax fol-
lowed by either je or jne, depending if the branch
must be taken or not.

e Since APSs are partial execution sequences, an APS
may not include matching call-stack handling instruc-
tions; in this case, those instructions must be added.

e To prevent instructions from resulting in illegal mem-
ory access, memory references are redirected to prede-
fined memory locations; for example, the instruction
movl (%eax), %$edx is replaced by the following
line in GCC inline assembly:

asm("movl %0, %%edx\n\t" :: "m" (MEM_BLOCK
[2492]));

In the present work memory references are redirected
randomly to reserved memory space, but in such manners

that two instructions in an APS never access the same mem-
ory location. By doing this, memory operations are likely
to result in cache miss, which increases the time that APSs
take to execute. Nevertheless, there is room for incorpo-
rating more sophisticated techniques that allow us to better
capture the effects of data cache on the execution of the
APSs, and thus, obtain tighter ETBs. For example, it is pos-
sible to make the addresses used by instructions fall into
memory areas while preserving the arithmetic operations
used to obtain the actual memory addresses.

3.2 Measuring the Execution Times of
Acyclic-path Segments

Once an APS is manipulated and put into the body of
a procedure, a test program executes the procedure many
times in a loop and measures the machine cycles consumed
by each execution of the APS. The number of machine
cycles consumed during the execution of an APS can be
determined by: i) reading the timestamp counter* (TSC)
twice, right before the APS starts and right after it ends;
and ii) subtracting the former TSC read from the latter [14].
Then this difference can be divided by the CPU’s clock fre-
quency to yield the elapsed time between the two measure-
ment points. In addition, due to out-of-order execution ca-
pability of fully-featured microprocessors, we need to en-
sure that all and only the instructions of the APS under
test are executed within the measurement window (i.e., be-
tween the TSC reads). Therefore, a serializing instruction
(e.g., cpuid) must be executed immediately before each
TSC read. Since cpuid can take longer the first couple of
times it executes [14], cpuid must be called several times
before taking the measurements. The basic structure of the
code for measuring the execution times of APSs is shown
in Listing 1.

Because program-segments are assumed to execute in
isolation, we need to guarantee that the measurements of
the APSs are taken under the same condition. To prevent
execution of APSs from being preempted and affected by
interrupt handling, we take advantage of several features
present in Linux, namely:

e The test program is run by the superuser as a
FIFO real-time process (i.e., using the SCHED_FIFO
scheduling policy) with the highest priority. Thus, the
test program is never preempted when executing an
APS.

e Hardware interrupts (except the timer interrupt) are
disabled (using the instruction c11) before each exe-
cution of an APS and re-enabled (using the instruction
st i) once the execution of the APS has finished (see
Listing 1). To be able to call c1i and sti, the test
program changes its I/O privilege level to 3 by calling
the Linux-specific system call iopl.

Additional actions can be taken to put the processor’s

acceleration features in an unfavorable state before measur-

4The timestamp counter is a 64-bit register that counts the CPU clock
cycles since power on.



void runAPS (void (xfn) (void), ...) {
unsigned long long
measurements [NUM_OF_MEASUREMENTS] ;

for (int i = 0; i < NUM_OF_MEASUREMENTS; i++) {
unsigned long long t0 = 0, tl = 0;

asm("cli \n\t");

asm("cpuid \n\t");

rdtscll (t0);

(xfn) (); // Function containing the APS
asm("cpuid \n\t");

rdtscll(tl);

asm("sti \n\t");

measurements[i] = tl - tO0;

Listing 1. Code structure for measuring the
execution time of an acyclic-path segment.

ing the machine cycles consumed by the execution of an
APS [23]. Those actions result in more conservative mea-
surements.

It is well known that data and instruction caches have
very strong influence over the execution time of programs
on modern processors. We have several options for incor-
porating cache effects into measurements of APSs; before
timing begins we can: i) disable data and instruction caches
(after invalidating them), ii) fill the caches with useless data,
iii) invalidate the caches, and iv) do nothing, of course.

To be able to invalidate, disable, and re-enable the caches
from user space, we added several simple system calls to the
Linux kernel. Caches are invalidated by calling the instruc-
tion wbinv (via the Linux internal function wbinwv ()).
Caches are disabled in Intel processors by setting the 31th
bit (CD, Cache Disable) of the control register CRO (i.e.,
CRO[bit 30] = 1). Tore-enable the caches CRO [bit
307 is reset.

Intel processors are typically configured to use the write-
back data caching strategy (i.e., CRO [bit 29] = NW =
0)°. In this case, the L1 data cache and L2 (unified) cache
must be filled with useless modified data. Thus, when new
data is brought into the cache, the old data in the cache
is written to main memory, and not simply replaced in the
cache. Filling the L1 data cache and the L2 unified cache
with modified useless data can be done from user space. We
allocate a memory space (i.e., an array) equal to the size of
the L2 unified cache (i.e., 256 Kbytes in Pentium III (Cop-
permine) processors). Then, after invalidating the caches,
memory locations from that space are read, and different
values are written back to them.

The branch-prediction mechanism can also be preset in
an unfavorable state prior to the measurements. We can run

>Not Write-Through (NW)
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a piece of code specially devised to fill the Branch Target
Buffer (BTB) with useless data before each execution of
an APS. Thus, the mechanism is not able to dynamically
predict the direction of the branches and must rely on the
static strategy. The static branch-prediction mechanism in
Pentium III processors always predicts forward branches as
“not taken”. Hence, during the manipulation of assembly
code of the APSs conditional branches are converted in for-
ward branches. In newer processors (i.e., Intel Core Duo),
using forward branches, however, may have no effect be-
cause these processors alway predict conditional branches
dynamically, even at first appearance [15].

These techniques should also be applied to measure the
execution times of program-segments.

3.3 Estimation of Execution-time Bounds
of Acyclic-path Segments

After measuring extensively the execution times of the
APSs, we need to decide which values from the measured
data will be used as the execution-time bounds (ETBs) of
the APSs in deriving the analytical ETB of the program-
segment. To make that decision, we should have (defin-
itive or preliminary) measurements of the execution time
of the program-segment and compare the measured values
with the analytical bound obtained with APET using some
tentative ETBs of the APSs. If the analytical bound of the
program-segment is too pessimistic, we may decide to use
tighter estimates of the ETBs of the APSs. On the contrary,
if the analytical bound is considered unsafe, then we may
decide to use looser estimates of the ETBs of the APSs. In
this way, the decision can be made systematically and sup-
ported by empirical data. Note that the measurements of the
execution times of the APSs and the program-segment must
be taken under the same conditions in order to have a mean-
ingful comparison between the measured execution time of
the program-segment and its analytical bound obtained with
APET.

We have found from our experience that using the maxi-
mum among the measured execution times of each APS as
the ETB of the APS may be sufficient to obtain a safe an-
alytical ETB for the program-segment, given the inherent
pessimism of this analytical technique. Moreover, the max-
imum measured execution time of an APS very often corre-
sponds to the first observation and its value is significantly
higher than the rest of the observations in the same mea-
sured data set. In this case, the maximum observed value
should be dropped and the second maximum observed value
should be used as the ETB of the APS. Even more, in our
experience safe analytical ETBs of program-segments can
be obtained when measurements of the execution times of
the APSs are taken without controlling the caches. We will
support these observations with experimental data in Sec-
tion 5.



4 Prototype Implementation

We have developed a new version of the APS Analyzer
for Linux. This C++ prototype tool takes as input the names
of the C/C++ source code files of a program and the func-
tions and class methods to be analyzed. It uses gcc to
generate assembly code from the program source code, and
constructs the call graph and the control flow graphs (CFGs)
of the functions and methods specified in the input. Next,
the APS Analyzer identifies the program-segments and their
APSs, and builds the APS graphs (APSGs). Finally, it ma-
nipulates the APSs (as described in Section 3.1) and gener-
ates a test program for measuring the execution times of the
APSs. The APS Analyzer also generates intermediate text
files that represent the call graph, the CFGs, and the APSGs
in DOT language.®

We use 1p_solve for solving the APET optimization
problem, and CurveExpert 1.3 as a curve fitting tool.

To facilitate the formulation of the APET problem, we
have also developed a tool, called APET-Formulator. This
tool reads the description of an APSG in DOT language and
the files with the measured data of the execution times of
the APSs, and then creates an 1p_solve file with the ob-
jective function and the structural constraints of the APET
problem; although the functional constraints must be added
manually.

5 Experimental Results

Test Platform: The measurements were performed on an
866-MHz Pentium III (Coppermine) with 512-MB RAM,
256 KB L2 cache, and bus speed of 133 MHz running a
slightly customized version of Linux 2.6.21.1. A few sim-
ple system calls were added to Linux to make it easy to in-
validate, disable, and re-enable the caches from user space
(Section 3.2). The CPU frequency reported by the system is
864.617 MHz; hence, this value is used for converting cycle
counts into time units.

5.1 Experiment 1

This experiment was designed to empirically demon-
strate the advantage of using APSs rather than basic blocks
in deriving analytical ETBs of program-segments executing
on fully-featured microprocessors.

We took the APS corresponding to the innermost loop
of the bubble sort that contains the swap operation; that is,
the APS #667 of Table 1. The APS #667 contains the fol-
lowing sequence of basic blocks: BB242, BB239, BB240,
and BB241. When the input is an array of 1000 elements
reversely sorted, the APS #667 runs 499500 times. That
basic-block sequence, however, is executed 500500 times
since it is also contained in the APSs #660 and #644.

6The DOT language is the text language used by the open-source graph
visualization software Graphviz for representing graphs (http://www.
graphviz.org).
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We measured the execution time of each basic block and
the entire APS #667 under 4 different scenarios:

1. with the cache mechanism disabled,

2. with the cache mechanism enabled but filling (i.e., pol-
luting) the caches with useless data before each execu-
tion of the basic blocks and the APS,

3. with the cache mechanism enabled but invalidating the
caches before each execution of the basic blocks and
the APS, and

4. with the cache mechanism enabled and without taking
any further action (i.e., non-controlled cache)

When enabled, the cache mechanism used the write-back
strategy. The basic blocks and the APS were inserted di-
rectly between two cpuid/rdtsc instruction pairs in or-
der to minimize measurement overhead. Additionally, an-
other set of measurements were taken with the APS inserted
in a procedure (APS in-proc), which is the way we normally
measure the execution time of APSs.

In each case, we took 1000 execution-time measure-
ments. In all the cases, the first measurement was dropped
because it was considerably larger than the rest of the mea-
surements. Thus, we use in our analysis the second maxi-
mum value of each measured data set.”

The results are presented in Table 3. We observe that
in all the cases the sum of the measured execution times of
the basic blocks is larger than the measured execution times
of both the bare APS and the APS inserted in a procedure.
Furthermore, that difference may be amplified many times
during the derivation of the analytical bound. For example,
in the case of the non-controlled cache scenario, the dif-
ference between the sum of the measured execution times
of the individual basic blocks and the execution time of
the APS #667 wrapped in a procedure is equal to 583 cy-
cles (=1090-507). When multiplied by 499500 (the number
of times APS #667 runs in the worst case) and divided by
864.617 MHz (the CPU frequency), it becomes 336.81 ms,
which is 67% larger than the derived analytical bound of the
bubble sort reported in Table 4 for the same scenario (i.e.,
non-controlled cache).

Therefore, we corroborated our conjecture that we can
obtain tighter analytical ETBs of program-segments by us-
ing APSs, instead of basic blocks, as basic units of mea-
surement and analysis.

5.2 Experiment 2

Here we present the results of applying the hybrid ap-
proach and the measurement techniques discussed in this
paper in the derivation of ETBs for 3 test functions that im-
plement the algorithms: bubble sort (BSORT), matrix mul-
tiplication (MM), and LU decomposition (LUD). These algo-
rithms do not involve any OS service calls, thus they fit the
definition of the program-segment given in Section 2.

In this experiment, the BSORT’s input consists of an ar-
ray of 1000 integers reversely sorted, which corresponds to

TNevertheless, we observed that the same conclusion reached here also
holds for those very large measured values.



[ Cache [[ Disabled | Polluted | Invalidated | Non-controlled |

BB242 2892 682 853 304
BB239 3802 776 887 303
BB240 5551 1221 1290 311
BB241 1690 585 796 72
> BB; 13935 3264 3826 1090

[ APS(bare) [ 9321 [ 1731 | 1602 | 42

[ APS Gnproc) || 10341 | 1894 | 1771 | 507 |

All values are in machine cycles.

Table 3. Comparison between measured execution times
of an acyclic-path segment and its constituent basic blocks.

its worst-case scenario. Therefore, the innermost loop of
the algorithm, containing the swap operation, runs 500500
times. MM multiplies 2 20x20 matrices of integer values and
LUD decomposes a 15x15 matrix of double values. The
implementations of MM and LUD were obtained from the
benchmark programs maintained by the Milardalen WCET
research group.® Only LUD was modified to make a func-
tion inline.

We first applied the APS Analyzer to BSORT, MM, and
LUD and we obtained the test programs for measuring the
execution times of the APSs. The execution times of the
APSs were measured under 3 different scenarios’:

1. with caches disabled,

2. with caches enabled but filling (i.e., polluting) the
caches with useless data before each execution of an
APS, and

3. with caches enabled and without taking any further ac-
tion (i.e., non-controlled cache)

When enabled, the cache mechanism used the write-back
strategy.

The execution time of each APS was measured 1000
times and the maximum measured value was adopted as the
ETB of the APS. In a number of cases, however, the maxi-
mum measured value of the execution time of an APS was
the very first measurement and it was considerably larger
than the rest of the measurements. We identified all these
cases with our APET-Formulator tool and confirmed that in
each case the first measurement was at least 4 times larger
than the maximum of the rest of the measurements. In those
cases we dropped the first measurement and adopted the
second maximum measured value as the ETB of the APS.

Next, using APET we derived the analytical ETBs of
BSORT, MM, and LUD for the 3 cache scenarios of above.
In all the cases the optimal solutions obtained with APET
were feasible execution counts of APSs. For BSORT, MM,
and LUD, it is easy to determine input data sets that produce
the execution counts of APSs corresponding to the analyt-
ical ETBs. Thus, there was no need to identify multiple
candidates for the worst-case execution path. Instead, using

8 Available at: http://www.mrtc.mdh.se/projects/wcet/

9We omitted the scenario where the cache mechanism is enabled and
the caches are invalidated before each execution of an APS because the
results are very similar to those of the polluted-cache scenario.
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Bubble Sort (BSORT)

Cache AB (ms) | MMVF (ms) | Ratio
Disabled 6696.11 3763.47 1.78
Polluted 1451.62 17.20 84.41

Non-controlled 201.58 17.17 11.74
Matrix Multiplication (MM)

Cache AB (ms) | MMVF (ms) | Ratio
Disabled 105.01 56.11 1.87
Polluted 23.74 0.2529 93.85

Non-controlled 2.75 0.2348 11.72
LU Decomposition (LUD)

Cache AB (ms) | MMVF (ms) | Ratio
Disabled 19.55 9.13 2.14
Polluted 4.83 0.06537 73.87

Non-controlled 1.56 0.05416 28.9

AB: Analytical Bound
MMYVF: Maximum Measured Value of the Function
Ratio = AB/ MMVF

Table 4. Analytical execution-time bounds and maximum
measured execution time of the test functions under differ-
ent cache scenarios.

the chosen input data sets we directly measured the execu-
tion time of BSORT, MM, and LUD, 2000 times each, under
the same 3 cache scenarios. The results are presented in
Table 4.

The results show that all the derived analytical bounds
are safe, although no safety margin was added to the ETBs
of the APSs. Moreover, the analytical bounds in the non-
controlled cache scenario are also safe when compared with
the measured execution times in the polluted-cache sce-
nario. Thus, the results suggest that the ETBs of APSs
obtained in the non-controlled cache scenario may be used
to derive safe analytical ETBs of program-segments with
APET, given the inherent pessimism of this analytical tech-
nique. The pessimism introduced by APET is large in the
polluted-cache scenario (with ratios larger than 70). In the
non-controlled cache scenario, the analytical bounds are
tighter but the pessimism of APET is still evident (in par-
ticular, for LUD). These results stress the need of a hybrid
approach that allows us to derive tighter ETBs of program-
segments in the context of fully-featured microprocessors.

Table 4 also shows that APET produced tight analytical
bounds when caches were disabled. Unfortunately, the ana-
lytical bounds and the measured values obtained in this sce-
nario are useless in practice because they are too large when
compared with the measured execution times obtained in
the polluted-cache and non-controlled cache scenarios. This
confirms one more time the strong influence that cache
mechanisms have on the execution time of computer pro-
grams in fully-featured microprocessors.

After obtaining the analytical ETBs of BSORT, MM, and
LUD and collecting extensive measurements of their exe-
cution times, we applied the curve-fitting technique to de-
rive tighter soft ETBs for these test functions. The rest of
the analysis is based on the results obtained under the non-



controlled cache scenario since the analytical bounds in this
scenario are the tightest, but still safe.

After augmenting the CDF of the measured execution
times of each test function with the corresponding analyti-
cal bound, the augmented CDFs were passed to CurveEx-
pert 3.1 to obtain appropriate smooth models. The identi-
fied models are shown in Figure 4.1 With these models
application designers may obtain soft ETBs much tighter
than the analytical bounds by establishing the desired prob-
ability « of such ETBs not being exceeded during runtime.
For example, if & = 0.9, then the soft ETBs (and the ra-
tios SoftETB/M MV F) for BSORT, MM, and LUD are
87.16 ms (4.91), 0.9348 ms (3.98), and 0.089 ms (1.64),
respectively.

6 Conclusion

In this paper, we gave a refined description of a hybrid
approach to deriving reasonably safe and tight execution-
time bounds (ETBs) of program-segments. This hybrid
approach symbiotically combines execution-time measure-
ments and an analytically derived loose ETB of a given
program-segment for: 1) determining the safety margin to
be added to the maximum observed execution time to pro-
duce a tighter ETB for the program-segment, and 2) es-
timating the probability of the tighter ETB not being ex-
ceeded at run time.

We discussed several techniques for measuring the exe-
cution times of acyclic-path segments (APSs), which are the
basic units of analysis in the hybrid approach. We presented
a technique, called code translation, that manipulates the
assembly codes of the APSs in order to enforce their execu-
tion during measurements. Then, we described the structure
of the instrumentation program for measuring the execu-
tion times of APSs and program-segments and how to deal
with the acceleration features of modern high-end proces-
sors to obtain representative execution-time measurements.
Also, we discussed the estimation of ETBs for APSs from
execution-time measurements.

We applied the hybrid approach and the proposed mea-
surement techniques in the derivation of tight ETBs of
three algorithms frequently used in the evaluation of WCET
analysis techniques; i.e., bubble sort, matrix multiplication,
and LU decomposition. From the experimental work we
confirmed that the analytical bounds produced under the
APS-based Path Enumeration Technique (APET) tend still
to be overly pessimistic. This fact only emphasizes the im-
portance of hybrid approaches in deriving tighter ETBs of
program-segments. We also found that using the maximum
among the measured execution times of each APS as the
ETB of the APS may be sufficient to obtain a safe analyti-
cal ETB with APET due to the inherent pessimism of this
technique. Additionally, we empirically demonstrated that
tighter analytical ETBs of program-segments are obtained

10Note that CDF looks like a line due to the scale.
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Figure 4. Derivation of tight execution-time bounds for
the test functions.

indeed when the analysis is based on APSs instead of basic
blocks.

In the future, we plan to extend the hybrid approach in
order to handle larger and more complex program units that
interact with the real-time distributed computing (RTDC)
infrastructure (i.e., operating system, middleware, and com-
munication network). This task requires, among other
things, accurate and complete timing models for the RTDC
software infrastructure that must be developed and validated
through much further work, including both analytical and



experimental research.
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