
A Hybrid DVS Scheme for Interactive 3D Games

Yan Gu Samarjit Chakraborty
Department of Computer Science
National University of Singapore

E-mail: {guyan, samarjit}@comp.nus.edu.sg
Abstract

Interactive 3D games are now widely available on a va-
riety of mobile devices for which battery-life is a major
concern. Many of these devices support voltage/frequency-
scalable processors and dynamic voltage scaling (DVS) has
emerged as a powerful technique for energy management in
such devices. Although DVS algorithms have been very suc-
cessfully applied to video encoding/decoding applications,
their use in interactive computer games has not been suf-
ficiently explored so far. In this paper we propose a novel
DVS scheme that is specifically directed towards interac-
tive 3D game applications running on battery-operated
portable devices. The key to this DVS scheme lies in an
accurate prediction of the rendering workload of a current
game scene. We have applied this scheme to First Per-
son Shooter games (e.g. Quake II) and obtained significant
power savings while maintaining high frame rates. Based
on the observation that there exist two types of workload
variations in such games, we compute the voltage/frequency
setting for any game scene using a hybrid combination of
two different techniques: (i) adjusting the workload predic-
tion using a control-theoretical feedback mechanism, and
(ii) analyzing the graphical objects in the current game
scene by parsing the corresponding frame. Our scheme
is significantly different from those commonly applied to
video decoding applications (where only technique (i) is
used) and has shown very encouraging results when eval-
uated with different setups (e.g. laptop running Windows,
PDA running Windows Mobile and a configurable simula-
tion platform).

1 Introduction
Over the last few years, graphics-intensive computer

games have spilled over from desktop computers to
a wide variety of portable devices such as notebooks,
PDAs, mobile phones and portable playstations (e.g. see
www.doompda.com). Battery-life is one of the major
concerns in the design of such devices and has motivated a
lot of recent work on dynamic voltage scaling (DVS) [3, 6]
and dynamic power management (DPM) [1] schemes. DVS
relies on changing the frequency and voltage of the pro-

Estimate frame workload

Use estimate as input to
voltage/frequency scaling logic

Render frame

Compute frame

p
ro

cess n
ext fram

e

Figure 1. DVS in a game loop.

cessor at runtime to match the workload demand generated
by the application. This has become hugely popular due
to the wide availability of dynamic voltage and frequency-
scalable processors (e.g. Intel’s Pentium Mobile family).
On the other hand, DPM-based techniques rely on switch-
ing off parts of a device (processor, hard disk, display, etc.)
at runtime, based on their usage.

Although DVS algorithms have been extensively applied
to video encoding/decoding applications (which have al-
most attained the status of the dining philosophers prob-
lem in this domain) [12, 15, 16], their use in graphics-
intensive games has not been sufficiently explored so far.
We initiated a study of this problem in [5], where we
asked whether game applications are amenable to DVS, and
whether known DVS algorithms for video decoding can be
applied to games. Our study1 showed that game applica-
tions exhibit sufficient variability in their workload to mean-
ingfully exploit DVS schemes for power savings. Moreover,
they offer the possibility of developing DVS algorithms that
better exploit the characteristics of game applications (com-
pared to those that have been developed for video decod-
ing). The main differences between game and video de-
coding applications stem from (i) the interactive nature of
games, (ii) unlike video frames, game frames cannot be
buffered (buffering is exploited in many DVS algorithms,
see for example [7]), and (iii) game frames are more “struc-
tured” than video frames (which only contain the I, B, or

1Based on the publicly availably source code of the Quake II game en-
gine, which also forms the core of many other popular First Person Shooter
games like Hexen II.

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.33

3

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.33

3

P frame-type information). More specifically, the workload
associated with processing a game frame depends on the
contents of the frame, or the constituent objects, which can
be easily determined by parsing the frame. Similar conclu-
sions were also arrived at in [10, 11] for workload charac-
terization of a 3D graphics processing pipeline.

Contributions of this paper: A game application, simi-
lar to a video decoder, runs in an infinite loop and processes
a sequence of game frames that have to be rendered and dis-
played on the screen. Our proposed DVS algorithm for such
applications is integrated into this game loop. The critical
step is to accurately predict the workload of a frame, which
is followed by a ”voltage/frequency scaling logic” (that we
describe in more detail later in this paper). An overview of
this DVS algorithm is shown in Figure 1.

As an initial attempt, we developed a DVS algorithm in
which each game frame is parsed to identify its constituent
objects, based on which the workload associated with ren-
dering the frame is estimated. This estimate, along with the
target frame rate is used to determine the frequency (and
voltage) of the processor running the game application.

Note that this scheme (which we henceforth refer to as
frame structure-based workload prediction) is fundamen-
tally different from the control-theoretic feedback schemes
commonly used in DVS algorithms for video decoding
[8, 9, 14], where previous prediction errors are taken into
account while estimating the workload of a current frame.
Although our frame structure-based prediction works well
(and outperforms control-theoretic prediction schemes) for
game plays where the frame workload exhibits sufficient
variability, often there are sequences of frames with rel-
atively constant rendering workload. For such frames,
control-theoretic prediction schemes happen to perform bet-
ter. To take advantage of both these schemes, in this paper
we propose a hybrid workload prediction scheme, where we
keep on switching between the two schemes based on their
relative performance.

In the hybrid workload prediction scheme, the workload
associated with rendering a game frame is roughly the sum
of the workloads generated by processing the different ob-
jects (e.g. brush models, alias models, etc.) constituting
the frame. Each of these workload components is estimated
separately and then summed up to compute the processing
workload of a frame. Whenever the estimation error for any
object type is beyond a certain level, the scheme switches
to a different prediction mode for that object type. In other
words, our hybrid scheme is applied at an object level rather
than at the frame level. Naturally, this leads to a more accu-
rate workload prediction (albeit at the cost of slightly higher
computational overhead) compared to applying this scheme
at the frame level.

An illustrative example: Figure 2 shows the workload
variation for the particles object type in an excerpt from a

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 91950 92100 92250 92400 92550 92700 92850

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Control Frame
structure

Control Frame
structure

Real
Predicted

Figure 2. Sample run of the hybrid scheme.

game play, and the corresponding run of our workload pre-
diction scheme. Note that the first switch from the control-
theoretic scheme to the frame structure-based prediction
scheme occurs when the workload (measured in terms of
number of processor cycles) exhibits a significant increase
from a flat profile. Once the profile again becomes rela-
tively flat, the relative performance of the frame structure-
based scheme degrades and the scheme switches back to
the control-theoretic scheme. The final change from the
control-theoretic to the frame structure-based scheme again
occurs when the workload profile shows a relatively large
dip. In summary, this scheme keeps on switching between
the two workload prediction schemes based on their rela-
tive prediction errors. For a relatively flat workload profile,
as seen in Figure 2, the prediction accuracy of the control-
theoretic scheme dominates. Whenever the workload pro-
file exhibits a significant variation, the frame structure-
based prediction scheme takes over.
Organization of the paper: The rest of this paper is or-
ganized as follows. The next section gives an overview of
the architecture of a game engine. Section 3 outlines the
workload prediction scheme using a PID controller. In Sec-
tion 4 we describe the frame structure-based workload pre-
diction technique, followed by our hybrid workload predic-
tion scheme in Section 5. The details of using this scheme
for dynamic voltage and frequency scaling are discussed in
Section 6. We evaluate the performance of our hybrid DVS
scheme in Section 7 and finally we conclude in Section 8 by
outlining some directions for future work.

2 The Game Engine
As shown in Figure 1, a game engine runs in an infinite

loop, where the loop body consists of tasks responsible for
processing a single game frame. These tasks can be cat-
egorized as computing and rendering. Examples of com-
puting tasks are collision detection, AI, simulation of game
physics and particle systems. Rendering tasks implement
algorithms to generate an image or a frame from a model,
which is then displayed on the screen (see [2, 13] for more
details).

Rendering algorithms typically transform vertices of
3D/solid objects onto the 2D screen space, delete invisible
pixels by clipping, perform rasterization, delete occluded
pixels and interpolate various parameters. These algorithms

44

are computationally expensive and are typically mapped
onto a graphics processing unit (GPU) in desktop comput-
ers or high-end laptops. However, most battery-powered
mobile devices (e.g. PDAs, cell phones and portable gam-
ing devices) currently do not have GPUs and instead im-
plement the rendering algorithms in software. We believe
that this trend will continue at least for the next few years.
Hence, for this work we have assumed all rendering tasks
to be implemented in software running on the common
voltage/frequency-scalable processor along with the com-
puting tasks of the game engine.

3 Control Theoretic Workload Prediction
As we mentioned above, although control-theoretic feed-

back mechanisms have been widely used for DVS in video
decoding applications, they have not been explored in the
context of games. More importantly, the buffer-centric ap-
proaches for workload prediction in video decoding appli-
cations cannot be applied in this context since game frames
are not buffered (because of the interactive nature of game
applications). In this section, we propose a control-theoretic
workload prediction scheme for interactive game applica-
tions, which constitutes one of the two components of our
hybrid scheme.

3.1 PID Controller Basics
A PID controller is a generic control loop feedback

mechanism that is used to adjust system parameters based
on the feedback from the recent error between a measured
process variable and a desired set point. It involves three
separate components – Proportional Control, Integral Con-
trol and Derivative Control. The proportional control de-
termines the speed of the system in reacting to errors. The
integral control is used to determine the accuracy of the sys-
tem based on recent errors. Finally, the derivative control
determines the system reaction based on the rate at which
the error changes. Such a controller can be implemented
in several ways, the easiest among which is the parallel
form where each control element is given the same error
input in parallel. The output of the controller is given by
Output(t) = Pcontrib+Icontrib+Dcontrib, where Pcontrib,
Icontrib and Dcontrib are the feedback contributors of the
PID controller. Pcontrib = Kp · ε(t), Icontrib = 1

I · ∫ ε(t)dt

and Dcontrib = D · dε(t)
dt , where ε(t) is defined as the differ-

ence between a measured variable and a desired set point.
Kp, I and D are the proportional, integral and derivative
constants. By tuning the values of these constants the PID
controller can provide individualized control, specific to
process requirements involving error responsiveness, over-
shoot of the set point and system oscillation.

3.2 A PID-based Workload Predictor
Here, the goal is to predict the workload of a game frame

before the frame is processed/rendered. This is estimated to
be the sum of the predicted workload of the previous frame

and the output of the PID controller, which takes as input
the prediction errors of a certain number of previously pro-
cessed frames. Towards this we select the predicted work-
load ω̄i as the measured variable and the actual workload ωi

as the set point. The resulting error is periodically measured
by the PID controller and is given by ε(t) = ωi − ω̄i, where
t is the time stamp of the i-th frame. The following discrete
PID controller formulation is used in our DVS scheme:

∆ω̄i = Kp · ε(t) +
1

I
·
∑

TI

ε(t) + D · ε(t) − ε(t − TD)

TD
(1)

ω̄i+1 = ω̄i + ∆ω̄i (2)

As we explained in Section 3.1, here Kp, I and D are
the proportional, integral and derivative coefficients respec-
tively. TI and TD are the tunable parameters of the con-
troller. In our scheme, TI is set to the frame interval, and
hence,

∑
TI

ε(t) is the sum of the prediction errors from
frame (i − TI) to frame i. TI is set to be 5 frames; hence,
only the errors from previous 5 frames contribute to the in-
tegral element. TD is set to be equal to the frame execution
time and hence ε(t − TD) is the prediction error at time
t − TD. We restrict TD to be the execution time of the last
one frame to ensure that multiple feedback corrections do
not affect one another. The output ∆ω̄i is fed back to the
controller and regulates the next estimated frame workload
ω̄i+1.

In our experiments, we observed that the values of the
PID controller parameters have a significant impact on the
prediction results. By manually tuning these parameter val-
ues, we obtained the best results when Kp = 0.5, I = 28
and D = 0.00001 for the entire game play. However, the
optimal choice of these values might vary from one game
engine to the next (depending on the variability in the re-
sulting workload).

In our PID controller-based DVS scheme, the value of
the error ε(t) (obtained from previous frames) is used to
compute the proportional, integral and derivative elements.
Finally, the sum of these elements is used to estimate the
workload of the current frame. This is followed by comput-
ing the voltage/frequency of the processor based on the pre-
dicted frame workload and the target frame rate. The pro-
cessor’s voltage/frequency is then scaled based on a scaling
logic followed by the rendering steps.

4 Workload Prediction via Frame Structures
In this section we describe the frame structure-based

workload prediction scheme that forms the second of the
two components of our hybrid DVS algorithm. It may be
noted that a significant component of the rendering task in-
volves rasterizing objects on the screen. Our experimental
results suggest that the total workload generated from pro-
cessing a frame is almost linearly correlated with its raster-
ization workload. Hence, we predict the total workload by
estimating the rasterization workload of a frame.

55

0.5

1.0

1.5

2.0

2.5

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

(a) Workload of brush models.

0

5

10

15

20

25

 88000 89000 90000 91000 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels
(b) Workload of alias models.

Figure 3. Rasterization workload variations for brush models and alias models.

4.1 Exploiting Frame Structures

The proposed frame structure-based workload prediction
scheme primarily consists of estimating the rasterization
workload for each frame. Towards this, we compute the
number of occurrences of the different primitives in a frame
(e.g. brush models, alias models and particles) and multi-
ply these with the workload involved in processing each of
these primitives. This is possible because, once again, the
workload involved in processing all primitives of the same
type almost linearly scales with the number of primitives
occurring in the frame. The workload corresponding to a
single primitive of any given type is computed in an offline
fashion. We have experimentally verified this (nearly) linear
correlation for most of the primitives such as brush mod-
els, alias models, textures and particles (see [5]). It may
also be noted that the workload corresponding to each of
these primitives exhibits sufficient short-term variability as
shown in Figure 3 (because of the varying number of oc-
currences of these primitives in a sequence of consecutive
frames). Hence, in the presence of high workload varia-
tions, this scheme performs significantly better than control-
theoretic predictors when applied individually to the differ-
ent primitive-types. In what follows, we describe our ras-
terization workload estimation in further details.

For each frame, once the current view frustum is com-
puted based on the user input, the number of occurrences
of the different primitives in the frame is estimated (e.g.
the number of brush models, alias models, etc.). Further,
for each of these primitives, its detailed constitution is also
computed. For each brush model, this amounts to com-
puting its number of constituent polygons. For each alias
model it amounts to computing its number of pixels, for
each texture model its number of surfaces, and for each par-
ticle its number of pixels. Based on offline simulation, the
workload associated with each of the different primitives
parameterized by their constitution is stored in a table. For
example, this table contains the workload associated with
processing a brush model with n polygons for different val-
ues of n. Let us assume that c(n) is the number of proces-
sor cycles required to rasterize any one brush model with
n polygons. Then c(n) is stored in the above-mentioned
table. To compute the rasterization workload for all brush

models in a frame, let us assume that B(n) is the number
of brush models in this frame with n polygons. Then the
total rasterization workload for all the brush models in the
frame is equal to

∑
n=1,...,∞ c(n) × B(n) processor cycles

(where ∞ is the maximum possible number of polygons in
any brush model). This procedure is followed for all the
different primitives, with the exception of texture models
(which is explained below).

The abovementioned estimation process clearly has a
computational overhead, which turns out to be prohibitive
in the case of textures. Textures are drawn on brush mod-
els and hence their number of constituent surfaces cannot
be determined unless the associated brush models are ras-
terized. However, rasterizing brush models solely for work-
load estimation purposes is prohibitively expensive. Hence,
the workload associated with rasterizing texture models
in a frame is estimated using a control-theoretic predic-
tion scheme. Although this is not as accurate as frame
structure-based predictions, this loss of accuracy is unavoid-
able. However, using frame structure-based estimation, at
least for the other primitives like brush models, alias mod-
els and particles, reduces the overall error compared to us-
ing control-theoretic predictors for all the primitives. Fur-
ther, this mix of two different estimation schemes results in
a good tradeoff between prediction accuracy and computa-
tional overhead.

5 A Hybrid Workload Prediction Scheme
In this section, we present our hybrid frame workload

prediction which combines the two techniques described
above, i.e. (i) adjusting the workload prediction using
a control-theoretic feedback mechanism (viz. PID con-
troller), and (ii) analyzing the graphical objects in the cur-
rent game scene by parsing the corresponding frame (viz.
the frame structure scheme).

5.1 Workload Variation
As we already discussed, game workload exhibits a large

degree of variability. We have experimented with various
game plays and workload prediction schemes. In particu-
lar, we have investigated three different prediction schemes:
(i) history-based predictors, where the workload of a game
frame is estimated to be the average of the workloads of

66

a certain number of previous frames, (ii) PID controller-
based predictors (as described in Section 3), and (iii) frame
structure-based predictors (as described in Section 4). Our
results show that for frame sequences which exhibit rela-
tively low workload variation, the first two schemes outper-
form (iii). However, there also exists frame sequences with
high workload variability, and for such sequences a frame
structure-based predictor is certainly better. In fact, this ob-
servation is the main motivation behind devising a hybrid
workload prediction scheme.

Figure 4 shows a comparison of the three abovemen-
tioned schemes for a sequence of game frames with rela-
tively low variability. Clearly, the PID controller-based pre-
diction scheme outperforms the other two, with the frame
structure-based predictor giving the worst result. Figure 5
shows the same comparison for a sequence of frames ex-
hibiting a high variability in their workload. Here, Fig-
ures 5(a), (b) and (c) show the performance of the his-
tory, PID controller, and frame structure-based predictors.
It is easy to see that for this sequence of frames, the frame
structure-based predictor outperforms the first two. Fig-
ures 5(d) and (e) show the performance of two hybrid pre-
dictors, which perform even better. We describe the details
of these two predictors in the following sections.

5.2 Prediction Mode Switching
As mentioned before, the total workload involved in pro-

cessing a frame is made up of the sum of the rasteriza-
tion workloads of the different primitives that constitute the
frame and the workload associated with tasks such as col-
lision detection, AI, simulation of game physics and parti-
cle systems. Our prediction scheme estimates the rasteriza-
tion workload and scales it appropriately to obtain the total
frame workload (which is almost linearly proportional to
the rasterization workload; see Section 4.1). Notice that the
same workload estimation scheme is executed for each type
of primitives (i.e. brush models, alias models and particles),
with the exception of textures (for reasons which were ex-
plained in Section 4.1).

In what follows, we describe how to switch between
the two prediction schemes (viz. the PID controller-based
scheme and the frame structure-based scheme). First,
it should be noted that when the frame structure-based
scheme is in use, the PID controller-based scheme is
also kept active, but its estimation result is not used for
voltage/frequency scaling. This incurs a certain (negli-
gible) computational overhead. However, when the PID
controller-based scheme is in use, the frame structure-based
predictor is switched off because it is computationally ex-
pensive. If the workload of the last frame is estimated using
the frame structure-based predictor, then our proposed algo-
rithm computes two prediction errors; one incurred by the
frame structure-based predictor and the other incurred by
the PID controller. If the former error is larger than the latter

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(a) Using a history-based predictor.

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(b) Using a PID controller-based predictor.

15

20

25

30

35

 105000 106000 107000 108000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(c) Using a frame structure-based predictor.

Figure 4. Workload prediction using three different
schemes for a frame sequence with relatively low workload
variability.

then a prediction mode switch is enabled (i.e. the scheme
switches to the PID controller-based predictor), otherwise
the same predictor is retained.

On the other hand, if the PID controller is currently in
use, the mode switching decision is based on whether the
prediction error for the last frame is greater than a cer-
tain threshold error. However, this threshold error is not
statically predefined, but is constantly computed (or up-
dated) at runtime. This threshold error depends on the
frames whose workload was last predicted using the frame
structure-based predictor. Let these be the α-th to the β-th
frames. In other words, α and β are such that the workload
of the (α − 1)-th and (β + 1)-th frames were predicted us-
ing the PID controller-based predictor, and the workload of
the α-th to the β-th frames were predicted using the frame
structure-based predictor. The threshold error is equal to

min(
∑ β

i=α εi,o

β−α+1 ,
∑ β

i=α εi,c

β−α+1) + τ |
∑ β

i=α (εi,o−εi,c)

β−α+1 |, where εi,o

and εi,c denote the prediction errors of the i-th frame as in-
curred by the frame structure-based and the PID controller-
based schemes respectively. The value of 0 < τ ≤ 1 has to
be appropriately chosen. With the PID controller currently
in use, if the prediction error of a frame exceeds the thresh-
old error, then a mode switch is enabled.

77

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(a) Using a history-based predictor.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(b) Using a PID controller-based predictor.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(c) Using a frame structure-based predictor.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(d) Using a history+frame structure-based hybrid predictor.

15

20

25

30

35

40

45

 88000 88500 89000 89500 90000 90500 91000 91500 92000

P
ro

ce
ss

or
 c

yc
le

s
(x

10
6)

Time (ms)
 Frame resolution = 1024x768 pixels

Real
Predicted

(e) Using a PID controller+frame structure-based bybrid predictor.

Figure 5. Workload prediction using five different
schemes for a frame sequence exhibiting high workload
variability.

Once again, note that this scheme is individually applied
to all the different primitives constituting a frame, except
for textures, whose workload is always estimated using a
PID controller-based scheme. The total estimated workload
of a frame, along with the desired frame rate is used to com-
pute the target processor frequency, which is then mapped

onto a discrete voltage/frequency level that is supported by
the processor. In summary, our hybrid predictor switches
between two prediction schemes based on their relative per-
formance. Finally, it may be noted that the PID controller-
based predictor may be replaced by a simple history-based
predictor (that was described in Section 5.1) with every-
thing else remaining the same. This would result in a history
+ frame structure-based hybrid predictor.

5.3 Prediction Accuracy and Overheads
In this section we compare the performance of the fol-

lowing predictors in terms of the overhead incurred and the
prediction accuracy.
• History: History-based predictor that estimates the

workload of a frame by averaging the actual workload
of a certain number of previously processed frames.

• PID Controller: The PID controller-based pre-
dictor described in Section 3.

• Frame structure: The frame structure-based
predictor described in Section 4.

• Hybrid(history): The hybrid predictor
that switches between History and Frame
structure predictors.

• Hybrid(control): The hybrid predictor that
switches between PID Controller and Frame
structure predictors.

5.3.1 Prediction Overhead
As one would expect, both History and PID
Controller incur negligible computational over-
heads. The Frame structure workload predictor is
computationally more expensive and incurs, on an average,
1.7 million processor cycles per frame on a laptop with
an Intel Pentium Mobile processor running Windows
XP. Note from Figure 5 that the workload generated by
processing a frame varies between 15 to 45 million cycles.
Hence, the computational overhead incurred by the frame
structure-based predictor and its hybrid combinations is
certainly within the feasible region.

5.3.2 Prediction Accuracy
Figure 5 compares the different workload predictors against
the actual workload of a sequence of game frames. The ex-
cerpt shown in this figure was generated from a 4 sec demo
file of Quake II (massive1.dm22) running on a laptop with
Windows XP. Each point in Figure 5 corresponds to a frame
and the horizontal axis refers to the time stamp (in millisec-
onds) associated with each frame. The vertical axis refers
to the total processing workload of a frame in terms of the
number of processor cycles. It may be noted that the work-
load varies between 15 million cycles to 45 million cycles
per frame (and therefore offers the possibility of dynamic
voltage/frequency scaling).

2http://cure.gamepoint.net/files/massive1.zip

88

It it clear from this figure that our proposed hybrid
schemes match the profile of the actual frame workload
more closely than the history, PID controller, or frame
structure-based predictors. To measure the incurred pre-
diction error, we used two metrics: (i) the absolute pre-
diction error which is defined as the absolute difference in
processor cycles between the actual and predicted work-
loads, and (ii) the relative prediction error which is de-
fined as the ratio between the absolute prediction error and
the actual workload. Note that the errors in Figure 5(a)
(i.e. using the History predictor) turn out to be 3.6 mil-
lion cycles and 0.15 respectively. These errors drop to 1.2
million cycles and 0.05 respectively using our proposed
Hybrid(control) scheme (see Figure 5(e)).

We observed the similar results obtained by running a
10 sec demo file of Quake on a PDA with Windows Mobile.
The reason behind choosing Quake (instead of Quake II) is
that the high computational workload generated by Quake II
results in unacceptably low frame rates on a PDA, thereby
deteriorating the game quality. The workload on the PDA
varies between 20 million processor cycles and 90 mil-
lion cycles per frame. The absolute and relative errors by
using the History predictor are 6.2 million cycles and
0.15 respectively. These errors drop to 2.5 million cycles
and 0.06 respectively for the Hybrid(control) pre-
dictor. Notice that on both the platforms, our proposed
Hybrid(control) predictor results in more than 60%
improvement in prediction accuracy over a simple history-
based workload predictor.

6 Dynamic Voltage/Frequency Scaling
In this section we discuss how the above workload pre-

diction scheme is integrated with a DVS algorithm. As
shown in Figure 1, the predicted workload for each frame
is fed into a voltage/frequency scaling logic, which takes
into account several hardware and systems related issues to
decide whether the voltage/frequency should be switched
from its current level.

Frequency transitions on any processor always incur an
overhead which depends on the processor’s microarchitec-
ture and the operating system running on top of it. For ex-
ample, the average frequency transition overhead for Win-
dows XP running on an Intel Pentium Mobile processor is
20 million cycles, which is equivalent to 14 milliseconds
with the operating frequency set to 1400 MHz.

In order to avoid excessive frequency transitions, which
might defeat the purpose of using a DVS algorithm, we
have used a lazy transition mechanism. Instead of trigger-
ing a frequency switch with every possible frame-workload
change, our lazy mechanism defers the frequency switch by
one frame. Let fi be the processor frequency with which
framei is processed. Let fi+1 be the frequency computed
by any of our workload predictors for framei+1, where

fi �= fi+1. Instead of switching the processor frequency
to fi+1, our frequency-scaling logic defers the switch to
framei+2. If the computed frequency fi+2 is equal to
fi+1, then the processor’s frequency is switched to fi+2,
else the same procedure is followed. Such a lazy frequency
transition mechanism cuts down excessive frequency tran-
sitions, thereby reducing the transition overhead to a large
extent. Note that although we defer the transition decision
by only one frame, depending on the transition overhead on
a different platform, this decision can also be deferred by
multiple frames. Finally, note that we switch the operat-
ing frequency of the processor with the assumption that the
voltage is automatically scaled accordingly (i.e. we do not
explicitly control the operating voltage of the processor).

7 Experimental Evaluation
We have evaluated our proposed DVS scheme by inte-

grating it with the Quake/Quake II game engines running on
a number of different platform settings: (i) on a laptop with
an Intel Pentium Mobile processor running Windows XP,
(ii) on a PDA with an Intel XScale processor running Win-
dow Mobile 5, (iii) using a discrete event simulator where
the processor has the same power consumption characteris-
tics as in the laptop/PDA, but its frequency transition over-
head is assumed to be zero, and (iv) same as (iii) with the
additional assumption that the processor’s frequency is con-
tinuously scalable. Settings (iii) and (iv) are referred to as
simu-disc (i.e. simulation with discrete frequency levels)
and simu-cont (simulation with continuous frequency lev-
els) respectively. These two settings represent ideal cases
and the results obtained using them give an upper bound on
the power savings that can be obtained using our scheme.

Our motivation behind using the Quake-serial game en-
gines primarily stems from the fact that it is a popular
game that can be played on a variety of mobile devices
such as PDAs, mobile phones and laptops without addi-
tional graphics hardware. Further, this game engine forms
the core of a number of other First Person Shooter games
(e.g. Hexen II) and its software architecture is representa-
tive of those in many other commercially-available games.
Finally, the source codes of Quake and Quake II are freely
available, which allows for experimentation and appropriate
modification.

To ensure reproducibility, we have used pre-recorded
demo files. Since these demo files keep pre-recorded states
and therefore they are not computed during playback, there
is some difference in workload when compared to a real-
time game play. However, we have verified that these dif-
ferences are negligible and do not affect the conclusions de-
rived from this study. Finally, the game resolution on the
laptop was set to 1024 × 768 pixels, running in full-screen
mode. Again, the conclusions derived from this setting also
hold for other resolutions, as verified by our experiments

99

0.0
5.0

10.0
15.0
20.0
25.0
30.0

 0 200 400 600 800 1000 1200 1400

P
ow

er
 (

W
at

t)

Processor frequency (MHz)
 Frame resolution = 1024x768 pixels

Figure 6. Processor frequency versus total system power
consumption on a laptop.

with running Quake at 240 × 320 pixels on the PDA. To
ensure that the game process is not preempted by other pro-
cesses, it was set to the highest priority.

Laptop Settings: The laptop used for our experiments
(with the 1400 MHz Intel Pentium Mobile processor)
was equipped with Speedstep technology and had an ATI
Radeon Mobility Video card. The processor supported five
different operating points with clock frequencies of 1400,
1200, 1000, 800 and 600 MHz. For Pentium processors,
the RDTSC3 (read time-stamp counter) instruction is an ex-
cellent high-resolution, low-overhead mechanism to collect
execution requirements of tasks in terms of processor cy-
cles. All processor cycle counts on the laptop were mea-
sured using the RDTSC instruction that was inserted into
the Quake II source code.

All the power measurements were conducted by con-
necting this laptop to a National Instruments PXI-4071
7 1

2 -digit Digital Multimeter, using which the instantaneous
voltage and current drawn by the laptop were recorded. Our
estimated power consumptions therefore refer to the full
system power and not that of the processor alone. Fig-
ure 6 shows the total system power consumption for the
five different processor frequency levels. It may be noted
that this varies between 28.8 Watts and 22.1 Watts, which
correspond to the processor frequencies of 1400 MHz and
600 MHz respectively. Hence, the maximum possible re-
duction in power consumption is upper bounded by 23%.

PDA Settings: The PDA used for our experiments was
a Dell Axim X51 with a 520 MHz Intel XScale PXA270
processor and 64MB SDRAM. The processor supports six
different operating frequency points: 520, 416, 312, 208,
156 and 104 MHz. Unfortunately, the RDTSC instruction
is not supported by XScale processors and processor cycle
counts cannot be read by application programs. Hence, we
used high-resolution and low-overhead Windows APIs such
as the QueryPerformanceCounter to retrieve the processor
time associated with different tasks. However, the results
returned by these APIs become unreliable especially when
the operating frequency of the processor is changed at run-
time. To avoid these problems we, in addition, conducted

3Intel 64 and IA-32 Software Developer’s Manual Vol 2B

experiments using a discrete event simulator with the power
characteristics measured from the PDA.

To estimate the power characteristics of the PDA, we
measured the power consumption of its CPU-core by con-
necting an iWave prototype PDA board4 to the National
Instruments PXI-4071 7 1

2 -digit Digital Multimeter (as we
did with the laptop). The iWave prototype board has the
same processor as many regular PDAs (i.e. Intel XScale
PXA270). Furthermore, each component on the board (e.g.
CPU-core, LCD, wireless interface, etc.) can be hooked
up to measuring instruments. Hence, the measured CPU-
core power consumption of the iWave board was used to
estimate the power characteristics of a regular PDA. We ob-
served that the power consumption of the CPU-core varies
between 0.4 to 0.13 Watt, corresponding to the frequency
range 520 - 104 MHz. Therefore, the maximum possible
reduction in power consumption is upper bounded by 68%.
This clearly shows that DVS can achieve much better power
savings when the CPU-core of the PDA is considered in iso-
lation, compared to the maximum system-wide power sav-
ings that can be achieved for the laptop we experimented
with (which, as mentioned above, is 23%).

7.1 Results
We have defined two quality metrics that have been mo-

tivated by a study in [4]. This study concluded that while
frame rates higher than a pre-defined constant target frame
rate do not improve the overall gaming experience, lower
than target frame rates severely degrade the game quality.
Our first metric only measures the percentage of frames that
miss their deadlines. The second metric also takes into ac-
count the magnitude of the missed deadlines (or the tardi-
ness).

We have compared the performance of different DVS
schemes: FIX (where the processor is run at a constant fre-
quency of 1400 MHz, i.e. no frequency scaling), History
(DVS with a history-based predictor), PID Controller
(DVS with the PID controller-based predictor), Frame
structure (DVS using the frame structure-based work-
load prediction scheme), Hybrid(history) (DVS with
a hybrid combination of history-based and the frame
structure-based predictors), and Hybrid(control)
(DVS with our proposed hybrid combination of a PID
controller-based predictor and a frame structure-based pre-
dictor). For all our experiments on the laptop, we have
set the target frame rate to 20 frames/second. Hence, each
frame has to be processed within 1/20th of a second, which
is set as the frame deadline. We have manually tuned
the PID controller parameters in PID Controller and
Hybrid(control) and obtained the best results with
Kp = 0.5, I = 28, and D = 0.00001 on the laptop.

Clearly, the energy consumption during a game play and

4http://www.iwavesystems.com/

1010

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History
Control

Frame structure
Hybridhist

Hybridcontrol

(a) Percentage of frames with missed deadlines.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Simu-cont Simu-disc WinXP

P
er

ce
nt

ag
e

(%
)

FIX
History
Control

Frame structure
Hybridhist

Hybridcontrol

(b) Average tardiness of frames.

Figure 7. Comparison of game quality using different prediction schemes on a laptop running WinXP (with the target frame
deadline set to 1/20th of a second).

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Simu-cont Simu-disc

P
er

ce
nt

ag
e

(%
)

FIX
History
Control

Frame structure
Hybridhist

Hybridcontrol

(a) Percentage of frames which missed their deadlines.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Simu-cont Simu-disc

P
er

ce
nt

ag
e

(%
)

FIX
History
Control

Frame structure
Hybridhist

Hybridcontrol

(b) Average tardiness of frames.

Figure 8. Comparison of game quality using different prediction schemes on a PDA (with the target frame deadline set to 1/5th
of a second)

the quality of the game are mutually dependent on each
other. Hence, to compare the different DVS schemes (i)
we fix the energy consumption and then measure the out-
put quality resulting from the different schemes, and (ii) we
fix the output quality (e.g. all frames have to be processed
within their prespecified deadline, which is equal to 1/20th
of a second when the target frame rate is 20 frames/sec) and
measure the energy consumption resulting from the differ-
ent schemes.

Figure 7 shows the game quality for the different DVS
schemes under the two metrics outlined above. From this
figure, it may be noted that under the average tardiness met-
ric, our proposed Hybrid(control) scheme results in
more than 72% improvement over History on a laptop
running Windows XP, for the same amount of energy con-
sumption. The results under the simulation setting (with
the PDA power characteristics) are even more attractive.
In terms of power savings, compared to the FIX scheme,
our proposed Hybrid(control) scheme achieves up to
22% power savings, where the upper bound on the savings,
as mentioned before, is 23% on the laptop. Note that to
match the target frame deadline, most of the frequencies
computed for the estimated frame workload approach the
lowest possible frequency (i.e. 600 MHz) on the laptop.

When the target frame deadline is reduced to 1/30th of
a second (i.e. 30 frames/sec), more processor cycles are
required to speed up the game play. Therefore, the power
savings from Hybrid(control) drops to 13% compar-
ing with FIX, while the game quality obtained using the
Hybrid(control) is consistently better than that ob-
tained using History.

We also evaluated the power consumptions resulting
from the different DVS algorithms on the laptop, when all
the frames are required to meet their deadlines. We ob-
served that the power savings of Hybrid(control) over
History on the laptop are not as obvious as the improve-
ments in quality as discussed above. This is primarily be-
cause we considered the power consumption of the entire
laptop and not the CPU alone. As shown in Figure 6, only
around 6% more power is consumed, even when the fre-
quency is scaled to one higher level on the laptop.

We also conducted similar experiments with a longer
demo file (160 sec) and observed that under the average tar-
diness metric, our proposed Hybrid(control) scheme
results in more than 29% improvement over History
for the same amount of energy consumption. In terms of
power saving, compared to the FIX scheme, our proposed
Hybrid(control) scheme achieves around 21% power
savings.

1111

7.2 Results on the PDA
On the PDA, the best results were obtained with Kp =

0.7, I = 50, and D = 0.00001 for the target frame rate
set to 5 frames/second. For the FIX scheme, the XScale
processor is run at a constant frequency of 520 MHz. Fig-
ure 8 shows the game quality under the two metrics for the
different DVS schemes on the PDA. Note that under the av-
erage tardiness metric, our proposed Hybrid(control)
scheme leads to more than 100% quality improvement over
History with the simu-cont setting for the same power
consumption. With the simu-disc setting, this drops to 95%
improvement. Finally, compared to FIX, our scheme yields
more than 35% and 25% improvements in power savings
with the simu-cont and simu-disc settings, where the upper
bound on the savings, as mentioned before, is 68%.

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

Simu-cont Simu-disc

N
or

m
al

iz
ed

 p
ow

er

FIX
History
Control

Frame structure
Hybridhist

Hybridcontrol

Figure 9. Normalized power consumption using the dif-
ferent prediction schemes on the PDA.

As explained before, the CPU-core power consump-
tion exhibits a relatively large change as the processor
frequency is scaled. Therefore, the power savings of
Hybrid(control) over History on the PDA are
more significant than those on the laptop, when no frames
are allowed to miss their predefined deadlines. Fig-
ure 9 shows the CPU-core power consumptions result-
ing from the different DVS algorithms using the simu-
lation platform with PDA power characteristics. Here,
Hybrid(control) achieves 26% and 19% more CPU-
core power savings than History under the simu-cont and
simu-disc settings respectively. simu-cont has more savings
than simu-disc since we assume continuous frequency scal-
ing and no frequency transition overhead (i.e. it represents
an ideal case, which results in an upper bound on the energy
savings).

8 Concluding Remarks
We have proposed a hybrid DVS scheme targeted to-

wards graphics-intensive game applications. Our experi-
mental results indicate significant power savings and im-
proved output quality compared to known DVS algorithms
on different evaluation platforms (e.g. laptop, PDA, and
simulation based). Currently we are in the process of inves-
tigating game application-specific power management tech-

niques for other components on a portable device (e.g. wire-
less interface, LCD, etc.), especially in the context of multi-
player games.

References

[1] A. Acquaviva, L. Benini, and B. Riccó. An adaptive algo-
rithm for low-power streaming multimedia processing. In
Design, Automation and Test in Europe (DATE), 2001.

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz.
Designing a PC game engine. IEEE Computer Graphics and
Applications, 18(1), 1998.

[3] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-
based dynamic voltage and frequency scaling for a MPEG
decoder. In International Conference on Computer-Aided
Design (ICCAD), 2002.

[4] M. Claypool, K. Claypool, and F. Damaa. The effects
of frame rate and resolution on users playing First Person
Shooter games. In Multimedia Computing and Networking
Conference (MMCN), 2006.

[5] Y. Gu, S. Chakraborty, and W. T. Ooi. Games are up for
DVFS. In Design Automation Conference (DAC), 2006.

[6] C. Huges, J. Srinivasan, and S. Adve. Saving energy with
architectural and frequency adaptations for multimedia ap-
plications. In ACM/IEEE International Symposium on Mi-
croarchitecture, 2001.

[7] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with
buffers in low-power multimedia applications. ACM Trans-
actions on Embedded Computing Systems (TECS), 3(4):686–
705, 2004.

[8] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and
K. Skadron. Control-theoretic dynamic frequency and volt-
age scaling for multimedia workloads. In International Con-
ference on Compilers, Architecture and Synthesis for Embed-
ded Systems (CASES), 2002.

[9] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Reducing multi-
media decode power using feedback control. In International
Conference on Computer Design (ICCD), 2003.

[10] B. Mochocki, K. Lahiri, and S. Cadambi. Power analysis
of mobile 3D graphics. In Design, Automation, and Test in
Europe (DATE), 2006.

[11] B. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu.
Signature-based workload estimation for mobile 3D graph-
ics. In Design Automation Conference (DAC), 2006.

[12] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and
N. Venkatasubramanian. Integrated power management for
video streaming to mobile handheld devices. In ACM Multi-
media (MM), 2003.

[13] A. Watt and F. Policarpo. 3D Games: Real-time Rendering
and Software Technology, Volume 1. Addison-Wesley, 2001.

[14] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal on-
line methods for voltage/frequency control in multiple clock
domain microprocessors. In International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 2004.

[15] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[16] W. Yuan and K. Nahrstedt. Practical voltage scaling for mo-
bile multimedia devices. In ACM Multimedia (MM), 2004.

1212

