
Demo Abstract: Faithful Reconstruction of Application Behavior
based on Event Traces in the LiteOS Operating System

Qing Cao, Tarek Abdelzaher

Department of Computer Science
University of Illinois at Urbana-Champaign

{qcao2, zaher}@cs.uiuc.edu

Abstract

 Visibility has been a key challenge for wireless
sensor network applications. Deployed on the
extremely resource-constrained mote platform, such
applications may fail unexpectedly, or exhibit behavior
different from their intended goals. To help understand
why such problems occur, we design and implement an
event trace logger based on the LiteOS operating
system, which allows us to partially reconstruct
application behavior after execution, such as which
path it took for an IF statement, its invocation history
of the kernel system calls, and its dynamics across
multiple nodes. We plan to demonstrate the usefulness
of this event trace logger and its translator using a
multi-hop routing application.

1. Introduction
 In the past few years, research in wireless sensor
networks has experienced phenomenal growth. Various
applications have been developed and deployed, data
have been collected and analyzed, and large scale
adoption of sensor networks is on the horizon. As
applications for wireless sensor networks become more
complicated, we find it harder and harder to understand
their behavior. Applications fail unexpectedly, or
perform differently from their goals. While debugging
tools tailored for sensor networks have been proposed
in the literature as one promising research direction, we
propose to reconstruct application behavior based on
carefully collected event traces, an approach that
presents us with a detailed map on the dynamics of
distributed sensor network applications. We plan to
demonstrate this approach through realistic
applications.
 Our implementation of the event logger is based on
the LiteOS operating system, which separates the
kernel from user applications. This feature allows us to
log event traces at different levels, including the kernel,
the system calls API, and the user applications. Based
on the analysis of the traces, we find that while it is

hard to completely reconstruct the kernel behavior (e.g.
certain events, such as how many CPU cycles elapsed
before the next interrupt, are almost impossible to log),
it is relatively easy to reconstruct the application
behavior, such as which path its instructions follow for
an IF statement, or how many times it calls the kernel
API. Such information is valuable for us to profile the
application performance, detect unexpected behavior
causes, and faithfully reconstruct its life cycle. We
believe such understanding is critical not only for
application developers to build robust systems, but also
for improving the visibility of sensor network
applications.

2. System Design
 In this section, we first briefly describe the
background of the LiteOS operating system. We next
describe how we design the event logger. Finally, we
describe how to interpret its output to reconstruct
application behavior.

The LiteOS operating system provides a Unix-like
interactive environment for wireless sensor networks. It
maps nodes into file directories, and allows users to
operate such directories using Unix-like commands.
For example, to retrieve data collected by a node,
LiteOS provides the cp command to copy data from the
particular node (now a directory) to the PC (another
directory). To support interactive operations, LiteOS
implements a kernel that schedules user applications as
threads. Therefore, users may install and kill
applications dynamically.

LiteOS implements a natural boundary between the
kernel and user applications, which is a suite of system
calls. Therefore, the application binary consists of
instructions that are either application specific or
references to system calls, which simplifies recording
and analyzing application behavior, an observation
that motivates us to design and implement the event
logger and its translator to help reconstruct application
life cycle after its execution.

We follow an intuitive approach in designing the
event logger. We keep an internal buffer (its size is

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.56

549

 Figure 1 The Source Code of "Hello, World"

Figure 2 Event Traces for "Hello, World"

Figure 3 Translation of Event Traces

decided by the user) to record the most recent
application events. We only log one application at a
time. Therefore, we only need one byte for most
events, up to 256 different types, including nearly 60
different system calls. We also log certain kernel events
such as context switches and driver invocations, and

application specific events inserted by the user. Every
time an event triggers, a corresponding byte is written
into the buffer. When the buffer is full, we write its
content into a file stored in the external flash, whose
size is 512K bytes, more than enough for most
applications.

To provide a more detailed view on the application
behavior, the event logger also allows recording
variable values, using special event types. Such events
necessarily occupy more than one byte, but are useful
for understanding the transient execution context of the
user application, such as, why is this control path
taken?

We now describe a simple application and its event
traces as an example. The source code of the
application is listed in Figure 1.

The behavior for this application is very simple: it
sends ten messages containing the string “Hello,
world!\n”. We then turned on the event logger, and
obtained a trace file as follows, shown in Figure 2.

Here, we only log system calls and kernel event of
creating/destroying events. A translation of this file is
shown Figure 3.

These system call sequences reveal a lot of
information regarding how the application executes.
For example, the user can easily verify that there are
ten loops for the application. As applications become
more complicated, the user can insert checkpoints
along different paths to get an understanding which
paths are taken during application execution.

3. Demo Scenario
 We shall demonstrate a more complicated
application using the event logger. In the demo, we are
going to deploy a multi-hop geographic forwarding
application composed of six to eight hops. The first
node will send periodic messages to the last node.
Because of interferences and unreliable links, we
expect some packets to get lost. We record certain
radio activities, including sending and receiving data
packets, packet sequence numbers, among others. At
the end of the experiment, based on analysis of event
traces, we are able to reveal which packets got lost and
where. We are also able to reconstruct other
information regarding the routing protocol, such as the
number of context switches and neighbor beacons, the
real-time link quality history as measured by LQI and
RSSI. Such information will help us reconstruct the
application behavior and provide insight on possible
communication protocol optimizations.

550

