
Seluge: Secure and DoS-Resistant Code Dissemination in Wireless
Sensor Networks∗

Sangwon Hyun, Peng Ning, An Liu
North Carolina State University

Wenliang Du
Syracuse University

Abstract

Wireless sensor networks are considered ideal candi-
dates for a wide range of applications, such as industry
monitoring, data acquisition in hazardous environments,
and military operations. It is desirable and sometimes nec-
essary to reprogram sensor nodes through wireless links af-
ter deployment, due to, for example, the need of removing
bugs and adding new functionalities. The process of propa-
gating a new code image to the nodes in a wireless sensor
network is referred to as code dissemination. This paper
presents the design, implementation, and evaluation of an
efficient, secure, robust, and DoS-resistant code dissemina-
tion system named Seluge for wireless sensor networks. Sel-
uge is a secure extension to Deluge, an open source, state-
of-the-art code dissemination system for wireless sensor
networks. It provides security protections for code dissem-
ination, including the integrity protection of code images
and immunity from, to the best of our knowledge, all DoS
attacks that exploit code dissemination protocols. Seluge is
superior to all previous attempts for secure code dissemi-
nation, and is the only solution that seamlessly integrates
the security mechanisms and the Deluge efficient propaga-
tion strategies. Besides the theoretical analysis that demon-
strates the security and performance of Seluge, this paper
also reports the experimental evaluation of Seluge in a net-
work of MicaZ motes, which shows the efficiency of Seluge
in practice.

1 Introduction

A wireless sensor network is expected to consist of a po-
tentially large number of low-cost, low-power, and multi-
functional sensor nodes that communicate over short dis-
tances through wireless links. Due to the potential to pro-
vide fine-grained sensing and actuation at a reasonable cost,
wireless sensor networks are considered ideal candidates for
a wide range of applications, such as industry monitoring

∗This work is supported by the National Science Foundation under
grants CNS-0721424 and CAREER-0447761, and by the Army Research
Office under grant W911NF-05-1-0247. The contents of this paper do not
necessarily reflect the position or the policies of the US Government.

and military operations.
It is desirable and sometimes necessary to reprogram

sensor nodes through wireless links after they are deployed,
due to, for example, the need of removing bugs and adding
new functionalities. The process of propagating a new
code image to the nodes in a network is referred to as
code dissemination. A few code dissemination protocols
(e.g., [7, 13, 16, 22,27, 28]) have been developed recently to
propagate new code images using the ad-hoc wireless net-
work formed by the sensor nodes. In particular, Deluge [13]
uses an epidemic protocol [18] for efficient advertisement of
meta data and spatial multiplexing for efficient propagation
of code images. Deluge is generally accepted as the state of
the art for code dissemination in wireless sensor networks,
and has been included in recent TinyOS distributions [4].

In hostile environments where there may be malicious at-
tacks against wireless sensor networks, code dissemination
faces threats from both external attackers and potentially
compromised nodes. For example, the adversary may at-
tempt to modify or replace the real code image being prop-
agated to sensor nodes, introducing malicious code into the
sensor network. As another example, the adversary may
inject bogus code dissemination packets and force normal
sensor nodes to verify and/or forward them, thus exhaust-
ing their limited battery power.

1.1 Related Work

Several recent works have attempted to provide secure
code dissemination for wireless sensor networks [8,10,17].
All these approaches are extensions to Deluge [13]. Lani-
gan et al. proposed a protocol named Sluice [17] to integrate
signature and cryptographic hash functions to provide effi-
cient authentication for code dissemination. This approach
follows Deluge to divide each code image into pages. The
hash image of each page is included in the previous page,
while the hash image of the first page is signed and included
in a signature packet. This approach, however, is vulnera-
ble to Denial of Service (DoS) attacks. This is because in
Sluice, a node can only perform authentication when an en-
tire page is received, and thus it cannot authenticate a packet
immediately after it is received. To exploit this property, the

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.12

445

adversary may send a large number of bogus packets during
code dissemination; a sensor node, upon receiving a packet,
cannot tell if it is authentic or not, and has to save it if pos-
sible. As a result, the adversary can force the sensor nodes
to save bogus packets but drop some authentic ones.

A scheme similar to Sluice was independently proposed
in [10]. In this approach, the hash image of each code dis-
semination packet is included in the previous packet, and
the hash image of the first packet is signed and included
in an advertisement packet. A code dissemination packet
can be authenticated only when the packet immediately be-
fore it has been received and authenticated. The authors
of [10] proposed to optimistically store out-of-order pack-
ets. Unfortunately, this decision opens a door to the same
DoS attacks, since the adversary can again send a lot of bo-
gus packets to exhaust receivers’ buffers. Not storing out-
of-order packets is certainly an option to avoid the DoS at-
tacks. However, this will lead to inefficient code dissemina-
tion: Losing one packet at a node will result in the retrans-
mission of all the later packets in the same page.

Deng et al. proposed a scheme to improve the DoS-
resilience of secure code dissemination by using Merkle
hash tree [8]. Besides having the hash image of each page
in the previous one, it also uses a Merkle hash tree to allow
each packet to be immediately authenticated upon receipt.
However, this approach adds additional overhead due to the
transmission of a Merkle hash tree for every page [8]. More-
over, it distributes each hash tree in a level-by-level fashion;
only after every packet in one level is received and verified
can the packets in the next level be requested. This indeed
disables the efficient page-by-page propagation in Deluge,
leading to higher propagation delays.

Though all existing approaches [8, 10, 17] are based on
Deluge [13], none of them provide a satisfactory solution
to the authentication of advertisement and Selective Nega-
tive Acknowledgment (SNACK) packets. (In Deluge, such
packets are used to advertise new data and facilitate the
request and retransmission of packets.) Indeed, the ap-
proaches in [10, 17] overlooked the authentication of such
packets. As a result, the adversary can forge such packets
and exploit the Deluge epidemic and suppression mecha-
nisms to launch DoS attacks. For example, the adversary
may repeatedly request packets from a node to exhaust its
battery power. Moreover, the adversary may request pack-
ets from a non-existing node; due to the Deluge suppres-
sion mechanism, others that overhear this request will not
send request for packets (to real nodes). The authors of [8]
discussed the authentication of SNACK packets, but over-
looked the issue of advertisement packets.

Another critical issue common to these approaches [8,
10, 17] is the vulnerability to DoS attacks against the sig-
natures used to bootstrap secure code dissemination. The
approaches in [10, 17] did not consider such threats at all.

As a result, the adversary can broadcast packets with bogus
signatures, and force all the receivers to perform expensive
signature verifications. The approach in [8] proposes to re-
lease previously undisclosed values in a one-way hash chain
to mitigate such DoS attacks. However, this method is vul-
nerable to online attackers. Once the adversary overhears
a hash value during a legitimate code dissemination, it can
reuse the value to send forged signatures to other regions
of the network. Due to the multi-hop and low-bandwidth
nature of wireless sensor networks, the adversary has suffi-
cient time to launch DoS attacks against many sensor nodes.

1.2 Proposed Approach

In this paper, we present the design, development, and
evaluation of an efficient, secure, robust, and DoS-resistant
code dissemination system named Seluge for wireless sen-
sor networks. Seluge is an extension to Deluge [13],
an open source code dissemination system included in
TinyOS [4]. It inherits the efficiency and robustness prop-
erties from Deluge, and at the same time provides security
protections for code dissemination, including the integrity
protection of code images and resistance to the following
three classes of DoS attacks: (1) DoS attacks against sig-
nature packets; (2) DoS attacks against code dissemination
packets; and (3) DoS attacks against maintenance packets.
To the best of our knowledge, these are all the DoS attacks
that manipulate code dissemination protocols.

The key contribution of Seluge is a novel way to orga-
nize the packets used to distribute new code images. By
carefully arranging code dissemination data items and their
hash images in packets, Seluge provides immediate authen-
tication of each packet upon receipt, without disrupting the
efficient propagation mechanisms used by Deluge. Thus, it
can defeat the DoS attacks exploiting authentication delays.

Seluge properly authenticates advertisement and
SNACK packets. As a result, it can prevent DoS attacks ex-
ploiting the Deluge epidemic propagation and suppression
mechanisms.

Seluge uses a signature to bootstrap the authentication of
a new code image. However, unlike the previous attempts,
Seluge uses a weak authentication along with the signature.
This weak authentication mechanism has nice properties:
It can be efficiently verified by a regular sensor node, but
it takes a computationally powerful attacker a substantial
amount of time to forge a weak authenticator. Moreover,
it cannot be pre-computed. Thus, this weak authentication
mechanism provides an effective filter of forged signatures.
As a result, Seluge is not subject to the same DoS attacks
against signature verifications as the previous approaches.

Note that Seluge does not deal with DoS attacks not tar-
geted at code dissemination protocols (e.g., jamming at-
tacks). We need other mechanisms to handle those threats.

Compared with the previous attempts [8, 10, 17], Seluge

446

not only provides integrity protection for code images, but
is also resistant to various DoS attacks that exploit code dis-
semination protocols. Indeed, Seluge is superior to all the
previous solutions [8, 10, 17], and is the only solution that
seamlessly integrates the security mechanisms and the effi-
cient Deluge propagation strategies.

1.3 Organization

The rest of this paper is organized as follows. The next
section clarifies our assumptions and the threats to code dis-
semination in wireless sensor networks. Section 3 gives a
brief overview of Deluge. Section 4 presents the techniques
used in Seluge for secure and DoS-resistant code dissem-
ination. Section 5 provides theoretical analysis of the se-
curity and performance of Seluge. Section 6 describes the
implementation and experimental evaluation of Seluge in a
network of MicaZ motes. Section 7 concludes this paper
and points out some future research directions.

2 Assumptions and Threat Model

Assumptions: We assume the source of the code im-
ages, i.e., the base station, is a powerful node (e.g., a laptop
PC) with sufficient energy supply. We assume that sensor
nodes are resource constrained. A sensor node may be able
to perform a limited number of public key cryptographic op-
erations. For example, a MicaZ mote can perform a 160-bit
ECC signature verification operation in about 2.43 seconds
using TinyECC [19]. However, a node cannot afford per-
forming many such operations due to the intensive compu-
tation and energy consumption. We assume the packet size
is large enough to hold a signature and other information re-
quired by a signature packet. This can be satisfied on sensor
platforms with IEEE 802.15.4 compliant radios [15], where
the maximum payload size is 102 bytes. We assume each
node has enough memory to store the disseminated code
image (e.g., using the measurement flash).

We assume Deluge as the underlying code dissemina-
tion protocol. We assume the base station has a private and
public key pair, and each sensor node in the network is pre-
configured with the base station’s public key. We also as-
sume sensor nodes are able to establish pairwise keys be-
tween neighbor nodes, for example, using one of the exist-
ing schemes (e.g., [6, 9, 20].

Threat Model: We assume the adversary has access to
computationally resourceful nodes such as laptops. The ad-
versary may launch both external and insider attacks. In ex-
ternal attacks, the adversary does not control any valid node
in the network. The adversary may attempt to eavesdrop for
sensitive information, inject forged messages, replay pre-
viously intercepted messages, and impersonate valid sensor
nodes. Moreover, the adversary may fake non-existing links
by launching wormhole attacks [12]. The adversary may
use Sybil attacks [23], where one node presents multiple

identities to defeat typical fault tolerant mechanisms. The
adversary may launch DoS attacks by, for example, forg-
ing a large number of signature packets or exploiting weak-
nesses of the code dissemination protocol. The adversary
may jam the communication channel; however, we assume
that the adversary cannot constantly jam the communication
channel without being detected and removed.

The adversary may compromise some nodes to attack the
rest of the network. We call such attacks insider attacks,
since the compromised nodes are considered a part of the
network before they are identified and removed. However,
we assume that the majority of the nodes are not compro-
mised. The adversary may exploit the compromised nodes
in arbitrary ways to attack the remaining nodes. For ex-
ample, the adversary may instruct the compromised nodes
to intercept sensitive information even if the messages are
encrypted, (selectively) drop packets, and launch Sybil at-
tacks [23]. The adversary may also instruct the compro-
mised nodes not to cooperate with others, inject false data,
and exploit specific weaknesses of various protocols. How-
ever, we assume the base station cannot be compromised.

With those capabilities, the adversary attempts to dis-
seminate illegal code images into the sensor network using
the code dissemination mechanism, or launch DoS attacks
to consume the limited resources (e.g., battery power, mem-
ory) on select sensor nodes.

3 Background: Deluge Overview

Deluge [13] is an open source code dissemination system
for wireless sensor networks running TinyOS [4]. Deluge
uses a page-by-page dissemination strategy. A code image
is divided into fixed-size pages, and each page is further
split into same-size packets. The pages for a code image
is delivered in a sequential order. After completely receiv-
ing a page, a node advertises the availability of the newly
received page, and may transmit the corresponding packets
upon request. On the other hand, a receiver requests a page
only after having received all packets in previous pages.

Deluge uses an epidemic protocol [18] for efficient ad-
vertisement of code meta data [13]. Each node periodically
advertises the version of its code image and the number of
pages it has for that version. For energy efficiency, the ad-
vertisement rate is dynamically adjusted: If a node discov-
ers its own advertisement is different from those received
from others, it increases its advertisement rate. Otherwise,
it decreases the rate. As a result, Deluge can achieve rapid
propagation during dissemination of a new code image, but
consumes little resource in steady state.

Once a node finds out from an advertisement packet that
a neighbor node has the page it needs, it uses Selective Neg-
ative Acknowledgment (SNACK) packets to request trans-
mission from this neighbor. Each SNACK packet contains
a requested page number and a bit vector indicating the re-

447

quested packets. Upon receiving several request packets for
the same page, a node computes the union of the requested
packets, and transmits the packets in a round-robin fashion.

Deluge uses various message suppression mechanisms
for efficiency reasons. To reduce redundant advertisements,
each node suppresses its own advertisement if the number
of overheard advertisement packets having the same infor-
mation is over a predefined threshold. Moreover, if a node
overhears request (or data) packets for a page that it is about
to request or has already received, it suppresses its own re-
quest packet. Similarly, if a node overhears request (or data)
packets for the pages with smaller indices than that of the
page it is currently transmitting, the node suppresses trans-
mission of the subsequent data packets. By using such sup-
pression mechanisms, Deluge increases the possibility that
nodes in the same region wait for the same page and conse-
quently maximizes the effect of overhearing.

4 Design of Seluge

Seluge relies on Deluge [13] for efficiency (via epidemic
propagation and suppression) and robustness (via SNACK).
To defend against the security threats against code dis-
semination, Seluge further adds three layers of protection:
(1) Immediate authentication of code dissemination pack-
ets, (2) authentication of page advertisement and SNACK
packets, and (3) anti-DoS protection for signature packets.
The key contribution of Seluge is that it provides authen-
tication and DoS-resistant protections by efficiently using
cryptographic primitives, and at the same time still allows
the efficient code dissemination mechanisms in Deluge.

We use the following notations: H(·) denotes a crypto-
graphic hash function; Sig(M) denotes the signature of M
signed by the base station; C ‖ D denotes the concatenation
of C and D; and |E| denotes the size of E in byte.

4.1 Immediate Authentication of Code
Dissemination Packets

Following Deluge [13], we partition the code image to
be disseminated into fixed-size pages. (For simplicity, we
assume all pages have the same size. Our description can
be modified slightly to accommodate the cases where the
last page has a smaller size.) Assume there are P pages,
denoted as page 1 through page P . We split each page i
(1 ≤ i ≤ P) into N fixed-size packets, denoted as Pkti,1
through Pkti,N .

As discussed earlier, due to the Deluge page-by-page
dissemination strategy, only after successfully receiving all
packets in the current page does a node request the next
page from a sender. We exploit this property to enable im-
mediate authentication of each received packet at a node.

Construction of Code Dissemination Packets: Fig-
ure 1 illustrates our authentication scheme for the code im-
age to be disseminated. We append the hash image of each

PktP,1

Pkt2,1 Pkt2,2 Pkt2,N-1 Pkt2,N...

Pkt1,1 Pkt1,2 Pkt1,N-1 Pkt1,N...

PktP-1,1 PktP-1,2 PktP-1,N-1 PktP-1,N...

.
.
.

.
.
.

PktP,N-1PktP,2

Hash Tree

...

Signature

.
.
.

.
.
.

...

Page 1:

Page 2:

Page P

Page P:

Page 0:

Signature Packet:

PktP,N

Figure 1. Authentication of code images.

packet in page P to the corresponding packet in page P −1.
For example, the hash image of packet PktP,1, H(PktP,1),
is included in packet PktP−1,1. We then include the hash
image of each packet in page P − 1 in the corresponding
packet in page P −2. This process continues until we finish
hashing all the packets in page 2 and including their hash
images in the corresponding packets in page 1.

As shown in Figure 1, we use Merkle hash tree [21] to fa-
cilitate the authentication of the hash images of the packets
in page 1. We refer to the packets related to this Merkle
hash tree collectively as page 0. Figure 2 illustrates the
construction of page 0 and its packets. Specifically, we
concatenate the hash images of the page 1 packets to form
HashV alues = H(Pkt1,1) ‖ · · · ‖ H(Pkt1,N), and then
fragment HashV alues into M = 2k pieces, where k is the
minimum value that satisfies

N · |H(·)|
2k

+ k · |H(·)| ≤ Maximum payload size. (1)

(The condition in Equation 1 is to make sure each leaf
node and its authentication path can be transmitted in one
packet.) We denote the resulting fragments as V0,1, V0,2, ...,
V0,M , and construct a Merkle hash tree using V0,1, V0,2, ...,
and V0,M as leaf nodes [21]. Figure 2 shows the construc-
tion of the Merkle hash tree when N = 48 and M = 8.
Specifically, we compute ei = H(V0,i) (i = 1, 2, ..., M),
and build a binary tree by computing internal nodes from
adjacent children nodes. Each internal node is the hash im-
age of the two children nodes. For example, in Figure 2,
e1−2 = H(e1||e2), and e1−4 = H(e1−2||e3−4).

We then construct M packets using this Merkle hash
tree. Specifically, we construct one packet Pkt0,i for each

448

e1 e6
e5e4e3e2

e5-6 e7-8

e1-4 e5-8

e1-8

Signature

V0,1 V0,2 V0,3 V0,4 V0,5 V0,6 V0,7 V0,8

e7 e8

e3-4e1-2

H(Pkt1,1) H(Pkt1,6)... H(Pkt1,43) H(Pkt1,48)......

|| ||

P
a
g
e
0
:

Figure 2. The Merkle hash tree constructed
for page 0 when M = 8 and N = 48. Packet
Pkt0,i (i = 1, ..., M) consists of V0,i and the
values in its authentication path. For exam-
ple, packet Pkt0,1 consists of V0,1, e2, e3−4,
and e5−8.

V0,i, where i = 1, 2, ..., M ; each packet Pkt0,i consists of
V0,i and the values in its authentication path (i.e., the sib-
lings of the nodes in the path from V0,i to the root) in the
Merkle hash tree. For example, packet Pkt0,1 consists of
V0,1, e2, e3−4, and e5−8 in Figure 2.

We include the root of the Merkle hash tree, the meta
data about the code image (e.g., version number, size), and a
signature over all of them in a signature packet. For the sake
of presentation, we refer to the packets in page 1 through
page P as data packets, and the packets in page 0 as hash
packets. In addition to the payload discussed earlier, each
packet also has a header describing auxiliary information
about the code image, pages, and packets.

The reader may have noticed that we must choose pa-
rameters N and M carefully to ensure that the hash packets
are small enough to be transmitted in wireless sensor net-
works, as indicated in Equation 1. This is indeed well ac-
commodated by the current generation of sensor platforms
that use IEEE 802.15.4 compliant radios [15], such as Mi-
caZ [2] and TelosB [3] motes. For example, we may set the
number of packets per page N = 48, following the default
configuration in Deluge. We may use the 64-bit truncation
of SHA-1 as H(x), which provides sufficient pre-image re-
sistance and has been used previously (e.g., [10]). More-
over, we may set the number of leaf nodes in the Merkle
hash tree M = 8. As a result, each hash packet consists
of 6 hash images of page 1 packets (48 bytes) and 3 hash
images (24 bytes) in the authentication path in the Merkle
hash tree. The total payload size is 72 bytes, smaller than

the 102 bytes maximum payload size in the IEEE 802.15.4
standard [15].

Transmission & Authentication of Code Dissemina-
tion Packets: We rely on the underlying Deluge protocol to
distribute packets for a given code image (in a page-by-page
fashion). The additional capability provided by our packet
construction is the immediate authentication of packets re-
ceived by each node. This property is critical to sensor
nodes in order to prevent DoS attacks aimed at exhausting
receivers’ buffers. Note that the approaches in [10, 17] do
not provide this property, and thus are vulnerable to such
DoS attacks. Though not vulnerable to such DoS attacks,
the approach in [8] is much less efficient than Seluge.

The base station first broadcasts the signature packet,
which serves as the advertisement of the new code image.
Upon receiving a signature packet, each node verifies the
signature to authenticate the root of the Merkle hash tree
constructed for page 0. This root allows the node to authen-
ticate each hash packet in page 0 upon receipt, using the val-
ues in the authentication path included in the same packet.
For example, in Figure 2, if e1−8 has been authenticated
in the signature packet, upon receiving a packet consisting
of V0,1, e2, e3−4, and e5−8, a node can immediately verify
whether H(H(H(H(V0,1)||e2)||e3−4)||e5−8) = e1−8. If
yes, the received packet is accepted; otherwise, it must be a
forged packet and should be discarded right away.

Since the hash packets include all the hash images
of the page 1 packets, successful receipt of them allows
the node to further authenticate page 1 packets immedi-
ately upon receiving them. To continue the above exam-
ple, the receipt of an authenticated V0,1, where V0,1 =
H(Pkt1,1)|| · · · ||H(Pkt1,6), implies the correct receipt of
H(Pkt1,1), ..., H(Pkt1,6). Thus, when this node receives
packet Pkt1,i (i = 1, ..., N) in page 1, it can immedi-
ately verify whether hashing Pkt1,i results in H(Pkt1,i)
and decide whether the received packet should be accepted
or discarded. Following the same reasoning, receipt of the
packets in page i (i = 0, 1, ..., P − 1) allows a node to au-
thenticate all the packets in page i + 1 independently and
immediately after those packets are received.

4.2 Authentication of Page Advertise-
ment and SNACK Packets

As discussed in Section 1.1, several efficient code prop-
agation mechanisms used by Deluge are vulnerable to ex-
ploits. The root cause of these vulnerabilities is the lack of
authentication. We have provided immediate authentication
of code packets in the previous subsection. However, the
adversary can still exploit page advertisement and SNACK
packets. Thus, advertisement and request packets must be
authenticated as well. Because of the heavy use of over-
hearing and suppression, such authentication must be (lo-
cal) broadcast authentication, i.e., a node can authenticate

449

any packet transmitted by its neighbors.
We use cluster keys for local broadcast authentication.

(This was first mentioned in [8]; however, the authors of [8]
did not give specific details.) Specifically, each node gener-
ates a per-node cluster key, which is intended to authenticate
all the advertisement and SNACK packets transmitted from
itself. When a node is deployed, it notifies its neighbors
through periodic hello packets. We assume sensor nodes
can establish pairwise keys between neighbor nodes using
an existing scheme (e.g., [6, 9, 20]). Upon receiving a hello
packet from a new neighbor, after a random delay, each
node replies with its cluster key to the sender encrypted us-
ing their pairwise key. Moreover, a node that just sends a
cluster key to a new neighbor also broadcasts a hello packet
so that the new neighbor can reply with its own cluster key.

For each outgoing page advertisement or SNACK
packet, the sender includes a unique sequence number (to
prevent replay attacks), and authenticates the packet using
its cluster key. Each node stores the cluster keys of its neigh-
bors. For each incoming page advertisement or SNACK
packet, a node uses the sender’s cluster key to verify its in-
tegrity. A node simply discards unauthenticated or duplicate
packets. The limitation of this approach is that it cannot
uniquely identify senders. As a result, a compromised node
can pretend to be its neighbors using their cluster keys.

In an earlier version of this paper [14], we discussed
a complementary approach that uses µTESLA for local
broadcast authentication. The µTESLA approach provides
true broadcast authentication of page advertisement and
SNACK packets. However, due to the use of µTESLA,
there has to be either receiver side or sender side de-
lay [25, 26]. The current version of Seluge adopts the clus-
ter key approach due to its simplicity. We will explore the
µTESLA approach in our future work.

4.3 Mitigating DoS Attacks against Sig-
nature Packets

All the previous secure code dissemination schemes [8,
10, 17] as well as Seluge use a signature to bootstrap the
authentication of a code image. This signature is vulnera-
ble to DoS attacks: The adversary can inject bogus signa-
ture packets into the network, force the nodes that receive
such packets to perform expensive signature verifications,
and eventually exhaust their limited battery power.

Seluge adapts a recently developed weak authentication
mechanism called message specific puzzles [24] to mitigate
such DoS attacks [24]. This method has a setup phase be-
fore the deployment of sensor networks. During setup, the
base station generates a one-way key chain consisting of
K0, K1, ..., Kn, where Ki = H(Ki+1) (i = n − 1, n −
2, ..., 0) and H(·) is a cryptographic hash function. This is
done by randomly selecting Kn and repeatedly performing
hash function H to Kn, as shown in Figure 3. The base sta-

tion then pre-distributes the key chain commitment K0 to all
sensor nodes before deployment. The keys K1, K2, ..., Kn

are called puzzle keys, and the puzzle key Ki is used for the
ith version of the disseminated code image.

K0 K
n-1K1 K2 K

n

H H HHH

Figure 3. One-way key chain for puzzle keys.

We use message specific puzzles to provide another layer
of protection for the signature packet of each code im-
age. For each version i, we use the puzzle key Ki to
generate a puzzle. Consider the signature packet of ver-
sion i code image, denoted as i||Mi||Sig(i||Mi), where
i is the version number, Mi represents the collection of
the other fields in the signature packet, and Sig(i||Mi) is
the signature generated by the base station. The signa-
ture packet i||Mi||Sig(i||Mi) and the puzzle key Ki con-
stitute a message specific puzzle. A valid solution Pi

is such a value that after applying the hash function H
to i||Mi||Sig(i||Mi)||Ki||Pi, the first l bits of the result-
ing image are all “0”, as illustrated in Figure 4. The
parameter l determines the strength of the puzzle. Be-
fore transmitting the signature packet, the base station first
tries to solve the puzzle by finding the puzzle solution Pi.
Then the base station broadcasts the final signature packet
i||Mi||Sig(i||Mi)||Ki||Pi.

H

i || Mi || Sig(i ||Mi) || Ki || Pi

00 00 xx...xx

l bits

Figure 4. Message specific puzzles.

Upon receiving a signature packet, each node first veri-
fies that the puzzle key is valid using H and K0 (or a pre-
viously verified puzzle key) and that the puzzle key has not
been used along with a valid signature before. Only when
this verification is successful does the node verify the puz-
zle solution. If the puzzle solution is invalid, the receiver
will simply drop the signature packet. Thus, without first
solving some message specific puzzles with a fresh puzzle
key, the adversary cannot force a node to verify signatures
in forged packets.

Message specific puzzles can effectively mitigate DoS
attacks against signature packets in code dissemination.
The puzzle solution in each signature packet can be effi-
ciently verified by a regular sensor node through a few hash
function operations and comparisons. However, a puzzle
solution can only be found through brute-force search due
to the one-way property of the hash function. Moreover,
though it takes the same effort for both the base station

450

and the adversary to solve a puzzle formed by a signature
packet, the base station has a clear advantage over the ad-
versary due to the prior knowledge of the puzzle keys: The
base station has enough time to solve a puzzle off-line be-
fore disseminating a new code image. In contrast, the ad-
versary has to solve puzzles after seeing a puzzle key but
before the puzzle key becomes invalid when the signature
packet reaches the target sensor nodes. Thus, with an appro-
priate puzzle strength, the message specific puzzle mecha-
nism substantially increases the difficulty of launching DoS
attacks against signature packets. Detailed analysis of mes-
sage specific puzzles can be found in [24].

5 Analysis

5.1 Security Analysis
Integrity of Code Images: In Seluge, the trusted base

station uses a digital signature to authenticate the root of
the Merkle hash tree in page 0, with the private key only
known to itself. All the sensor nodes know the public key
of the base station, and thus can verify the signature. Under
the assumption that the adversary cannot compromise the
base station, it is guaranteed that all sensor nodes can au-
thenticate any received signature packet as well as the root
of the Merkle hash tree contained there. This means that all
the nodes can authenticate the hash packets in page 0 once
they receive such packets, based on the security of Merkle
hash tree [21]. The hash packets include the hash images
of the data packets in page 1. Thus, after verifying the hash
packets, a sensor node can easily verify the data packets in
page 1 based on the one-way property of cryptographic hash
functions. Likewise, once verifying the data packets in page
i, a sensor node can easily authenticate the data packets in
page i + 1, where i = 1, 2, ..., P − 1. In summary, if the
adversary injects a forged or modified code image, each re-
ceiving node can detect it easily because of the (immediate)
authentication of code dissemination packets.

Resistance to DoS Attacks: As discussed in Sec-
tion 1.1, there are three types of DoS attacks against Del-
uge based code dissemination: (1) DoS attacks exploiting
authentication delays, (2) DoS attacks exploiting the expen-
sive signature verifications, and (3) DoS attacks exploiting
the Deluge propagation and suppression mechanisms.

Seluge is resistant to all three types of DoS attacks from
external attackers. Due to the page-by-page dissemination
strategy, upon receiving a packet, each node should have al-
ready received its hash image in the corresponding packet
of the previous page (or in a hash packet in page 0). Thus,
it can immediately authenticate any packet it receives in the
current page, and successfully defeat DoS attacks exploit-
ing authentication delays. Moreover, because of the use of
message specific puzzles [24], each node can perform a few
efficient hash function operations and comparisons to detect
fake signature packets. Thus, Seluge provides resistance to

DoS attacks that send fake signature packets. Finally, Sel-
uge uses cluster keys to authenticate every advertisement
or SNACK packet. As a result, an external attacker cannot
convince regular nodes to misuse the propagation or sup-
pression mechanisms.

Seluge can successfully defeat the first two types of DoS
attacks even if there are compromised nodes. Indeed, with-
out the private key and the unreleased puzzle keys on the
base station, even an inside attacker cannot forge any code
dissemination packets. However, Seluge cannot entirely
prevent compromised nodes from launching the third type
of DoS attacks that exploit the Deluge propagation and sup-
pression mechanisms. A compromised node may misuse
Deluge propagation and suppression mechanisms to mis-
lead its neighbors. Fortunately, such DoS attacks are hard
to coordinate and easy to detect, and the impacts are local to
the compromised nodes. We will investigate how to detect
such misbehaving nodes in the future.

5.2 Performance Analysis

Communication Overhead: We denote the code im-
age as CI , and the maximum payload size per packet as
|payload|. We first analyze the communication overhead to
set up cluster keys between neighbor nodes, and then derive
the communication overhead to disseminate a code image.
We omit the analysis of overhead due to advertisement and
request packets, because it remains the same as in Deluge.

As described in Section 4.2, each new node periodically
broadcasts hello packets for a while to notify its neighbors.
When a node hears a hello packet from a new neighbor, it
sends its encrypted cluster key to the sender, and requests
the sender’s encrypted cluster key back. This cluster key
exchange phase is performed for a limited period of time
for each node. Thus, the total number of hello and cluster
key packets that each node transmits is limited, though it
varies depending on the actual deployment parameters.

The communication cost for propagating a code image
includes a signature packet, hash packets, and data packets.

The total number of data packets depends on P , the num-
ber of the pages. Given the parameters N (number of pack-
ets per page), |payload| (payload size available for code),
and |H(·)| (size of a hash image), P can be determined as
follows: Since each packet in all the pages except for the
last one should deliver a single hash value, each packet in
page 1 to page P −1 has |payload|− |H(·)| bytes available
for code, and each packet in page P has |payload| bytes
all available for code. Thus, we can calculate P − 1 =
� |CI|−N ·|payload|

N ·(|payload|−|H(·)|)�. The number of packets in the last

page can be calculated as � |CI|−N(P−1)(|payload|−|H(·)|)
|payload| �,

which may be less than N . Thus, the total number of data
packets is (N(P − 1) + � |CI|−N(P−1)(|payload|−|H(·)|)

|payload| �),
where P − 1 = � |CI|−N ·|payload|

N ·(|payload|−|H(·)|)�.

451

Now consider the number of hash packets in page 0,
which is the number of leaves in the Merkle hash tree.
As discussed in Section 4.1, the number of hash packets
is M = 2k(k ≥ 1), where k is the minimum value that
satisfies the following inequality: N ·|H(·)|

2k + k · |H(·)| ≤
|payload|.

Storage Overhead: Now we analyze the maximum
buffer size required on each node. In Seluge, each node
needs to authenticate advertisement and request packets
from its neighbors using the right cluster keys. Thus, each
node should store these cluster keys. Suppose each node
keeps at most m cluster keys for its neighbors. Moreover,
each node needs to store the hash images of the packets in
the page to be received; such hash images are distributed in
the corresponding packets in the previous page. Note that
once a packet is received correctly, its hash image can be
discarded, and the buffer entry can be reused for the hash
image of the packet in the next page. Thus, each sensor
node needs to have buffer for at most N hash images. In
total, the maximum buffer size required by Seluge on each
sensor node is m× |Kc|+ N × |H(·)|, where |Kc| denotes
the size of a cluster key.

Computation Overhead: Now we analyze the compu-
tation cost that Seluge requires on regular sensor nodes. Let
us first consider attack-free cases. For each cluster key mes-
sage, a sender adds message integrity code (MIC) for au-
thentication and then encrypts the cluster key. A received
cluster key packet is decrypted first and then verified with
the MIC in the packet. Therefore, one MIC generation (or
verification) and one encryption (or decryption) per trans-
mission of a cluster key message are required on the sender
(or receiver). Each advertisement or SNACK packet re-
quires a MIC for authentication, and thus a sender (or a
receiver) needs to generate (or verify) a MIC.

Consider the computation required to authenticate one
code image. For each signature packet, two hash operations
are needed to verify the puzzle key and the puzzle solution,
respectively, and a signature verification operation is per-
formed. Each hash packet is verified by log M + 1 = k + 1
hash operations, and the hash packets together requires
M(log M + 1) hash operations. Each of the remaining
data packets is verified by a single hash operation. We al-
ready analyzed the total number of data packets earlier in
this subsection. Thus, in attack-free situations, the total
computation cost required to verify a single code image in-
cludes one signature verification and (2+M(log M +1)+
N(P − 1) + � |CI|−N(P−1)(|payload|−|H(·)|)

|payload| �) hash opera-

tions, where P − 1 = � |CI|−N ·|payload|
N ·(|payload|−|H(·)|)�.

When there are attacks, a node being attacked must per-
form more computation. The actual computation depends
on the volume of the attacks. However, as discussed in Sec-
tion 5.1, the extra computations are mostly those that can be

efficiently performed, such as hash operations.

5.3 Comparison with Previous Ap-
proaches

Comparison with Sluice [17] and Berkeley ap-
proach [10]: Sluice and the Berkeley approach have sim-
ilar constructions as well as similar properties. They can
prevent malicious code images from being accepted at sen-
sor nodes. However, both of them are vulnerable to several
types of DoS attacks. First, they are both vulnerable to DoS
attacks exploiting authentication delays. As discussed in
Section 1.1, the adversary can send a large number of bo-
gus packets to exhaust the buffers at receiving nodes. Sec-
ond, both of them overlooked the authentication of adver-
tisement and SNACK packets. The adversary can attack
sensor nodes by misusing the Deluge propagation and sup-
pression mechanisms. Finally, there is no protection for the
signature packet in either approach. This allows the adver-
sary to exhaust the battery power on sensor nodes by send-
ing a large number of forged signature packets. In contrast,
as discussed in Section 5.1, Seluge can guarantee the code
image integrity and deal with all these attacks.

Comparison with Colorado approach [8]: The Col-
orado approach can provide code image integrity protec-
tion. In addition, it allows each code packet to be imme-
diately authenticated upon receipt, and thus is not vulnera-
ble to DoS attacks exploiting authentication delays. Though
the Colorado approach achieves the same property as Sel-
uge, it is much less efficient than Seluge. The Colorado
approach uses a per-page Merkle hash tree; a node trans-
mits a request packet for each level in the tree, and waits
for the packets only at the requested level. This essentially
disrupts the efficient page-by-page propagation mechanism
used by Deluge. As a result, this approach adds not only ad-
ditional packets to transmit, but also additional propagation
delay. In contrast, Seluge seamlessly integrates the Deluge
page-by-page propagation mechanism.

As discussed in Section 1.1, the Colorado approach is
vulnerable to online DoS attacks against the signature pack-
ets. Moreover, though the Colorado approach discussed
the possibility of authenticating SNACK packets to partially
address the DoS attacks exploiting the Deluge propagation
and suppression mechanisms, it overlooked the authentica-
tion requirements for advertisement packets. Therefore, it is
still vulnerable to similar DoS attacks. In contrast, Seluge
can handle both types of DoS attacks gracefully.

6 Implementation and Experiments

6.1 Implementation
We implement Seluge as an extension to Deluge 2.0 in

the current TinyOS distribution. Our implementation has
both base station side and sensor side programs. The base
station side programs are Java programs expected to run on

452

a PC. They extend the Deluge Java tools to construct and
inject new code dissemination packets into sensor networks.
The sensor side program is written in nesC [11] and runs on
regular sensor nodes.

We use the 64-bit truncation of SHA-1 as the hash func-
tion H . It provides sufficient pre-image resistance, and has
been used previously (e.g., [10]). For digital signatures, we
use ECDSA over the 160-bit elliptic curve secp160k1,
which is defined in [5]. On the base station side, we use
the JCE provider in the Bouncy Castle Crypto APIs [1] for
hash function, key generation, and signature generation op-
erations. On each sensor node, we integrate TinyECC [19]
into Seluge to perform hash function and signature verifi-
cation operations. Moreover, we use the hardware crypto-
graphic support in the CC2420 radio component on MicaZ
motes [2] for symmetric cryptographic operations, includ-
ing the encryption (using AES) and authentication (using
CBC-MAC) of cluster keys, and the authentication of page
advertisement and SNACK packets.

We add the following functionalities in the Java tools on
the base station side: Computation of the hash images of the
data packets from the last to the first page, construction of
the page 0 Merkle hash tree and then the hash packets from
the hash images of the page 1 packets, and generation of the
signature packet from the root of the Merkle hash tree and
the meta data of the code image (e.g., version number, size).
We include the message specific puzzle mechanism devel-
oped in [24] in both the Java tools and the sensor programs.

We add a PacketVerifier module into the Deluge
nesC library to perform verification of signature packets (in-
cluding both puzzle and signature verification), hash pack-
ets, and data packets. The commitment of the puzzle key
chain used in message specific puzzles and the public key
of the base station, which are generated by the Java tools,
are pre-distributed to all nodes. The pairwise keys used to
distribute cluster keys are also pre-distributed to all nodes.

Table 1. Code size (bytes) on MicaZ.
ROM RAM

Deluge 22,226 1,123
Seluge 45,258 2,278
TinyECC in Seluge 13,044 426

Table 1 shows the ROM and RAM usage of Seluge on
MicaZ motes. The code size of Deluge and that of TinyECC
are also included for reference purposes. It is easy to see
that Seluge increases both the ROM and RAM consump-
tion compared with Deluge, and the majority of the ROM
increase is due to TinyECC.

6.2 Experimental Evaluation

We have provided theoretical analysis of the security and
performance properties of Seluge in Section 5. In this sub-
section, we report the experimental evaluation of Seluge

in a network of MicaZ motes [2]. For comparison pur-
poses, we performed the same set of experiments with Del-
uge [13]. Moreover, as discussed in Section 1.1, the Berke-
ley approach [10] can be revised to mitigate the DoS attacks
against dissemination packets. We obtained the source code
from the authors of [10], made the revision, and used it in
our experiments. Finally, we implemented the Colorado ap-
proach [8] and included it in our experimental evaluation.
However, we did not include Sluice [17], since it offers
much weaker security properties than the other approaches.

We use two performance metrics in our evaluation:
Propagation delay and communication overhead. The prop-
agation delay is the time required to finish disseminating a
code image to all the nodes in the network. As mentioned
in [13], for performance reasons, Deluge requires that ev-
ery node keep its radio on. Thus, the propagation delay is
closely related to the energy consumption required by code
dissemination. The communication overhead is measured
as the total number of packets transmitted by all the nodes
during a code dissemination, which is also related to radio
power consumption. Moreover, we also examine the prop-
agation dynamics on individual nodes during the code dis-
semination to understand how each node receives different
pages of the code image.

Figure 5. The testbed (65 MicaZ motes; 152.5
feet × 97 feet).

We perform the experiments in a testbed of 65 MicaZ
motes. Figure 5 shows the layout of the testbed. The sen-
sor nodes are deployed in 25 rooms, including offices, labs,
server rooms, and corridors, covering an area of 152.5 ×
97 square feet. We equip each node with an Ethernet pro-
gramming board, which provides remote access to the node.
We only use the programming boards to gather evaluation
results from the nodes; they do not interfere with the ra-
dio communication between sensor nodes at all. We set the
transmission power level of the radio module (CC2420) as
−3dBm to increase the hop distance of the network.

Similar to Deluge, we need to configure a number of pa-

453

rameters for Seluge before code dissemination. We divide
each code page into 48 packets, as the default setting in Del-
uge. To integrate the security mechanisms and the Deluge
propagation mechanisms, we have to make certain changes
to some Deluge parameters. Deluge uses a 2ms gap be-
tween two data packet transmissions. However, a SHA-1
hash verification operation takes about 15ms. Thus, we in-
crease the transmission gap from 2ms to 17ms to accom-
modate this time requirement. Moreover, we increase the
SNACK packet delay from 256ms to 1 second, so that a re-
questing node gives the sender enough time to transmit all
the requested packets. Due to the dependency between the
SNACK delay and advertisement delay, we also change the
lower bound of the advertisement period to 2 seconds. The
upper bound of the advertisement period remains the same
default value of 60 seconds as in Deluge.

In these experiments, we use two different packet pay-
load sizes, 102 bytes and 62 bytes, to examine the perfor-
mance in different situations. (Note that the maximum pay-
load size in IEEE 802.15.4 [15] is 102 bytes.) To investi-
gate and compare the impact of disseminated code size on
performance, we use four different code image sizes: 10K
bytes, 20K bytes, 30K bytes, and 40K bytes. In each exper-
iment, we inject a new code image at the star-shaped node
located at the bottom-right corner in Figure 5. For each test
case, we perform the same experiment 20 times and take an
average over them.

6.2.1 Propagation Delay
Figure 6 shows the propagation delays of these schemes
in the experiments. As the code image size increases, the
propagation delays of all schemes increase almost linearly.
Since the number of packets required for a given code image
increases as the packet payload size decreases, for all ap-
proaches, the propagation delays for 62 bytes payload size
are longer than those for 102 bytes payload size.

Let us first compare the propagation delays in Seluge
and the Colorado approach. For all the code image sizes,
the propagation delays in Seluge are much less than those
in the Colorado approach, and the gap between them be-
comes larger as the code image size increases. Among all
the experiments, the average propagation delay of the Col-
orado approach is 63% longer than that of Seluge. When
the packet payload size is 62 bytes, it takes the Colorado
approach 30% to 82% longer time than Seluge to dissem-
inate a code image. In the worst case, when the code im-
age size is 20K bytes, the delay of the Colorado approach
is about 82% longer than that of Seluge. Similarly, when
the packet payload size is 102 bytes, it takes the Colorado
approach 51% to 73% more time to finish disseminating a
code image, where the worst case (i.e., 73%) happens when
the code image size is 30K bytes.

As we explained earlier, the main reason for this perfor-
mance difference is that the Colorado approach propagates

0

100

200

300

400

500

600

700

0 10 20 30 40

Code size (KB)

D
el

ay
 (

se
c)

Seluge-102
Colorado approach-102
Berkeley-102
Deluge-102
Seluge-62
Colorado approach-62
Berkeley-62
Deluge-62

Figure 6. Propagation delay. (The Berke-
ley approach does not protect maintenance
packets. When this mechanism was dis-
abled in Seluge, the propagation delay was
reduced by 30 – 146 seconds.)

each code page and the corresponding per-page Merkle
hash tree in a level-by-level fashion. This approach in-
creases the interaction between a sending node and its re-
ceivers, and disrupts the page-by-page propagation in Del-
uge. In contrast, Seluge integrates the authentication and
DoS-resistance mechanisms seamlessly with the Deluge
page-by-page propagation and suppression mechanisms.

Let us now compare Seluge with Deluge. In all the ex-
periments, Seluge introduces on average 21% longer prop-
agation time than Deluge. When the packet payload size is
62 bytes, it takes Seluge 9% to 82% longer time than Del-
uge. In the case, when the code image size is 40K bytes,
the delay of Seluge is even about 7% shorter than that of
Deluge. When the packet payload size is 102 bytes, the
propagation delay of Seluge is 1% to 29% longer than Del-
uge. The worst case scenarios in both packet payload sizes
happen when the code image size is 10K bytes.

The additional delay introduced by Seluge is due to the
propagation and verification of the signature packet, the dis-
semination of the (additional) hash packets, and the increase
of the number of the data packets due to the inclusion of
hash images. Nevertheless, as shown in Figure 6, the ad-
ditional propagation delay introduced by Seluge is much
smaller than that by the Colorado approach.

The (revised) Berkeley approach introduces slightly
longer delay than Seluge. However, the Berkeley approach
does not provide authentication of Deluge maintenance
packets. To get better understanding of the performance
difference between Seluge and the Berkeley approach, we
run another set of experiments using Seluge with cluster
key based local authentication disabled. Our results indi-
cate that without local authentication of maintenance pack-
ets, the propagation delay in Seluge can be reduced by 56,

454

106, 112, and 146 seconds for code sizes 10K, 20K, 30K,
and 40K when the packet size is 62 bytes, and by 30, 55, 77,
132 seconds for code sizes 10K, 20K, 30K, and 40K when
the packet size is 102 bytes.

These experimental results demonstrate that Seluge in-
troduces much less propagation delay into code dissemina-
tion than the Colorado approach, in addition to the stronger
security properties.

6.2.2 Communication Overhead
Figure 7 shows the communication overheads of all these
schemes, which are measured as the total number of pack-
ets transmitted by all the nodes in each test case. For the
communication overheads of Seluge and the Colorado ap-
proach, we consider SNACK packets, hash packets (called
index packets in the Colorado approach [8]), and data pack-
ets because those three types of packets are additionally re-
quired for a dissemination. Likewise, we consider SNACK
and data packets for the communication overhead of Del-
uge and the Berkeley approach. As in the evaluation results
for propagation delays, for all approaches, the communica-
tion overheads increase approximately linearly as the code
image size grows, and the communication overheads for 62
bytes payload size are larger than those for 102 bytes pay-
load size. In all the experiments, the Berkeley approach
has the largest communication overhead, the Colorado ap-
proach is ranked the second, and Seluge has slightly larger
communication overhead than Deluge. In particular, the
Berkeley approach has more than twice as much overhead
than any other approach.

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40

Code size (KB)

N
um

be
r

of
 t

ra
ns

m
it

ed
 p

ac
ke

ts
 .

Seluge-102
Colorado approach-102
Berkeley-102
Deluge-102
Seluge-62
Colorado approach-62
Berkeley-62
Deluge-62

Figure 7. Communication overhead.

6.2.3 Propagation on Individual Nodes
We also investigate how code pages are propagated on indi-
vidual nodes to get more insights. In the following, we se-
lect two nodes in the testbed, which are marked as n1 and n2

in Figure 5, to see how they receive code pages over time.
(We select these two nodes to present, because n1 is close
to the source and n2 is far away from the source. They are

expected to have different situations during code dissemina-
tion.) In the following, we show the dynamic propagation
features on these two nodes, using the test case where we
inject a code image of 30K bytes with 102 bytes payload
size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

Time (sec)

C
om

pl
et

io
n

ra
te

Seluge-n1
Seluge-n2
Colorado-n1
Colorado-n2
Berkeley-n1
Berkeley-n2
Deluge-n1
Deluge-n2

Figure 8. Dissemination progress over time
on selected nodes.

Figure 8 shows the time points when n1 or n2 finishes re-
ceiving every page of the code image under all approaches.
The x-axis represents the completion time for a page, and
the y-axis represents the ratio of the number of completed
pages to the total number of pages in a code image. As time
goes on, n1 and n2 gradually complete the receiving of the
code image. Due to the effect of spatial multiplexing, n2

receives some pages of the code image before n1 finishes to
receive all the pages of the code image.

Figure 8 confirms at individual node level that Seluge al-
lows much faster propagation than the Colorado approach
and the Berkeley approach. Compared to Deluge, Seluge
shows very similar dissemination dynamics on both of the
nodes. Moreover, on these two nodes, Seluge even sur-
passes Deluge from certain time points and finally com-
pletes the code image earlier than Deluge, though it involves
additional security mechanisms such as signature verifica-
tion and hash packet distribution.

7 Conclusion
In this paper, we presented the design, implementation,

and evaluation of Seluge. Besides the efficiency and robust-
ness inherited from Deluge, Seluge provides security pro-
tections for code dissemination, including the integrity pro-
tection of code images and resistance to the DoS attacks that
exploit the code dissemination protocol. Seluge is superior
to all previous attempts for secure code dissemination, and
is the only one that seamlessly integrates the security mech-
anisms and the Deluge efficient propagation strategies.

Acknowledgment
We would like to thank Andreas Terzis for shepherding

our paper, Prabal Dutta and David Culler for helpful discus-

455

sions and providing source code for their work in [10], and
the anonymous reviewers for their useful comments.

References

[1] Bouncy castle crypto apis. http://www.
bouncycastle.org.

[2] MICAz: Wireless measurement system. http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/MICAz_Datasheet.pdf.

[3] TelosB mote platform. http://www.xbow.com/
Products/Product_pdf_files/Wireless_
pdf/TelosB_Datasheet.pdf.

[4] TinyOS: An open-source OS for the networked sensor
regime. http://www.tinyos.net/.

[5] Certicom Research. Standards for efficient cryptography
– SEC 2: Recommended elliptic curve domain parame-
ters. http://www.secg.org/collateral/sec2_
final.pdf, September 2000.

[6] H. Chan, A. Perrig, and D. Song. Random key predistribu-
tion schemes for sensor networks. In IEEE Symposium on
Research in Security and Privacy, pages 197–213, 2003.

[7] Crossbow Technology Inc. Mote in-network programming
user reference, 2003.

[8] J. Deng, R. Han, and S. Mishra. Secure code distribution
in dynamically programmable wireless sensor networks. In
Proceedings of the Fifth International Conference on Infor-
mation Processing in Sensor Networks (IPSN ’06), April
2006.

[9] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise
key pre-distribution scheme for wireless sensor networks.
In Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS’03), pages 42–51, October
2003.

[10] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing
the deluge network programming system. In Proceedings of
the Fifth International Conference on Information Process-
ing in Sensor Networks (IPSN ’06), April 2006.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of Program-
ming Language Design and Implementation (PLDI ’03),
June 2003.

[12] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense
against wormhole attacks in wireless ad hoc networks. In
Proceedings of INFOCOM 2003, April 2003.

[13] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale.
In Proceedings of the 2nd International Conference on Em-
bedded Networked Sensor Systems (SenSys ’04), November
2004.

[14] S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure
and dos-resistant code dissemination in wireless sensor net-
works. Technical Report TR-2007-21, NC State University,
Department of Computer Science.

[15] IEEE Std 802.15.4-2003. IEEE standard for information
technology – telecommunications and information exchange
between systems – local and metropolitan area networks –

specific requirements – part 15.4: Wireless medium access
control (MAC) and physical layer (PHY) specifications for
low-rate wireless personal area networks (LR-WPANs).

[16] S. Kulkarni and L. Wang. MNP: multihop network repro-
gramming service for sensor networks. In Proceedings of
the 25th International Conference on Distributed Comput-
ing Systems (ICDCS ’05), pages 7–16, June 2005.

[17] P. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Se-
cure dissemination of code updates in sensor networks. In
Proceedings of the 26th International Conference on Dis-
tributed Computing Systems (ICDCS ’06), July 2006.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and mainte-
nance in wireless sensor networks. In Proceedings of the 1st
Symposium on Network System Design and Implementation
(NSDI ’04), March 2004.

[19] A. Liu, P. Kampanakis, and P. Ning. TinyECC:
Elliptic curve cryptography for sensor networks (ver-
sion 0.3). http://discovery.csc.ncsu.edu/
software/TinyECC/.

[20] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. In Proceedings of 10th ACM Confer-
ence on Computer and Communications Security (CCS’03),
pages 52–61, October 2003.

[21] R. Merkle. Protocols for public key cryptosystems. In Pro-
ceedings of the IEEE Symposium on Research in Security
and Privacy, Apr 1980.

[22] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A
reliable and scalable data dissemination service for wireless
embedded devices. In Proceedings IEEE International Real-
Time Systems Symposium, pages 277–286, December 2005.

[23] J. Newsome, R. Shi, D. Song, and A. Perrig. The sybil attack
in sensor networks: Analysis and defenses. In Proceedings
of IEEE International Conference on Information Process-
ing in Sensor Networks (IPSN 2004), April 2004.

[24] P. Ning, A. Liu, and W. Du. Mitigating DoS attacks against
broadcast authentication in wireless sensor networks. ACM
Transactions on Sensor Networks, 4(1), February 2008.

[25] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient
authentication and signing of multicast streams over lossy
channels. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, May 2000.

[26] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient
and secure source authentication for multicast. In Proceed-
ings of Network and Distributed System Security Sympo-
sium, February 2001.

[27] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. In Proceedings of the 2nd ACM
International Conference on Wireless Sensor Networks and
Applications (WSNA ’03), pages 60–67, September 2003.

[28] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks. Tech-
nical Report CENS-TR-30, UCLA, Center for Embedded
Networked Computing, November 2003.

456

