
On Boundary Recognition without Location Information

in Wireless Sensor Networks

Olga Saukh1, Robert Sauter1, Matthias Gauger1, Pedro José Marrón1, Kurt Rothermel2

1Universität Bonn and Fraunhofer IAIS, 2Universität Stuttgart, Germany

{saukh,sauter,gauger,pjmarron}@cs.uni-bonn.de, rothermel@ipvs.uni-stuttgart.de

Abstract

Boundary recognition is an important and challenging

issue in wireless sensor networks when no coordinates or

distances are available. The distinction between inner and

boundary nodes of the network can provide valuable knowl-

edge to a broad spectrum of algorithms. This paper tackles

the challenge of providing a scalable and range-free solu-

tion for boundary recognition that does not require a high

node density. Our solution approximates the boundary of

the sensor network by determining the inner nodes using

geometric constructions that guarantee that, for a given d,

a node lies inside of the construction for a d-quasi unit disk

graphmodel of the wireless sensor network. Moreover, such

geometric constructionsmake it possible to compute a guar-

anteed distance from a node to the boundary. We provide a

thorough evaluation of our approach and show that it is ap-

plicable to dense as well as sparse deployments.

1. Introduction

In wireless sensor networks (WSN) it is frequently nec-

essary to know the topology of the deployed network as

well as specifics on the coverage of the target area. Such

information can be extracted easily if a significant subset

of nodes is equipped with GPS receivers. However, such

hardware is expensive and requires a lot of energy. In this

paper we present a scalable solution that, without the use of

position information, recognizes certain topological proper-

ties such as inner and boundary nodes in a two-dimensional

space. Our approach sets no constraints on the node distri-

bution and the node density. Additionally, each inner node

is assigned a minimum guaranteed distance to the boundary.

Many WSN applications demonstrate the need for the

extraction of such topological information [6, 8, 11]. For

example, since the failure of boundary nodes results in

reduced coverage, the load of these nodes should be re-

duced. Algorithms can adjust their behavior to the actual

deployment using the distinction between boundary and in-

ner nodes.

In a large number of scenarios, for example in the envi-

ronmental monitoring of vineyards, forests, or warehouses,

sensor readings differ heavily between the boundary and the

center of the network. Therefore, the sensor readings from

the boundary nodes might influence the aggregation results

considerably because of capturing events occurring outside

of the monitored region of interest. A finer differentiation

of nodes based on their distance to the boundary makes it

possible to detect such an influence.

Whether a node is an inner or a boundary node might

be crucial in object tracking scenarios. For example, when

tracking events entering and leaving a region, boundary

nodes might be involved in more complex sensing tasks

whereas inner nodes might spend more energy on perform-

ing routing tasks. This lets boundary nodes play a special

role that cannot be assigned prior to deployment. In addi-

tion, grouping nodes by nesting levels allows the definition

of further security perimeters with different alert degrees.

Accurately defining the boundary of a wireless network

is a challenge that should not be underestimated. The au-

thors of [8] provide an implicit definition of a network

boundary in terms of nodes being close to the boundary

of the continuous domain. The authors of [9, 13] define

the boundary with the help of shortest cycles. In this pa-

per we discuss the problem of defining the boundary, even

with known node positions, and its relation to two intuitive

properties: uniqueness and continuity. We show that the

definitions in prior work are incomplete. Then we general-

ize the definition of boundary for the case where no location

information is available.

The approach presented in this paper provides a close

approximation of the generalized boundarywithout produc-

ing false negatives. Additionally, this boundary recognition

approach is the first that is able to considerably relax the

assumptions on node density and provides a good solution

for both sparse and dense networks. Moreover, our result

is a generalization of the approach described in [9]. Our

approach is based on the recognition of inner nodes of the

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.11

207

network and considers all other nodes to be part of the outer

boundary or the boundary of a hole. We introduce geomet-

ric constructions, called patterns, that guarantee that a par-

ticular node lies inside of the pattern for all deployments of

the sensor network with a given connectivity graph. Our

patterns are generic, simple, parameterized and no global

knowledge of the network connectivity graph is required to

recognize them. These properties make our approach scal-

able and applicable to sparse networks. Moreover, many

of the patterns allow us to additionally assign a guaran-

teed minimum distance from a given node to the boundary.

Nodes with the same guaranteed distance from the bound-

ary form a nesting level. Although our patterns do not cover

all nodes that lie inside of the network in all cases, sim-

ulation results show that the patterns are powerful enough

to detect almost all inner nodes of the network and, there-

fore, provide a good approximation of the network bound-

aries. We provide pattern rules that considerably simplify

the recognition of patterns and allow the algorithm to run in

polynomial time.

The remainder of this paper is structured as follows.

First, we discuss related work in Section 2. In Section 3,

we describe the problems related to the definition of the

network boundary. We then present in Section 4 geomet-

ric patterns that are the foundation of our approach. The

algorithmic aspects and the time, space and message com-

plexities are discussed in Section 5 followed by simulation

results in Section 6. Our conclusions complete this paper.

2. Related Work

There is a strong need to extract spatial information of

deployed sensor and ad-hoc networks without node coordi-

nates. Even if distance information between the nodes is

available, the problem of accurate node localization is NP-

hard [1]. However, a number of approaches provide reason-

able approximations of different topological characteristics

of the network such as the outer boundary of the network

and boundaries of holes [7–9, 13], isolines or contours [8]

and medial axis lines [4,13] or streets [9] that express topo-

logical levels based on the number of hops to the boundary.

Related work from the area of boundary recognition in

sensor networks without location information can be classi-

fied into three groups based on the respective assumptions

on node distribution, node density and the communication

model. The approaches in the first group rely on a certain

node distribution of the sensor nodes in the non-hole re-

gions. For example, the approach described in [6] requires

a uniform distribution of sensor nodes.

In the second group, a number of approaches [7, 8, 13]

present solutions for boundary recognition based on the as-

sumption that the length of the shortest path between two

nodes provides a reasonable approximation of the geomet-

ric distance between the nodes. However, this assumption

requires a rather high average node degree in the network

(in the range of 25) for the approaches to perform reason-

ably well [7, 8]. The required node degree can be reduced

to 10 if the topology conforms to a more regular node dis-

tribution like a grid or a perturbed grid [8]. Under the unit

disk graph assumption, sufficient node density and further

assumptions on hole size and hole placement the algorithm

marks the nodes close to the boundary with certain guar-

antees [8]. In [7] the authors additionally discuss that the

success rate of their method decreases with the decrease of

d when the network topology follows the d-quasi unit disk

graph model. Another approach in this group [13] also as-

sumes that the distance among nodes can be approximated

reasonably well based on the shortest path length and re-

quires the lowest density of all approaches of this group

with a node degree of 10 to 16. Such node densities are

realistic for dense deployments [2].

The last group of approaches does not constrain the node

distribution or make assumptions regarding node density

but sets constraints on the radio model of the sensor nodes.

The unit disk graph model is a weak approximation of the

properties of the wireless radio. Therefore, the more general

d-quasi unit disk graph model [12] is preferable. The ap-

proach presented in [9] is the only work so far that provides

a solution for the problem of boundary recognition based

on the single assumption that the input network follows a

d-quasi unit disk graph for a given d ≥
√

2
2 . The algorithm

searches for several types of patterns, so called “flowers”,

that are further extended and merged in the augmenting

phase of the algorithm to form a boundary of the network.

However, the presented flowers are extremely complex and

in random topologies they only exist with a high probability

if the average node degree is very high (20–30) [5,9]. More-

over, a sensor node requires knowledge of its 8-hop neigh-

borhood to be able to start searching for a flower. Evaluation

results showed that this algorithm did not find a flower for

network topologies with an average node degree smaller or

equal to 10 [13].

The approach presented in this paper belongs to the

last group and introduces the concept of patterns that are

generic, simple and parameterizable by limiting the amount

of neighborhood knowledge used. Therefore, even sparse

networks with an average node degree of 4 include many

simple patterns. The simplicity and generality of patterns

considerably reduce the requirements on the node density of

the network and the message complexity of pattern recog-

nition. Flowers [9] form a tiny subset of our patterns. An

additional feature of our pattern-based inner node recogni-

tion is that the majority of inner nodes are able to calcu-

late a guaranteed geometric distance to the boundary of the

network. We define a nesting level as a group of nodes

with the same guaranteed geometric distance to the bound-

208

ary which is the main difference to hop-based isolines or

contours. Moreover, the cluster of nodes with the highest

nesting level is located in the geometric center of the re-

gion, which is a stronger topological characteristic than the

hop-based medial axis lines or streets.

3. The Boundary of a Sensor Network

A sensor network is usually modeled as a graphG(V, E).
The boundary of a sensor network is a complex spatial prop-

erty even when a straight-line embedding of this graph into

the two dimensional space is known. The problem of defin-

ing the boundary lies in the intuitive properties it should

possess: uniqueness and continuity. Previous definitions of

the term boundary of a network found in the literature fail

to preserve these properties [8,9,13]. This section discusses

the problem of defining the boundary in sensor networks

both for the case when position information is available and

for the case when it is not.

Let us first consider the case when a straight-line embed-

ding p : V → R2 of the network is given. We say that p

is a d-quasi unit disk embedding (d-QUDE) of G for a pa-

rameter d ≤ 1 if both uv ∈ E =⇒ |p(u) − p(v)| ≤ 1 and
|p(u) − p(v)| ≤ d =⇒ uv ∈ E hold. G itself is called a d-

quasi unit disk graph (d-QUDG) if such an embedding ex-

ists. A 1-QUDG is called a unit disk graph (UDG) and the

corresponding embedding is a unit disk embedding (UDE).

A valid embedding of the network is a d-QUDE for some

fixed value of d.

According to the Jordan curve theorem, a simple closed

curve divides the plane into two components – the outside

and the inside. We call the outside the infinite face F
p
inf

and the inside a finite face F p. A sensor network can have

several boundaries in an embedding: the outer boundary

(border to the infinite face F
p
inf) and boundaries of holes

(borders to finite faces F p ∈ F
p
fin). These faces represent

faces of interest defining uncovered regions in the network

deployment. The elements of F
p
fin can be defined based on

different spatial characteristics of a hole, e.g., the minimum

size of its area, the length of its perimeter or the area of its

convex hull [9].

The perimeter PF p of a face of interest F p is defined

as the set of segments of straight-line embeddings of com-

munication links (edges) that belong to the face F p. The

perimeter PF p is both unique and continuous for a given

embedding. Note that PF p does not have to include any

end-point of an edge (node) as illustrated by the example

in Fig. 1a). However, this purely edge-based perimeter is

hardly useful in sensor networks. Instead, there is a need to

define a geometric boundary BF p that approximates PF p

based on nodes.

We define the geometric boundary BF p as the set of

nodes that belong to the perimeter PF p (if such nodes ex-

ist). Obviously, the geometric boundary defined this way

is unique but not continuous in the sense that BF p does

not necessarily form a connected cycle (see Fig. 1b)). For

this reason, a number of other approaches define the bound-

ary as the (shortest) cycle that follows the perimeter of

F p [9, 13]. However, this definition does not possess the

uniqueness property of the boundary. As an illustrating ex-

ample, both the nodes 1 and 3 in Fig. 1b) might belong to

the shortest cycle which contradicts the statement in [9]:

“There is always one cycle for the outer perimeter. If the

region has holes, there is an additional cycle for each of

them.” Moreover, such a boundary can even include nodes

that are guaranteed to be inner nodes of the network for any

valid embedding. We show an example in Fig. 1c) and d)

for which it can be shown that nodes 1 and 2 lie inside of the

network for any UDE. We highlight the subgraph that guar-

antees for node 1 to lie inside in c), and the subgraph that

guarantees for node 2 to lie inside in d). The gray boundary

nodes in the example break the continuity of the boundary

without using either node 1 or 2.

The authors of [8] state that the goal of their algorithm

is to mark a node near every point of the boundary of the

continuous domain and that all nodes that are marked are

near this boundary. This implicit definition of the network

boundary does neither preserve the uniqueness nor the con-

tinuity property.

Recognizing a boundary without position information

given a network connectivity graph needs consideration of

all valid straight-line embeddings of this graph, which leads

to the following problems: First, the problem of finding

valid embeddings of a graph is NP-hard even when a UDG

is used to model the network [10]. Second, the notion of

holes in the deployment needs revision. Consider a straight-

line embedding p of the network with a hole F p of a certain

size size(F p) ≥ minC (e.g., defined by the perimeter or

the area). It is generally impossible to construct a bijection

between holes in different embeddings. Therefore, a hole is

an embedding-specific geometric property.

In the literature, a hole F p is approximated by the short-

est cycle which contains the perimeter of the hole PF p

[9, 13]. However, this approximation is unstable as well

when looking at different valid embeddings. Consider a

unit disk embedding p1 of the network as shown in Fig. 1e).

The embedded shortest cycles p1(C0) and p1(C1) contain
the holes F

p1

0 and F
p1

1 respectively. Let the length of these

cycles be |C0| and |C1| and assume that |C1| < |C0|. If
we are interested in recognizing holes with a size of at least

minC with |C1| < minC < |C0|, then faces F
p1

0 and F
p1

inf

must be detected by the boundary recognition algorithm. In

Fig. 1f) we show a different unit disk embedding p2 of the

same network. Here, two faces are contained in p2(C1),
which is the shortest cycle containing them. Consequently,

in p2 both faces are too small to qualify as holes as their

209

Figure 1: Problems related to boundary definitions

Figure 2: a-d) Insufficient constructions for UDG; e-h) Patterns for UDG

shortest cycles are shorter than minC . Note that it is pos-

sible that a shorter cycle contains a longer one even in a

UDE (see Table. 1). For the same reason, it is generally im-

possible to distinguish different hole boundarieswithout ad-

ditional location information (e.g., the assumption that the

shortest path approximates distance).

We now introduce our definition of boundary that ad-

dresses the problems described above. If there exists a valid

embedding p and a face F p such that the shortest cycle in

this embedding which contains PF p has a minimum length

minC , then F p is an element of the generalized set of holes

Ffin. We define the set of infinite faces Finf that includes

all infinite faces F
p
inf for all valid embeddings p. We de-

fine the generalized boundary of the network as the set of

nodes such that for every node in this set there is a valid

embedding p in which this node belongs to the geometric

boundary of a face F p ∈ Ffin ∪ Finf . The generalized

boundary is unique unless the connectivity graph changes.

Moreover, it is minimal as it only contains nodes that belong

to the outer boundary or the perimeter of a hole in at least

one valid embedding. However, the generalized boundary is

not continuous as can be seen in Fig. 1c) and d) in which the

highlighted nodes 1 and 2 never belong to the generalized

boundary as explained later (see Fig. 2h)).

Any reasonable boundary acquired without location in-

formation includes the nodes of the generalized boundary.

In this paper, we use the property of the generalized bound-

ary that its complement consists of all nodes that do not

belong to the outer boundary or the boundary of a hole for

any valid embedding. Our approach approximates the gen-

eralized boundary of the network by recognizing nodes that

always lie inside of the network for any valid embedding

and assumes that all other nodes belong to the generalized

boundary.

4. Patterns

We introduce the concept of patterns – subgraphs that

guarantee for any valid d-QUDG embedding that a certain

node lies inside. This inner node is the seed of the pattern.

Let us now consider Fig. 2a) and c). At first sight both sub-

graphs seem to fulfill these requirements but as shown by

the counter-examples in Fig. 2b) and d), it is not guaranteed

that the seed S lies inside of the construction for all valid

UDEs. We show some real patterns in Fig. 2e-h). Fig. 2h) is

the smallest pattern for a UDG we were able to find: node

S only needs the knowledge of the communication links

between its direct neighbors to detect this pattern. Due to

space limitations, we do not present individual proofs for

these patterns. Instead, we provide our generic pattern rules

for the unit disk graph model of a network and extend these

rules later for the more general d-QUDG model, which bet-

ter captures the properties of wireless links [12]. We prove

that all constructions generated by these rules, which in-

clude Fig. 2e,g), are indeed patterns and, therefore, guaran-

tee for the seed to lie inside for any valid embedding. Our

approach works for all d-QUDGs with d ≥
√

2
2 . This lower

bound for d is fundamental for the mathematical concepts

of our approach and results from Lemma 4.1. This lemma

has been proven for UDE in [3] and improved for d-QUDE

with d ≥
√

2
2 by [9].

Lemma 4.1. Let x, y, w, v be four different nodes in V , where

xy ∈ E and wv ∈ E. Assume the straight-line d-QUDE (for

d ≥
√

2
2
) of xy and wv intersect. Then at least one of the edges

in F = {xv, vy, yw, wx} is also in E.

4.1. Terminology

D(VD, ED) is defined to be a vertex-induced subgraph
of G(V, E), if VD ⊆ V , ED ⊆ E and the following condi-

tion holds: ∄vi, vj ∈ VD|vivj ∈ E and vivj 6∈ ED .

Nk(D), the k-hop neighborhood of the vertex-induced

subgraphD ⊆ G, is the vertex-induced subgraph of G that

includes all nodes reachable from at least one node in D

within a maximum of k hops.

We model a sensor network using a d-QUDG as defined

in Section 3 as it can model radio irregularities to some ex-

210

tent. The smaller the value of d, the more general and real-

istic is the model.

Let C be a vertex-induced subgraph of G and VC =
{v0, v1, . . . , vk−1} ⊂ V be a sequence of k > 3 distinct
vertices such that viv(i+1)mod k ∈ EC , ∀i = 0 .. k − 1
and no other edge exists between any two of these vertices.

We refer to C as a chordless cycle of length |VC | = k. A

d-QUDE of a chordless cycle C is a polygon which decom-

poses a plane into the infinite face and at least one finite

face. Every point in the infinite face is defined to lie out-

side of this polygon. There exist multiple finite faces if the

embedded chordless cycle is self-intersecting.

We use the following properties to check whether a con-

nected subgraph can be placed inside of a chordless cycle

for a d-QUDE. Consider a chordless cycle C ⊂ G and a

connected vertex-induced subgraph D ⊂ G \ N1(C). A
maximum independent set IC(D) = {vi} ⊂ VD with re-

spect to C is a maximum subset of VD such that: ∀vi, vj ∈
IC(D), vivj 6∈ E. The elements of the independent set are

called independent nodes. Since the distance between each

pair of independent nodes is at least d (in any d-QUDE),

the independent set requires a certain minimum area on the

plane to place the subgraphD. The embedding of a chord-

less cycle on the plane results in a polygon with a limited

maximum area that depends on the length of the chordless

cycle. As defined in [9], the number fitd(k) is the maxi-
mum number of independent nodes that can be placed in-

side of a chordless cycle C of length |VC | = k for a d-

QUDE. The independent set property (ISP) for a d-QUDE

with d ≥
√

2
2 holds for a chordless cycle C and a connected

vertex-induced subgraph D if |IC(D)| > fitd(|VC |). This
means that there is not enough space in the chordless cycle

to place all independent nodes of D inside of it. Addition-

ally, Lemma 4.1 guarantees that the embedding of D lies

completely outside of the embedding of C if the ISP holds.

4.2. Patterns in UDG

Here we propose our generic pattern rules for the UDG

model. We present a formal definition and then explain the

individual conditions including the terms extended indepen-

dent set property and critical intersection.

We define a weak pattern P (S, 1) = C0 ∪ · · · ∪ Cn−1,

2 ≤ n ≤ 5 as a vertex-induced subgraph of G composed of
chordless cycles Ci such that ∀i, j = 0 .. n − 1, i 6= j the

following conditions hold:

1. S ∈ VCi

2. |VCi∩Cj∩N1(S)| =

8

>

<

>

:

1, j 6= (i ± 1)mod n

2, j = (i ± 1)mod n ∧ n > 2

3, j = (i ± 1)mod n ∧ n = 2

3. For Ci, (P (S, 1) \ N1(Ci)) the extended independent set
property holds

4. For Ci,
S

j 6=i Cj there exists no critical intersection

Figure 3: Combinations of three chordless cycles

To be able to reason about patterns, we have to define a few

more terms, which are also illustrated in the example pat-

tern in Fig. 4. We call VP (S,1) ∩ VN1(S) the set of anchors.

The number of anchors is equal to the number of cycles

the pattern comprises, which we call the pattern cardinal-

ity. If a pattern consists of at least three cycles, then each

pair Ci, C(i+1)mod n shares one anchor. We call this anchor

the common anchor CAi. If the pattern is composed of ex-

actly two chordless cycles, both anchors are shared by both

cycles and we deterministically define (e.g., by node ID)

CA0 and CA1. Now consider the vertex-induced subgraph

N1(Ci)∩N1(C(i+1)mod n)∩ (Ci ∪C(i+1)mod n) \S. This

subgraph is generally not connected. We define the con-

junction Ji between two cycles Ci, C(i+1)mod n to be the

connected component that includesCAi. Finally, we define

the outer cycle of a pattern as the connected vertex-induced

subgraph with the set of edges EP (S,1) \ ES

Ji
.

To motivate the need for the last two pattern conditions,

we show different possible embeddings of the bold chord-

less cycle Ci in Fig. 3 for a combination of three cycles.

There are three possible relations of one cycle to the others:

it may contain them (b), it may intersect them (c,d,e) and it

may lie on a different side of S (a,d,e). In cases b) and c)

Ci is called reflected. If S lies outside of the construction,

then either one cycle contains all others or there is a criti-

cal intersection of at least two chordless cycles. Informally,

a critical intersection occurs when the independent set of a

vertex-induced subgraph is partitioned by the intersection

with a chordless cycle. In Fig. 3 the example b) is rejected

(is not sufficient to be a pattern) because one cycle contains

all others and examples c) and e) are rejected because of a

critical intersection. The intersection in example d) is not

critical and, therefore, both a) and d) are valid patterns.

We use the extended independent set property (eISP) to

check if a cycle Ci can contain all other chordless cycles in

a d-QUDE with d ≥
√

2
2 . We examine the vertex-induced

subgraph C̄i = Nh(S) \ N1(Ci), which generally consists
of multiple connected components. We compute the size of

a maximum independent set for each connected component

that contains at least one node of P (S, d) \ N1(Ci). If the
sum of these sizes is greater than fitd(|VCi

|), then Ci can-

not contain all other chordless cycles. Note that using the

standard ISP would only allow us to calculate a maximum

independent set for P (S, d) \ N1(Ci) (without considering

211

Figure 4: Extended independent set property

the whole neighborhood Nh(S), the so-called extension).
The eISP is especially important for complex patterns with

long cycles since the number of independent nodes that can

fit in a chordless cycle grows faster than the cycle length

(see Table 1).

We illustrate how the eISP works in Fig. 4 for a weak

pattern P (S, 1) = C0 ∪C1 ∪C2. The ISP does not hold for

C0, P (S, 1) \ N1(C0) because P (S, 1) \ N1(C0) contains
only one independent node with respect to C0 and there is

enough space in a cycle of length |VC0
| = 9 (see fit1(9)

in Table. 1) to place this node inside for some UDE. How-

ever, the eISP holds since a connected component in C̄0 that

includes this independent node contains a maximum inde-

pendent set of size 6 > fit1(9) = 2.
If S lies outside of the construction but the eISP holds,

then the embeddings of at least two cycles must intersect.

Since the eISP holds, both cycles must contain at least one

independent node with respect to each other. We show ex-

amples of such constructions consisting of two cycles in

Fig. 5. We distinguish between vertex-based (a) and edge-

based (b) intersections. In order to detect a critical intersec-

tion, we require that either the cycles share at least one node

(a) or that at least one of the dotted edges (1–4) in Fig. 5b)

exists. Lemma 4.1 shows that at least one edge exists for

a d-QUDE with d ≥
√

2
2 . We show that at least two edges

exist for a UDE with the following Lemma 4.2.

Lemma 4.2. Let x, y, w, v be four different nodes in V , where

xy ∈ E, wv ∈ E and xw ∈ E. Assume the straight-line UDE

of xy and wv intersect. Then at least one of the edges in F =
{xv, yw} is also in E.

Proof. Assume p(x) 6= p(y) 6= p(w) 6= p(v); otherwise the
proof of the lemma is trivial. Let a = |p(x) − p(y)| ≤ 1. Con-
sider two circles of common radius dwith their centers at p(x) and
p(y) respectively. The distance between the xy segment and the

intersection points of these circles is h
2

=
q

d2 − 1
4
a2. As F and

E are disjoint, p(w) must lie outside of the circle with the center

Figure 5: Types of critical intersections

Figure 6: Coloring test

at p(y) and p(v) has to lie outside of the circle with the center
at p(x). Because of the intersecting edge embedding, for d ≥ 1,

|p(w) − p(v)| >

q

(h
2
)2 + (d − a

2
)2 =

√
2d2 − ad ≥ 1, which

contradicts that wv ∈ E.

We detect critical intersections by coloring the chordless

cycles as shown in Fig. 6 (colors a–d). We have to exe-

cute the following procedure for every chordless cycle Ci

and
⋃

j 6=i Cj . We color Ci starting at its two anchors with

two different colors. Additionally, we switch to a new color

each time we encounter an independent node with respect

to
⋃

j 6=i Cj . We color the other cycles of P (S, d) the same
way starting at their anchor nodes and change the color af-

ter each independent node with respect to Ci. S is then

the only uncolored node. The vertices of the conjunctions

between Ci, C(i±1)mod n define the allowed color combi-

nations. Every node and every edge connecting nodes of Ci

and
⋃

j 6=i Cj is inspected. If the color combination is not

allowed, then we speak of a critical intersection.

Lemma 4.3. If node S ∈ VG is the seed of a weak pattern

P (S, 1) ⊆ G, then S is an inner node for any UDE of G.

Proof. Assume a UDE such that S lies outside of P (S, 1). Then
either at least one chordless cycle of P (S, 1) is reflected or at least
one conjunction intersects the outer cycle. Assume Ci is a re-

flected cycle in P (S, 1). Let us color Ci,
S

j 6=i Cj . According to

the eISP Ci cannot contain all other chordless cycles in P (S, 1).
Therefore, Ci intersects Cj ⊂ P (S, 1)(j 6= i). However, as no
coloring conflicts are found, the intersection between Ci and Cj

must have a color combination allowed by the two conjunctions

of Ci. Therefore, no independent node is located between node S

and the nodes that belong to the intersection. So, all independent

nodes of P (S, 1) \ Ci lie inside of Ci, which violates the third

pattern condition.

From Lemma 4.2 follows that a conjunction Ji can only inter-

sect one edge of the outer cycle which lies inN1(Ji) and connects
Ci \ Ji, C(i+1)mod n \ Ji. No two conjunctions can intersect the

same edge and from the fourth pattern condition follows that no

two conjunctions can intersect each other. If the seed lies outside

of the pattern and no cycle is reflected, then there is one cycle that

contains all others.

4.3. Patterns for d-QUDG

After having described patterns for UDG in the last sec-

tion, we now present our extended approach that supports

212

Figure 7: a-d) Insufficient constructions for d-QUDG, d < 1; e-g) Patterns for d-QUDG (f,g) from [9])

d-QUDG for d ≥
√

2
2 . The simple patterns for UDG pre-

sented in Fig. 2 are not sufficient for d-QUDG with d < 1.
We show counter examples in Fig. 7b) and d) for the UDG-

only patterns from Fig. 7a) and c). We also show patterns

for d-QUDG with d ≥
√

2
2 in Fig. 7e-g). The examples f)

and g) are taken from [9] and illustrate an interesting dif-

ference to our approach. In [9] these very complex patterns

are used to detect a group of guaranteed inner nodes (high-

lighted in the figure), whereas our approach is able to detect

each of these inner nodes individually. By using simpler as

well as more complex patterns our approach is more general

and more powerful. All of these patterns are covered by the

following extended pattern definition.

We define a strong pattern P ∗(S, d) = C0 ∪ · · · ∪Cn−1,

2 ≤ n ≤ 8 as a vertex-induced subgraph of G composed of
chordless cycles Ci such that ∀i, j = 0 .. n − 1:
1-4) P ∗(S, d) fulfills the conditions of the weak pattern definition

for the given value of d

5) One of the following conditions holds for each conjunction

Ji between the pair of chordless cycles Ci, C(i+1)mod n:

a) |VJi\S| ≥ 2

b) |VJi\S| = 1 and an edge exists between
N1(Ji \ S) ∩ Ci and N1(Ji \ S) ∩ C(i+1)mod n

c) |VJi\S| = 1 and a weak pattern exists for VJi\S that

includes Ci, C(i+1)mod n
The reason why a weak pattern P (S, d) does not work in a
d-QUDE for d < 1 is that Lemma 4.1 does not preclude the
possibility that a chordless cycle is self-intersecting. This is

only guaranteed for UDE by Lemma 4.2.

Lemma 4.4. If node S ∈ VG is the seed of a strong pattern

P ∗(S, d) ⊆ G, then S is an inner node for any d-QUDE of G

with d ≥
√

2
2
.

Proof. The proof for strong patterns exactly follows the proof for
weak patterns. There is only one additional point to show: Al-

though conjunctions may intersect the outer cycle of a strong pat-

tern P ∗(S, d), the seed S is still guaranteed to lie inside of it. As-

sume S lies outside of the construction. Let Ci ⊂ P ∗(S, d) be a
chordless cycle. It follows from the fifth condition of a strong pat-

tern that |VCi
| > 4. The conjunction Ji between Ci, C(i+1) mod n

can intersect edges of the outer cycle of the strong pattern in

Ci ∩ N2(Ji) and in C(i+1) mod n ∩ N2(Ji). However, these
vertex-induced subgraphs do not overlap for any pair of conjunc-

tions, which follows from the fifth condition of a strong pattern

and Lemma 4.1. Since no independent node with respect to Ci

is in N1(Ji), this intersection is not critical. Therefore, there is
a chordless cycle that contains all others. This violates the third

pattern condition and contradicts the assumption.

4.4. Pattern Properties

There are several important properties of weak and

strong patterns that can be used to derive further spatial in-

formation of a sensor network and to optimize the pattern

recognition algorithm.

Distance guarantees: Both weak and strong patterns

guarantee that the seed lies inside of the pattern. However,

a strong pattern additionally ensures that the seed has no

direct connection (edge) to the outer cycle of the pattern.

Therefore, the seed is at least

√

d2 − 1
4 away from every

edge of this outer cycle. Thus, strong patterns can addition-

ally provide distance guarantees for their seeds.

Nesting levels: We show in Section 5.2 how to accumu-

late guaranteed distances in order to designate nesting levels

for sensor nodes.

Inclusion property: If P (S, d) then P (S, q), ∀q ≥ d.

This holds as long as there exists a valid q-QUDE for

P (S, q). This property is important for applying the pattern
concept in real-world deployments where the exact value of

d is not known.

Maximum pattern cardinality: The size of a maxi-

mum independent set of N1(S) for a node S is limited by
⌊

π

arcsin d
2

⌋

(5 for a UDG, 8 for the d-QUDG model with

d =
√

2
2). This limits the maximum number of chordless

cycles in a pattern and restricts the search depth.

Discreteness: In UDE both weak and strong patterns can

be used. Weak patterns only guarantee that the seed lies

inside of the construction whereas strong patterns addition-

ally provide a guaranteed minimum distance of
√

3
2 from

the outer cycle of the pattern. However, if we consider d-

QUDE with d ∈ [
√

2
2 , 1), only strong patterns work. This

discrete behavior of patterns results from Lemma 4.1 and

Lemma 4.2: According to Lemma 4.1, there are only two

possible relations between two edges xy, vw ∈ E for a d-

QUDG with d ∈ [
√

2
2 , 1). If xv, xw, yv, yw 6∈ E, then x

and y are at least
√

d2 − 1
4 away from vw. If at least one

of the edges xv, xw, yv, yw exists, then there might be an

embedding where xy, vw intersect. There is one more pos-

sibility in UDE: if exactly one of the edges xv, xw, yv, yw

exists, xy, vw cannot intersect according to Lemma 4.2, but

x or y can be arbitrarily close to vw.

213

Soundness: Our approach is sound as the patterns cov-

ered guarantee that the corresponding seed nodes lie inside

of the network for any d-QUDE with d ≥
√

2
2 .

Incompleteness: Although being able to describe a fam-

ily of simple as well as arbitrarily complex patterns, this

concept does not cover the whole set of patterns (e.g.,

Fig. 2h)). Therefore, our approach is incomplete. However,

we show in the evaluation section that our pattern rules are

powerful and general enough to recognize a large number

of guaranteed inner nodes for dense as well as for sparse

topologies.

5. Boundary Recognition Algorithm

Having laid out the mathematical foundations and neces-

sary conditions for patterns, we now present our algorithm

for boundary recognition and its complexity analysis.

The goal of the boundary recognition algorithm is to find

weak and strong patterns in the network. It also assigns a

level to every node that indicates its distance to the bound-

ary. If a node is guaranteed to lie inside of the network,

level 1 is assigned (UDG only). If the node is additionally

guaranteed to be at least dist =
√

d2 − 1
4 away from the

boundary, then level 2 is assigned. All other nodes are as-
sumed to belong to a boundary and receive level 0.

Our algorithm is parameterized with d, which specifies

the d-QUDG model. The range of d is limited to
√

2
2 ≤

d ≤ 1, which is a hard bound resulting from Lemma 4.1.
The parameter h specifies the h-hop neighborhood used for

finding patterns. We limit the maximum length of chordless

cycles to 2h + 1. This implies that the minimum chord-
less cycle length to define the generalized set of holes is

minC = 2h + 2. In order to reduce the time, space and
message overhead for dense networks, h should be chosen

based on the average node degree in the respective network.

We provide guidelines for selecting reasonable values of h

in the evaluation.

After the boundary recognition algorithm is finished, it is

executed again using only those nodes that have been iden-

tified as seeds of strong patterns. We execute the algorithm

repeatedly, each time reducing the examined graph and in-

crementing the levels, as long as strong patterns are found.

5.1. Boundary Recognition

The boundary recognition algorithm executes the follow-

ing steps for each nodeS in order to find a weak (UDE only)

or strong pattern by checking the pattern conditions.

1) Gather the h-hop connectivity graphNh.

2) Find all chordless cycles of maximum length 2h+1 in
Nh that include S (condition 1).

3) Construct valid combinations of chordless cycles (con-

dition 2) and perform:

a) The extended independent set test (condition 3).

b) The critical intersection test (condition 4).

c) The strong pattern test (condition 5).
We now explain each step in detail and analyze their respec-

tive time, space and message complexities.

1) Gather the h-hop connectivity graph. Every node

broadcasts a message containing its ID with a time to live

(TTL) of h. When a node receives such a message from an-

other node, it appends its ID, decrements the TTL and for-

wards the message. The message complexity of this step for

one node is O(h2nmax) where nmax is the maximum node

degree in Nh. Constructing the connectivity graph of Nh

runs in O(h4n3
max) time and requiresO(h2n2

max) space.
2) Find chordless cycles. In this step, we perform a

depth first search starting at S to find all chordless cycles in

the discovered connectivity graph Nh(S). The maximum
search depth is limited by the maximum length of a cycle

2h + 1. This step runs in O(n2h+1
max) time. We have to store

the chordless cycles in memory to be able to construct later

on the chordless cycle combinations needed to find patterns.

However, it is difficult to establish a tight upper bound for

the number of chordless cycles. We have to estimate it by

the number of paths of length ≤ 2h + 1 that start at S.

This number is clearly greater than the number of chordless

cycles. Therefore, the definitely over-estimated space com-

plexity is O(n2h+1
max). Additionally, the number of chord-

less cycles determines how many combinations of cycles

are possible and how often the tests for the remaining pat-

tern conditions have to be performed. Therefore, the num-

ber of chordless cycles is the determining factor for the time

and space complexity of the complete algorithm. To reduce

the number used in later tests, we define a similarity metric

for chordless cycles and avoid storing similar ones. If one

cycle cannot be used to construct a pattern, it is unlikely

that a very similar cycle can be used successfully. To take

advantage of that, we developed µ-filtering for two chord-

less cycles Ci and Cj that both contain S. For a chordless

cycle C, we define the center node cS(C) relative to S as

the node in C that has the greatest hop distance to S. If the

length of the cycle is even, we choose the center node deter-

ministically (e.g., by node ID). Two cycles are considered

similar, if they share the same anchors and the center node

of one cycle is also part of the other. If two cycles are con-

sidered similar we only keep the longer one to increase the

probability of constructing a strong pattern.

Each chordless cycle has two anchor nodes and ex-

actly one center. Therefore, the number of chordless

cycles after µ-filtering can be estimated with ncyc =
O(h2nmaxC(nmax, 2)) = O(h2n3

max) where C(n, k) is
the binomial coefficient. Consequently, the space complex-

ity is O(h3n3
max). The search for chordless cycles includ-

214

ing µ-filtering runs in O(n2h+4
max h2). As shown in the evalu-

ation section, µ-filtering does not degrade the quality of the

result and reduces both time and space complexity of the

complete algorithm significantly.

3) Construct valid combinations of chordless cycles. In

this step, we check the second pattern condition by con-

structing the valid combinations of chordless cycles using

depth first search (DFS). We perform the remaining pat-

tern tests as described in the next paragraphs. DFS runs

in O(ncardmax

cyc) time and requires O(ncyc) space where
cardmax is the maximum pattern cardinality (5 for UDE,

8 for d-QUDE with d =
√

2
2). We show in the evaluation

that by using reasonable parameter values it is possible to

reduce the maximum number of chordless cycles to con-

struct a pattern to 2 and 3 (instead of 5 and 8) for UDE and

d-QUDE respectively without degrading the result.

3a) Extended independent set test. Since the problem

of finding the maximum independent set is NP-hard, we

use the following greedy algorithm to approximate this

set. Consider a connected vertex-induced subgraph D =
Nh \ Ci for which the maximum independent set is com-

puted. We search for a node v with a minimum node de-

gree and choose this node as an element of the independent

set. This step is repeated for the vertex-induced subgraph

D′ = D \N1(v). Note that the independent set constructed
this way is not necessarily maximal. However, since we

use the eISP, this does not degrade the quality of the result.

The time complexity of this step is O(|VD |2 log |VD|) =
O(h2n2

max).
3b) Critical intersection test. As discussed above, we

perform the critical intersection test by coloring the nodes

of a potential pattern P (S, d). The algorithm consists of the
following steps for every chordless cycle Ci of P (S, d):

1. Determine the unrelated nodes in Ci and in P (S, d) \
Ci that have no edge to any node of the other set.

2. Color the nodes of Ci and P (S, d) \Ci as described in

Section 4.2.

3. Determine the two color combinations allowed by the

two conjunctions of Ci.

4. If vertex-based or edge-based illegal color combina-

tions exist, then reject P (S, d).

Determining the unrelated nodes in step 1 and coloring all

nodes (step 2) both run in O(h2) time and require O(h)
additional space. The running time of checking for ille-

gal color combinations (step 4) is O(h2) and no additional
space is required.

3c) Strong pattern test. For checking whether the con-

junctions fulfill the fifth strong pattern property, we only

consider the first two possibilities of the fifth condition.

This is done in O(1).
We now present the overall complexities of the bound-

ary recognition algorithm for a single node using µ-filtering

and a limitation of the pattern cardinality to 3. These op-

timizations are also used in the evaluation. The resulting

time complexity is O(n2h+4
max h2), the space complexity is

O(n3
maxh3), and the message complexity is O(nmaxh2),

where h is the depth of the neighborhood Nh and nmax is

the maximum node degree in Nh. These complexity values

hold for h ≥ 4.

5.2. Nesting Levels

After the boundary recognition algorithm is completed,

we execute it again for all nodes of level 2. This corre-
sponds to constructing a vertex-induced subgraph G′ ⊂ G

composed of the nodes of level 2 and using G′ as input to
the pattern recognition algorithm. After the second run of

the algorithm, the seeds of the weak patterns (UDE only)

and of the strong patterns are assigned the levels 3 and 4
respectively. Consequently, nodes of level 4 are at least
2 · dist away from the boundary. The boundary recognition
algorithm is executed repeatedly as long as seeds of strong

patterns (resulting in higher levels) are found. Since in each

round the examined graph is smaller than in the previous

round, the algorithm is guaranteed to terminate.

6. Evaluation

The primary goal of the evaluation is to show that our ap-

proach is general enough to support both sparse and dense

deployments. We also investigate the empirical time and

space costs of the different steps of our algorithm and con-

clude with guidelines on how to select the most appropriate

parameter values.

We concentrate on two types of topologies: random

and grid-based. We use random topologies (uniform dis-

tribution) to show that our approach does not rely on any

assumptions concerning the regularity of node positions,

which are required by some previous approaches. We use

grid-based topologies to create more realistic scenarios: the

nodes are placed randomly inside of circles arranged in a

regular grid (the radius is equal to the grid spacing). This

type of topology better matches real-world deployments

where the goal usually is a more or less regular coverage

of the sensing area.

The probability that a link exists between two nodes is

calculated by 1−s
1−d
for a distance s between two nodes with

d ≤ s ≤ 1. While our approach supports asymmetric links
as long as the connectivity graph is a valid d-QUDG, we

only experiment with symmetric links in our topologies.

We vary the network wide average node degree between

2 and 20, which is reasonable considering the results dis-
cussed in [2] where values between 3 and 9 are suggested
as reasonable for networks composed of 50 to 500 nodes.

215

(a) Topo.: UDG, 400 nodes random, 6.74 avg. de-

gree. Params: UDG, h=6. Inner nodes: 130

(L1:41, L2:88, L3:1)

(b) Topo.: UDG, 180 nodes grid, 4.12 avg. de-

gree. Params: UDG, h=6. Inner nodes: 62 (L1:29,

L2:33)

(c) Topo.: 0.75-QUDG, 250 nodes grid, 5.11

avg. degree. Params: d-QUDG, h=6. Inner nodes:

96 (L2:96)

(d) Topo.:UDG, 1600 nodes grid, 13.13 avg. de-

gree. Params:UDG, h=3, Inner nodes:936

(L1:322,L2:479,L3:111,L4:24)

(e) Topo.: 0.75-QUDG, 500 nodes grid, 6.89

avg. degree. Params: d-QUDG, h=5. Inner nodes:

283 (L2:163, L4:113, L6:7)

(f) Topo.: 0.75-QUDG, 500 nodes grid, 18.12

avg. degree. Params: d-QUDG, h=3, Inner nodes:

276 (L2:165, L4:104, L6:4)

Figure 8: Qualitative evaluation

We use the values shown in Table 1 for the fitd-function.

Since determining these values corresponds to solving the

packing problem, we approximate the values assuming a

hexagonal and square packing of nodes for UDE and d-

QUDE respectively. Hexagonal and square packings pro-

vide packing densities of π

2
√

3
and π

3
√

2
. It is known that a

hexagonal packing is the most dense packing for the infi-

nite face. However, by applying both packings to estimate

the maximum number of circles that can be located inside

of a polygon, we cannot guarantee that the values in the ta-

ble are not underestimated. Nevertheless, we have chosen

the values liberally high because we consider the wholeNh

neighborhood for the extended independent set test. Using

the eISP instead of the ISP increases the number of detected

patterns considerably.

6.1. Qualitative Evaluation

Our algorithm approximates the generalized boundary of

a network. Therefore, the nodes that belong to the geomet-

ric boundary of an embedding are included in the set of de-

tected boundary nodes but cannot be distinguished from the

n 4 5 6 7 8 9 10 11 12 13

fit1(n) 0 0 0 1 1 2 3 4 5 7

fit↑1(n) 0 0 1 1 2 3 4 5 7 8

fit↑
√

2/2(n) 1 1 2 3 5 7 8 10 13 17

Table 1: ISP: values of fitd for different d

other nodes in the set without location information. We are

not aware of any way to reliably determine all nodes that

belong to the generalized boundary. Therefore, the only

reasonable way to evaluate the quality of our approach is

to visually inspect the result. We examined a large number

of results covering a wide range of parameters.

In Fig. 8 we present several examples of network topolo-

gies (UDG and d-QUDG) processed by our algorithm with

different node distributions and a wide range of different av-

erage node degrees that represent a wide spectrum of pos-

sible network deployments. Since the evaluation of previ-

ous approaches uses the UDG model, we first show sev-

eral UDG deployments. Fig. 8a) is an example of a sparse

random deployment of a UDG (average node degree 6.74)

which requires the nodes to have information of their 6-hop

neighborhood. A more regular grid-based UDG deploy-

ments shown in b) with an even lower average node degree

of 4.12 also requires the knowledge of the 6-hop neighbor-

hood. In Fig. 8d) we present a dense topology with artifi-

cially created holes. The high average node degree allows to

achieve good results considering only the 3-hop neighbor-

hood when looking for patterns. We continue the evaluation

of our approach using the more realistic d-QUDG model

with d ≥
√

2
2 . Notice that only even levels are meaningful

as nesting levels for the d-QUDG model. We show a sparse

grid-based 0.75-QUDG network deployment with an aver-

age node degree of 5.11 in Fig. 8c). A slightly higher value

216

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c
y
c
le

s
 p

e
r

n
o

d
e

Average node degree network wide

h = 6, 100 node

h = 6, 300 node

h = 6, 500 node

h = 4, 100 node

h = 4, 300 node

h = 4, 500 node

h = 2, 100 node

h = 2, 300 node

h = 2, 500 node

(a) chordless cycles in neighborhood

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c
y
c
le

s
 p

e
r

n
o

d
e

Average node degree network wide

h = 6, 100 nodes

h = 6, 300 nodes

h = 6, 500 nodes

h = 4, 100 nodes

h = 4, 300 nodes

h = 4, 500 nodes

h = 2, 100 nodes

h = 2, 300 nodes

h = 2, 500 nodes

(b) chordless cycles found with µ-filtering

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

dQUDG,
h=6

dQUDG,
h=5

dQUDG,
h=4

dQUDG,
h=3

dQUDG,
h=2

UDG,
h=6

UDG,
h=5

UDG,
h=4

UDG,
h=3

UDG,
h=2

%
 o

f
a

ll
n

o
d

e
s

pattern cardinality = 2

pattern cardinality = 3

pattern cardinality = 4

pattern cardinality = 5

(c) required pattern cardinality

1

10

100

1000

10000

100000

1e+06

1e+07

2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

c
h

o
rd

le
s
s
 c

y
c
le

s
 f

o
u

n
d

Average node degree network wide

cycle length = 5

cycle length = 7

cycle length = 9

cycle length = 11

cycle length = 13

(d) chordless cycles in neighborhood

0

100

200

300

400

500

600

700

800

2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

c
h

o
rd

le
s
s
 c

y
c
le

s
 f

o
u

n
d

Average node degree network wide

cycle length = 5

cycle length = 7

cycle length = 9

cycle length = 11

cycle length = 13

(e) chordless cycles found with µ-filtering (f) Topo.: 0.75-UDG, 330 nodes rnd., 7.67 avg. de-

gree. Params: 0.75-UDG, h=5, Inner nodes: 87

(L2:87)

Figure 9: Evaluation results and parameter selection guidelines

of the average node degree allows to decrease the amount

of required neighborhood knowledge (Fig. 8e,f). Since no

holes exist in the deployment in these example, the nodes

with the highest nesting level of 6 approximate the geomet-

ric center of the network. We present a very dense topology

in f) that allows us to use only the minimum possible neigh-

borhood knowledge (3-hops) for searching strong patterns

in d-QUDE. For UDE it is even possible to only search the

2-hop neighborhood if nesting levels are not required.

As described above, the approach with the lowest re-

quirements on node density [13] only provides good results

for node densities of at least 10–16 for UDG. Our evalua-

tion shows that our approach works well in sparse networks

even with an average node degree of only 4.

6.2. The Cost of Pattern Recognition

Fig. 9a, b) show the average number of chordless cycles

found for a large number of topologies. Since boundary

nodes find fewer chordless cycles than inner nodes, the ratio

between boundary nodes and inner nodes determined by the

network size directly influences the number of cycles. For

that reason, we chose three different network sizes with 100,
300 and 500 nodes and constructed 20 grid-based topolo-
gies for each size. We varied the transmission range in each

topology in order to obtain different average network wide

node degrees and computed the average number of chord-

less cycles for different values of h ∈ {2, 4, 6}. In Fig. 9a)

we show the average number of chordless cycles found by

a node (note the logarithmic scale). The average number

of chordless cycles after µ-filtering is presented in Fig. 9b)

(linear scale). We evaluated the efficiency of µ-filtering by

computing the ratio between the number of cycles left af-

ter µ-filtering and the total number of cycles. Our analysis

shows that the efficiency of µ-filtering increases with the

average node degree and with higher values of h. There-

fore, µ-filtering decreases the space and time requirements

of the complete pattern recognition algorithm significantly.

The next step of the pattern recognition algorithm is to

search for a valid pattern by combining the chordless cy-

cles. This search stops as soon as a strong pattern is found.

This prevents inner nodes from searching through all pos-

sible combinations. The number of chordless cycle combi-

nations that form a pattern in UDE and d-QUDE is limited

by the maximum pattern cardinality. However, it is gen-

erally cheaper to check for a potential pattern consisting

of fewer cycles. More importantly, the number of combi-

nations grows exponentially with the maximum considered

pattern cardinality. It is interesting to evaluate the benefit of

a greater pattern cardinality. For the network in Fig. 8d) we

calculated the number of nodes for which a pattern exists

that is composed of ncombi + 1 chordless cycles, while no
pattern exists that involves only ncombi chordless cycles. In

Fig. 9c) we show the percentage of nodes that recognized a

pattern consisting of a certain minimum number of cycles

217

for values of h between 2 and 6. On the one hand, there is

a certain value of h = h′, such that almost all inner nodes
find a pattern and there is no benefit in further increasing h.

On the other hand, for h = h′ there is a pattern consisting
of only 2 (UDE) or 3 (d-QUDE) cycles for nearly all inner

nodes. The saturation of the number of detected inner nodes

with increasing values of h motivates the need for the fol-

lowing guidelines for parameter selection depending on the

density of the sensor network.

6.3. Parameter Selection and Adaptation

The main parameter of the system is h which defines the

depth of the neighborhood that has to be considered as well

as the minimum size of a hole 2h + 2. Obviously, h should
be chosen based on the density of the network. We investi-

gated the influence of the density on the average number

of chordless cycles (per node) with a given length. We

chose the grid-based topology (to reduce variance) shown

in Fig. 8d) and varied the transmission range to obtain dif-

ferent average node degrees. In Fig. 9d) and e) the aver-

age number of cycles with a given length is plotted against

the average node degree. Values without (logarithmic scale)

and with µ-filtering (linear scale) are shown.

Since the variance of the average node degree is rela-

tively small in grid-based topologies, it is possible to use the

same value of h for the whole network. In random topolo-

gies there usually are areas with a very high average node

degree and areas with a very low average node degree in

the same network. We show an example of such a random

network topology in Fig. 9f). The same value of h was se-

lected for the complete network. Our algorithm finds nearly

all inner nodes in the left part where the value of h is suffi-

cient for the average node degree of this area. However, the

sparser area in the right part of the figure requires a greater

value of h. This motivates the need for adapting the value

of h to the local density of the region, which we plan to

investigate as part of future work.

7. Conclusions

In this paper we have presented a solution for bound-

ary recognition and the assignment of nesting levels in sen-

sor networks without location information using only lo-

cal knowledge. Our approach is based on the d-quasi unit

disk graph model for radio propagation and supports any

d ≥
√

2
2 . We have presented a graph-oriented definition of

boundary for this model which addresses issues found in

prior work. We are able to guarantee that all nodes rec-

ognized as inner nodes lie inside of the network for any

d-quasi unit disk embedding for a given d. We also pro-

vide additional discrete distance guarantees to the boundary

called nesting levels. Our solution based on generic pattern

rules is mathematically proven. We showed that our algo-

rithm including optimizations runs in polynomial time and

works equally well on dense and sparse topologies.

Note that
√

2
2 is a hard limit for d and cannot be reduced

by any incremental work on our solution. Although our

generic pattern rules do not cover the complete set of pat-

terns, the mathematical properties and the quality of the re-

sults especially for sparse networks illustrate the power and

wide applicability of our approach.

References

[1] J. Aspnes, D. Goldenberg, and Y. Yang. On the compu-

tational complexity of sensor network localization. Proc.

of the 1st Int. Workshop on Algorithmic Aspects of Wireless

Sensor Networks, 2004.

[2] D. M. Blough, M. Leoncini, G. Resta, and P. Santi. The

k-neigh protocol for symmetric topology control in ad hoc

networks. In Proc. of the 4th Int. Symp. on Mobile Ad Hoc

Networking & Computing, 2003.

[3] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition

is NP-hard. Computational Geometry: Theory and Applica-

tions, 1998.

[4] J. Bruck, J. Gao, and A. A. Jiang. MAP: Medial axis based

geometric routing in sensor networks. In Proc. of the 11th

Int. Conf. on Mobile Computing and Networking (Mobi-

Com), 2005.

[5] S. P. Fekete and A. Kröller. Geometry-based reasoning for

a large sensor network. In Proc. of the 22nd Symp. on Com-

putational Geometry, 2006.

[6] S. P. Fekete, A. Kröller, D. Pfisterer, S. Fischer, and

C. Buschmann. Neighborhood-based topology recognition

in sensor networks. In Proc. of the 1st Int. Workshop on

Algorithmic Aspects of Wireless Sensor Networks, 2004.

[7] S. Funke. Topological hole detection in wireless sensor net-

works and its applications. In Proc. of the Joint Workshop

on Foundations of Mobile Computing, 2005.

[8] S. Funke and C. Klein. Hole detection or: ”How much ge-

ometry hides in connectivity?”. In Proc. of the 22nd Symp.

on Computational Geometry, 2006.

[9] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer. Deter-

ministic boundary recognition and topology extraction for

large sensor networks. In Proc. of the 17th Symp. on Dis-

crete Algorithms, 2006.

[10] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk

graph approximation. In Proc. of the Joint Workshop on

Foundations of Mobile Computing, 2004.

[11] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geo-

graphic routing without location information. In Proc. of the

9th Int. Conf. on Mobile Computing and Networking, 2003.

[12] S. Schmid and R. Wattenhofer. AlgorithmicModels for Sen-

sor Networks. In Proc. of the 14th Int. Workshop on Parallel

and Distributed Real-Time Systems, 2006.

[13] Y. Wang, J. Gao, and J. S. Mitchell. Boundary recognition

in sensor networks by topological methods. In Proc. of the

12th Int. Conf. on Mobile Computing and Networking, 2006.

218

