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Abstract

This paper describes the development and deployment of

a wireless sensor network for monitoring humanmotion and

position in an indoor environment. Mobile sensor nodes

comprising mote-type devices, along with inertial sensors

are worn by persons moving inside buildings. Motion data

is preprocessed onboard mobile nodes and transferred to a

static network of seed nodes using a delay tolerant proto-

col with minimal radio packet overhead. A Monte Carlo

based localisation algorithm is implemented, which uses a

person’s pedometry data, indoor map information and seed

node positions to provide accurate, real-time indoor loca-

tion information. The performance of the network protocols

and localisation algorithm are evaluated using simulated

and real experimental data.

1 Introduction

Wireless sensor networks (WSN) are fundamentally a

tool for measuring the spatial and temporal characteristics

of almost any phenomena. An implicit aspect in obtaining

spatial information is knowledge of the relative or absolute

location of a point of measurement. Knowledge of node

location is also crucial information for tasks such as track-

ing mobile objects through networks [12], development of

spatial sampling algorithms or geographic routing proto-

cols [15]. The ultimate goal of sensor networks is to re-

move the need for extensive network topology planning and

thus the need for knowledge of node location when deploy-

ing. Whilst GPS [27] or other manual surveying techniques

are available for determining node locations, the ability for

nodes to self-localise greatly broadens the ease and scope

of applications for which sensor networks can be used.

Another major driver for localisation within sensor net-

works is driven by networks with mobile nodes. The abil-

ity to track the position of nodes, e.g. vehicles, animals or

people, opens up a wide range of applications in transport

management, agriculture [31], military and health domains.

Mobile nodes can also form an important role as data ferries

in networks with disconnected nodes. As a result, localisa-

tion has been an important and growing research topic for

wireless sensor networks [25, 13].

1.1 Related Work

Previous work in sensor network localisation has typi-

cally fallen into two categories: (i) fine-grained localisation

and (ii) coarse-grained [17]. Fine-grained algorithms, are

usually based on some detailed information such as an es-

timate of the distance or angle between two nodes. Given

a minimum of three seed nodes, triangulation approaches

can be used to estimate the location of a node relative to the

location of anchor nodes.

In order to achieve fine-grained localisation, a sensor

node typically requires specialised hardware and often ex-

tensive computational resources. Disadvantages include in-

creased hardware costs, high energy usage and increased

physical sizes of nodes. A summary of the most popular

fine-grained approaches are given below:

• Radio Signal Strength (RSS): One of the simplest ap-

proaches that has been used for estimation of distances

between nodes is receiver signal strength. An ex-

ample of this type of approach is the RADAR sys-

tem [1] where signal strength from static nodes is used

to roughly track mobile indoor nodes.

• Time Difference on Arrival (TDoA): Range between

nodes can be estimated far more accurately by esti-

mating the time difference between transmission and

reception of slow travelling signals such as ultrasound

or acoustic waves. By transmitting both radio and ul-

trasound/acoustic waves at the same time, a receiver
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node has a transmission reference time stamp by which

to calculate time difference. The obvious downside of

this approach is the need for nodes to have additional

hardware for dealing with acoustic signals. An exam-

ple of the use of this approach is in the use of “Re-

cent technology” where ultrasonic signals are used in

a peer-to-peer fashion to determine the relative loca-

tion of mobile computing devices [4].

• Angle of Arrival (AoA): Whereas the previous two ap-

proaches have been based on distance estimates be-

tween nodes, location can also be derived from knowl-

edge of the angle of arrival between nodes. Techniques

for obtaining angle estimates include the use of phased

arrays of RF or ultrasonic receivers or by using rotating

directional beacons [21].

In contrast to the previous methods, coarse-grained lo-

calisation approaches focus on using a minimal amount of

information to derive a location estimate [11]. Common ap-

proaches are given below:

• Proximity: The simplest of all location techniques

is that of proximity measurements — that is, a sim-

ple decision as to whether two nodes are within radio

range of each other. The decision can be made based

on whether any packets are received at all, or can be

based on a threshold approach requiring some consis-

tent connectivity over time. A good example of this is

in the use of RFID tags for node localisation [32].

• Centroid: In the case of proximity measurements from

multiple reference nodes, then location can be esti-

mated by simply calculating the centroid of the known

reference node locations [5].

• Approximate point in triangle (APIT): In this tech-

nique [11], a set of regions are defined by forming sets

of triangles from all seed nodes which are in the prox-

imity of an unknown node location. The unknown lo-

cation can then be determined as the intersection of the

triangular regions.

Approaches using light have also been investigated as

means of localising a network of nodes in a centralised fash-

ion. In the StarDust system [28], nodes containing small re-

flectors allow their location to be determined when light is

shed over the entire network area. Other more sophisticated

centralised schemes include the use of self-organising maps

(SOM) to concurrently estimate node locations given hop

counts over entire network [10].

An additional field that has driven progress in the area

of mobile localisation is the field of robotics [9, 7, 19]. A

robot can be thought of as a mobile sensor node with ex-

tended computational ability and controllable state. Mobil-

ity is a subset of sensor network research that holds par-

ticular importance for localisation [13] with applications

ranging from target tracking [12] through to personal dead-

reckoning systems for GPS-denied environments [22, 24,

2]. As a result there are many learnings that can be taken

from the robotics community and applied to the field of sen-

sor networks localisation.

1.2 Motivation

The vast majority of previous work in localisation within

sensor networks has focussed on theoretical and simula-

tion approaches to validation of algorithms [25, 20, 18, 10].

There has only been limited work undertaken in actual im-

plementation of real-time, range-free localisation methods

within sensor networks. Whilst there is a large body of

experimentally validated techniques developed from within

the robotics community for mobile robot localisation, these

have only seen limited investigation within sensor networks

applications to date.

This paper describes the implementation and evaluation

of a protocol for real-time, mobile-node localisation where

a Monte-Carlo based approach is used to combine a local

mobility model and indoor map information, with proxim-

ity information from static seed nodes. The system has

been designed as a cheap, effective solution for personal-

tracking in indoor environments. The key advantages of the

system we propose is that excellent localisation accuracy

can be achieved with low cost inertial sensors and radio

transceivers, minimal system calibration and low network

traffic.

Our key contributions in this paper are as follows:

• Novel combination of local mobility model, range-free

localisation and map information

• Evaluation of an actual, real-time implementation of a

WSN localisation network

2. System Platform

2.1. Hardware Platform

The hardware platformwe have used for this work is part

of a family of devices known as ’Fleck’. Inspired by the

original Berkeley mote, since 2002 we have developed three

generations of the devices known as the Fleck-1, Fleck-

2 [26] and most recently, the Fleck-3 [14]. These devices

incorporate a number of key design features which make

the platform ideal for a wide range of applications includ-

ing outdoor, long-term deployments, which has been a key

focus of much of our work to date [30].

The Fleck-3 uses the Atmega128 micro-controller along

with the Nordic NRF905 radio transceiver operating in the
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915MHz band. The platform also incorporates power man-

agement circuitry to allow solar charging of batteries in the

case of outdoor use. The device also incorporates a real-

time clock chip to reduce micro-controller overheads. The

architecture relies heavily on the SPI bus where the At-

mega128 acts as the SPI master and can communicate with

the radio, the flash memory, the real-time clock over the SPI

interface. The real-time clock and the radio can both inter-

rupt the Atmega128 to signal alarms, packet transmission

and packet reception.

An additional feature of the Fleck-platform is the ability

to easily expand by adding additional sensors or sensor in-

terface boards, as well as coprocessor boards such as a DSP.

For this particular application we have developed a custom

inertial movement unit (IMU) daughterboard which stacks

directly on top of the Fleck-3 as shown in Figure 1.

Figure 1. Fleck3 sensor board (bottom) with

optional IMU daughterboard (top), contain-

ing accelerometers, magnetometers and gy-

roscopes.

The IMU daughterboard contains three single-axis

gyroscopes (ADXRS150), two dual-axis accelerometers

(ADXL202E) and a tri-axial magnetometer (HMC1053).

The sensors are sampled using a 16 bit ADCwhere the sam-

pling rate is limited by the data processing on the microcon-

troller.

2.2. Software Platform

We have also developed our own multi-threaded operat-

ing system known as “Fleck OS” (FOS) [6] which is clos-

est in spirit to MANTIS OS [3]. As others have reported

[16, 8], the event-driven programming paradigm does not

scale well with program size, leading to difficulty in devel-

oping and maintaining large applications.

FOS provides a priority-based, non-preemptive (coop-

erative) threading environment with separate stacks for

each thread, which has the advantage of providing a sim-

ple concurrent programming model which does not require

semaphores. The scheduler is also responsible for CPU

power management and enters the lowest mode consistent

with thread resource requirements. Time-critical operations

such as analog data sampling or high-speed timers are han-

dled by interrupt-level callbacks.

3. Network Topology and Protocol

This section describes the network backbone for the lo-

calisation system. The network consists of two key parts,

referred to as the static and the mobile networks. The static

network is comprised of the “seed” nodes — i.e. the nodes

which act as anchor points for the entire system. The mo-

bile network comprises the nodes which are to be localized.

They are designed to be worn by persons moving through

a building and are comprised of the Fleck-3 platform and

IMU daughterboard as described in Section 2.1 and shown

in Figure 1. The overall system architecture of these static

and mobile nodes is illustrated in Figure 2.

3.1 Static Network Design

The static network comprises a number of seed nodes

which are installed at fixed and known locations in a re-

gion of interest, for example one node per room, or multi-

ple nodes in bigger rooms. A single base node is connected

to a gateway computer for final processing and visualiza-

tion. A key role of the static network is to transfer all the

data packets coming from the mobile network back to the

base node. In the network used for the experiments in this

paper, we used a single-hop protocol with an acknowledg-

ment Medium Access Control (MAC) layer. This ensured

fast and reliable transfer with low network overhead, but

also obviously limited the size of localisation area, in our

case to around a 50m radius from the base node.

The other key role of the static network is to provide a

sufficient number of anchor points for the localisation algo-

rithm to perform robustly. As described later in Section 5,

being close to a seed node is used for a coarse-grain po-

sition measurement of the mobile node. To increase the

value of this information, the transmission range of a mobile

node has to be as small as possible, but still large enough to

have a seed node in range most of the time while walking

through the network. Empirical test showed, that using the

radio chip without antenna and using the -2dB transmission

power level reduce the range to a value in the order of 5m

(Figure 3). These data are taken under ’ideal’ conditions,

where there is free line of sight between both nodes. While

walking through a building the values might change a lot
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Figure 2. System architecture for indoor localisation system.
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Figure 3. Illustration of observed radio

throughput between a static wall nodes and

mobile node.

due to occlusion by walls and the body of the person. We

use a modified sigmoid function to model the transmission

probability depending on the distance:

f(d) = 1−
1

1 + e−σr(d−r̂t)
(1)

where r̂t is the nominal range and σr is an arbitrary param-

eter for range noise. This model is later used to represent

uncertainty of the proximity based position information in

the localisation algorithm.

3.2 Mobile Network Design

The mobile network, comprising nodes worn by people,

has two important roles. Firstly, the number of data packets

being transmitted from the mobile nodes needs to be min-

imized to avoid congestion in the static network and save

energy. This is achieved by preprocessing the motion data

onboard the device to reduce to a minimal number of rele-

vant events. This process is described in detail in Section 4.

Secondly, these events have to be reliably transferred to the

static network despite the reduced connectivity, mentioned

above. This is achieved by the use of a delay tolerant net-

work (DTN) [33] protocol where data is buffered locally

until a seed node is available for upload. It should be men-

tioned here that an overflow of the buffer is not an issue in

our system. The buffer has the ability to store 100 walking

step events. Assuming a step frequency of about 1-2Hz it

allows the person to walk around for about a minute without

connection to the static network, before the buffer is full. In

that case old events are overwritten.

The delivery of packets frommobile to static nodes is as-

sured using an implicit acknowledge mechanism. If a static

node receives a packet from a mobile node and forwards

it back to base, the forwarded packet is also received by

the mobile node and triggers the upload of the next packet.

In this way we guarantee a maximum transmission rate

between the mobile and the static network with minimal

packet overhead.

Figure 4 shows the main threads running on a mobile

node. Every event generated from the mobile sensor data

is locally stored in an event queue. At the same time, the

mobile node beacons at a predefined interval, using the first

event in the queue as a beacon message. If a nearby static

node receives this message, it forwards it back to base. The

forwarded message is also received by the mobile source

node, which takes this as notification of packet delivery and

keeps on going with the next event in the queue if there is

any.

The local buffering of event data introduces an inherent

latency between the occurrence of a relevant motion event

and the availability of that event information to the localisa-

tion algorithm running at the network base. The amount of

latency depends on the density of the seed nodes, the link

quality between mobile and static nodes and the beaconing

interval for broadcasting data messages. This is discussed

in more detail in Section 6.2.

The localisation algorithmmakes use of proximity infor-

mation, only for events which occur within the proximity of

a static node. As such, the position measurement given by

the forwarding seed node can not automatically be assigned

to all motion events in the data message— only those which

actually occur within the vicinity of the seed node. To han-
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Figure 4. Illustration of threads running on

mobile nodes.

dle this problem, we maintain a nearest node variable in the

mobile node, which is set by an implicit acknowledge mes-

sage and reset to a NULL value after one second without ac-

knowledgements. This variable is also stored in the queue

as part of the motion event. It should be noted here, that

a mobile node data packet can be forwarded (and therefore

acknowledged) by multiple seed nodes. Every received ac-

knowledgement updates the nearest node’s information on

the mobile node, but the fact of receiving the same message

via different seed nodes is not used for localisation.

4. On Board Data Processing

A crucial aspect of the system is preprocessing of mo-

tion data on mobile nodes. Preprocessing the raw data and

extracting only relevant events reduces the number of pack-

ages that need to be sent over the network. Given the com-

putational resources on a mobile node are clearly limited,

the processing algorithmswe use need to be highly resource

efficient.

The relevant information we extract for the proposed lo-

calisation method is (i) the occurrence of a walking step

together, (ii) movement direction. The algorithms used to

derive this information is presented below.

4.1. Step Detection

To detect the occurrence of a walking steps, we use the

data from the accelerometer sensor where the sampling fre-

quency is set to 25Hz. The acceleration signal vector mag-

nitude (svm) is corrected by the offset due to gravity and

then filtered using a simple FIR averaging filter with a his-

tory of 8 samples. Step events are then detected using a

custom algorithm (outside the scope of this paper) based on

thresholds and some heuristics to ensure robustness. Fig-

ure 5 illustrates the functionality of the step detection. The
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Figure 5. Illustration of the step detection de-

rived from accelerometer.

upper plot shows the unfiltered acceleration svm, while the

lower plot shows the filtered signal and the detected steps.

The parameters of the algorithm are tuned to maximize the

detection accuracy of a certain person in a normal walk

mode. Analysis and optimization for different people, walk-

ing styles and speeds are beyond the scope of this paper.

4.2. Heading

For every detected step, the corresponding heading infor-

mation is also calculated. The heading can either be calcu-

lated by integrating the z-axis angular rate sensor data (par-

allel to the gravitational axis) or by using the x and y-axis

components of the Earth’s magnetic field.

Both methods, used alone, have drawbacks. Magnetic

field sensors are very sensitive to disturbance from nearby

metallic objects. In indoor environments especially, this

can lead to large errors in heading calculations. Con-

versely, when integrating gyroscope data, along with need-

ing a known start value, measurement errors can accumulate

very quickly. Assuming that gyroscopes have a reasonable

short term stability however, and that magnetometers are

only disturbed over short periods of time, we can combine

the advantage of both types of sensors by using a comple-

mentary filter with a fixed weight W as:

hk = (1−W )(hk−1 + ωkdt) + Whmag,k (2)

where hk is the heading estimation, ωk the gyroscope read-

ing and hmag,k the heading value based on only the magne-

tometer reading.

In our experiments we found that a weighting factor of

0.01 gives sufficient accuracy. So the filter relies mostly on
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the gyroscope data, but the magnetometers have still enough

influence to compensate for gyroscope drift and unknown

starting angles. A detailed analysis of the accuracy of the

heading estimation is beyond the scope of this paper, how-

ever in Figure 6 we show its functionality in a critical sit-

uation. In this example, a person wearing a mobile node
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Figure 6. Illustration of the heading esti-

mation based on magnetometer and gyro-

scopes.

walks around two 90 degree corners, passes a large mag-

netic field disturbance, then turns around and walks back

the same way. The actual (ground-truth) heading is indi-

cated by the wide grey line. From the Figure 6 we can ob-

serve two things. Firstly, the estimator starting with a wrong

heading angle converges correctly towards the true heading.

This takes about 10 seconds in the example case. Secondly,

the estimator is not affected by the strong magnetic field,

disturbing the magnetometer readings. We show in later

simulations, that the accuracy of the localisation algorithm

is not critically dependent on the accuracy of the heading

data.

5. Localization Algorithm

This section describes the algorithmwhich is used to per-

form the localisation of mobile nodes. Our system is based

around the use of Monte Carlo filtering, which has been

used in some previous localisation work [13, 25]. Our algo-

rithm extends previous work however, by combining three

key pieces of information in the filter being:

• Proximity information from static seed nodes

• Improved mobility information derived from onboard

inertial sensors

• Indoor map information

5.1. Recursive Bayesian Estimation

Bayesian estimation methods are widely used to estimate

a systems state based on noisy sensor information. We sum-

marize the concepts here, for detailed overviewwith a focus

on localisation, see [29].

In Bayesian estimation methods, the state xk of system

at a time tk is estimated by calculating the a posteriori prob-
ability p(xk|z0, . . . , zk), where z0, . . . , zk are all measure-

ments about the system up to tk. The a posteriori probabil-
ity can be calculated using Bayes’ Rule:

p(xk|z0, . . . , zk) =
p(z0, . . . , zk|xk)p(xk)

p(z0, . . . , zk)
, (3)

which can be transformed into a recursive equation:

p(xk|z0, . . . , zk) =
p(zk|xk)p(xk|z0, . . . , zk−1)

p(zk|z0, . . . , zk−1)

= η · p(zk|xk)p(x̃k). (4)

where η = 1/p(zk|z0, . . . , zk−1) is a normalization factor.
The term p(zk|xk) is called the measurement model and re-
lates the state of the system to its observations, including

knowledge about uncertainties of the sensors. In our im-

plementation the system variable will be the position of a

mobile node and the observation will be the position of a

nearby seed node.

The term p(x̃k) = p(xk|z0, . . . , zk−1) is called the a

priori probability and is calculated as:

p(x̃k) =

∫

p(xk|xk−1)p(xk−1|z0, . . . , zk−1)dxk−1 (5)

The term p(xk|xk−1) is called the process model and it de-
scribes the knowledge (including uncertainties) about the

evolvement of the system over time. In our implementation

this model will incorporate odometry data from the mobile

node as well as information about the indoor environment.

Starting from an initial probability p(x0), each recursive
update of a Bayesian filter, as described above, can be per-

formed in two steps:

Prediction The a priori probability is calculated from

the last posterior probability using the process model

(Equation 5).

Correction The new a posteriori probability is calculated

using the prior and the measurement model (Equation

3).

If the probability distributions are Gaussian and the models

are linear, a Kalman Filter provides an optimal and efficient

implementation of Bayesian filters. If the models are non-

linear, they are often linearized using the Extended Kalman

Filter. In the Unscented Kalman Filter the probability dis-

tribution is represented by a carefully chosen set of points

in the state space, which conserves the Gaussian properties

of the distribution under a non-linear transformation.
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5.2. Sequential Monte Carlo Filters

In Monte Carlo sampling based techniques, a probability

distribution p(x) is represented by a number ofN weighted

samples x[i], i = 1..N, with weights w[i] as:

p(x) ≈
∑

i

w[i]δ(x[i] − x). (6)

Sequential Monte Carlo filters are also called Particle Fil-

ters, where samples are referred to as particles. Starting

from the initial probability p(x0), which may be repre-

sented as equally distributed samples with equal weights,

the recursive update is performed as follows:

In the prediction step every sample (x
[i]
k−1, w

[i]
k−1) of

the a posteriori distribution p(xk−1|z0, . . . , zk−1) is re-

placed by a new sample according to the process model

p(xk|xk−1), which leads to a new set of samples (x̃
[i]
k , w̃[i])

representing the a priori distribution.

In the correction step, the weight w[i] of every sample of

the a priori distribution, is updated according to the mea-

surement model:

w[i] = w̃[i] · p(zk|x̃
[i]
k ),

∑

i

w[i] = 1. (7)

Together with the normalized weights, the prior set of sam-

ples now approximates the a posteriori probability. In the

last step (resampling), a new set of samples is drawn with

replacement from the prior set with the probability of a sam-

ple being drawn given by its weight factor. The final set

represents the new posterior as well, but now the samples

are equally weighted. At this point we can start with a new

prediction step.

During the resampling, unlikely samples are omitted

which leads to many duplicates in the final set. To avoid

ending up with only a single sample, noise is introduced

during the prediction step to separate samples that have the

same values.

5.3. Monte Carlo Localization

In this section we describe the implementation of the par-

ticle filter we use to estimate the position of a mobile node

within a static network of seed nodes. The role of the pro-

cess model is to describe the transition from a state xk−1 at

the time tk−1 to state xk at the time tk. In our case the sys-
tem is a person wearing a mobile node and its state is given

by its position xk = (pxpy)T (tk). Thus the process model
is given by a motion model, which describes our knowledge

about the movement of the person.

A common model, which also has been used in [13, 25],

is to assume that a person is moving in random directions

with random speed. The speed is equally distributed be-

tween 0 and a maximum velocity vmax. Other models as-

sume a constant velocity and model the uncertainty by in-

ducing a small random acceleration in every prediction step.

In that case the state variable also contains the speed of the

person.

A key advantage of the system described in this paper is

that we determine information about the motion of a person

from local inertial sensors. Every step that is detected, com-

bined with the heading measurement, provides information

about a relative position change. This data can then be in-

corporated into the prediction model as control inputs uk.

The other source of information we utilize during the

prediction step is the indoor map of the building. A map

provides a natural constraint on the paths a person can take

and allows the motion model to check if a certain step is

possible — i.e. a person can’t walk through walls! Our

motion model in the prediction step (Eq. 5) is then written

as p(xk|xk−1,uk, m), where m is the map. In our case,

the control consists of the heading angle φk and the stride

length lk. To simplify the motion model, the stride length
is currently not measured and therefore assumed to be con-

stant.

In the actual implementation of the localisation algo-

rithm, discussed in Section 6.2, every sample representing a

possible position of the mobile node is recalculated as soon

as a new radio packet, indicating a detected walking step, is

received at the base node as:

(

px

py

)[i]

k

=

(

px

py

)[i]

k−1

+ l̂
[i]
k ·

(

sin(φ̂
[i]
k )

cos(φ̂
[i]
k )

)

(8)

As mentioned earlier, it is important to introduce noise into

the model to avoid degeneracy of the filter. This is done in

a natural way due to the uncertainties nφ, nl of the heading

and stride length information as:

l̂
[i]
k = lk + n

[i]
l , n

[i]
l drawn from p(nl) (9)

φ̂
[i]
k = φk + n

[i]
φ , n

[i]
φ drawn from p(nφ) (10)

The knowledge about the map is incorporated by setting the

weight of a samples to zero, if it crossed a wall during the

prediction step (Equation 8).

w̃
[i]
k =

{

w
[i]
k−1 no wall crossed in (8)

0 wall crossed in (8)
(11)

In the correction step we utilize any available informa-

tion about the proximity of the mobile node to a static seed

node. This can be seen as an absolute position measure-

ment (position of the forwarding node) with a large error

(transmission range of the mobile node). The measurement

model in (Equation 7) can be written as:

p(zk|x̃
[i]
k ) = p(Xn|x̃

[i]
k ) ∝ f(d[i]

n ), d[i]
n = Xn − x̃

[i]
k (12)

45



where XN is the position of the forwarding static node and

f(d) is a function describing the transmission probability

between the mobile and the static node depending on their

distance. In the simplest case this could be defined as:

f(d) =

{

1 d ≤ r̂t

0 d > r̂t
(13)

assuming a transmission range r̂t. Due to the transmission

irregularities discussed earlier, we chose the more appropri-

ate model given in Equation 1. The correction step is only

executed, if the step was detected within the range of a static

node, otherwise the filter continues with the next prediction

step leading to further spreading of the samples.

After updating and renormalising the weights (Equation

7), the resampling step follows, where a new set of samples

is drawn with replacement using the weights as a drawing

probability. The weights are set to an equal value and the

position of a person is estimated using the mean of all the

samples. The spread of the samples (e.g. the standard de-

viation in both dimensions) is then a measure for the confi-

dence of the estimation.

6. Evaluation

6.1. Simulation Results

To fully evaluate the performance of the localisation al-

gorithm prior to final implementation, we implemented a

custom simulation environment. The simulator was de-

signed to allow randomly generated paths to be created

within a randomly generated building map [23], similar to

the environment we undertook our experiments in. A sim-

ulated person could then move along the generated path

where inbuilt radio models would allow packets to be gener-

ated and sent between mobile and static nodes arriving back

at the base node.

To generate a path, we assume a person starts from a

given starting position and then walks in a certain direction

by adding up steps, whose lengths are drawn from a random

distribution. When the person hits a wall, the simulator as-

signs a random turn angle and then continues on. This al-

gorithm has been optimized in a way that every trajectory

represents a realistic path a person would walk through the

building. (Figure 7).

As a metric for the simulation we use the estimation er-

ror, which is the distance between a reconstructed position

on the graph and the true one. The estimation error of a

whole path is the root mean square (rms) of the errors along

the path. We ran every simulation setting with a number

of different random generated paths and show the standard

deviation of the estimation errors as error bars in the plots.

For some simulations we also show the maximum estima-

tion error.
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Figure 7. Example path generated by the sim-

ulator

The following assumptions and parameters are used for the

simulations:

On board data processing: The step detection proba-

bility is 100%. The heading measurements have a Gaussian

noise with σh = 10◦. There is an additional bias added to
the headingmeasurement, which depends on the current po-

sition and varies between −10◦ and 10◦ over a distance of
10m. Thus an event marked as close to a seed node depends

on the seed density and the radio transmission model.

Network properties: The seed nodes are distributed on

a grid, where the grid distance can be varied as a simulation

parameter (see Figure 7 with seed distance of 10m). If a

message from a mobile node is received by a seed node is

determined by theDegree of Irregularity1 parameter δ intro-
duced in [34]. The transmission range rt for every message

is drawn from a uniform distribution between (r̂t−δr̂t) and
(r̂t + δr̂t). A message gets transmitted if the distance be-

tween two nodes is smaller than rt. The nominal range r̂t is

set to 5m for all simulations, and the DoI parameter δ is set
to 0.3 unless otherwise noted.

Additionally a certain percentage of all events is dropped to

simulate packet loss in the static network.

Localization algorithm performance:We use the same

parameters for the localisation algorithm for all simulations.

Unless otherwise noted, we use a number of 500 particles

and use the true starting point of the path as a starting point

1The DoI is originally meant to describe radio irregularities in the trans-

mission direction, but we apply the model to irregularities over time.
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for the reconstructed path.

Using the simulator, we can demonstrate how the use of

the motion model and map information increases the accu-

racy of the location estimation. Since the benefit is expected

to be larger for lower seed densities, we plot the rms error

and the maximumestimation error against the seed distance.

This comparison is shown in Figure 8. The random motion
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Figure 8. Estimation error for different mod-

els with varying seed distance.

model is comparable to the model used in [25] and already

described in Section 5.3. The moving direction is assumed

to be unknown and the moving distance per time step is re-

stricted by a maximum velocity. As expected, the rms error

increases with increasing seed distance. We also notice a

saturation of the error towards higher distances. This is due

to the fact, that the paths generated by the simulator are in a

constrained area, which limits also the maximum estimation

error.

The heading based motion model is shown with and

without incorporating the map information. The error still

increases, however much less than with the random direc-

tion model. By also incorporating the map information, the

error is nearly constant up to a seed distance of 20m. The

solid line shows the error with perfect data, that means the

heading measurement is assumed to be known exactly.

The variation of the seed distance also changes the seed

density, which is defined as the average number of seed

nodes in range of a mobile node. This has a direct influ-

ence on the amount of traffic in the network, since a mes-

sage sent by a mobile node is transferred back to base by

every seed node in range. Figure 9 shows the seed density

for varying seed distance. From about 10m the data packets

are forwarded by only one node which minimizes the net-

work traffic, but still gives reasonable localisation accuracy

(Figure 8).

We also undertook simulation experiments varying the
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Figure 9. Seed density depending on the

seed distance.

number of particles used by the localisation algorithm.

These results are shown in Figure 10.
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Figure 10. Estimation error for different seed

distances, varying the number of particles in

the localisation algorithm.

It is observed that the estimation accuracy does not im-

prove for particle numbers bigger than 400 if the node dis-

tance is up to 15m. Smaller particle numbers may give rea-

sonable results in most cases, but have an influence on the

robustness of the filter. This can be seen clearly in the next

simulation shown in Figure 11.
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In Figure 11, the initial position of a person (step 0) is

unknown and particles are therefore spread over the whole

map. The filter, using 500 particles, converges to the true

position after about 10 steps, while the cases with 250 and

50 particles take about 40 steps. At step 100, the true path is

deliberately cut (the person is kidnapped) and started again

in a different room. It can be seen that the algorithm needs

about 10 steps to find the new position. The lower graph

of Figure 11 shows the spreading of the particles, which is

calculated by adding the squared standard deviations of the

particles x and y components.

Figure 12 shows how the localisation algorithm is af-

fected by varying network properties. In this case the seed

density is set to 10m and the number of particles to 500. We
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observe that the estimation error is nearly independent of

the degree of irregularity of the radio transmission between

the mobile and the seed node. This demonstrates a key ad-

vantage of the proposed algorithm, since it is not dependent

on correct radio propagation models like RSS based algo-

rithms.

6.2. Experimental Results

In this section, we show experimental results taken from

a sensor network deployed around our office building. Nine

seed nodes were deployed on various positions throughout

an area in the building as shown in Figure 13. The distance

between the nodes is about 5m to 10m. A person wear-

ing a mobile node on the waist walked along a path indi-

cated by the thick grey line. The messages generated by the

mobile node are forwarded back to base using the protocol

described in Section 3 and processed by the localisation al-

gorithm running on the base computer. The black crosses

show the reconstructed steps using the motion model, the

real path

seed nodes

reconstructed path

reconstructed path
without map

start
stop8

32

7

1

4

9

6

5

Figure 13. True and reconstructed walking

path using the heading based motion model

seed node positions and the building map. The dotted line

shows the reconstructed path without using indoor map in-

formation.

Since we do not have a reference system, we manually

created the true path as a polygon and defined the error met-

ric as the closest distance to the closest polygon segment.

This metric results in a slight underestimation of the true

error, since it only gives the deviation orthogonal to the

path and not along the path. However, as can be seen in

Figure 13, this is a reasonable estimate if the reconstructed

path is not varying much from the true path. Plot 14(d)
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Figure 14. Latency, near node ID, estimation

error and estimation confidence over time.

shows the errors over time for estimation with and without

map information. Plot 14(c) shows the confidence of the po-

48



sition estimation, which is given by the standard deviation

of the particles in the x and y-direction.

Latency is another important metric to evaluate in sen-

sor networks. For this application we define latency as the

time between the occurrence of a walking step and the a

successful transfer from the mobile node to the static net-

work. The transfer time from a seed node to the base node

is assumed to be virtually zero since the static nodes form a

fully connected network and were running at a 100% duty

cycle for these experiments. The latency thus shows how

long an event is stored in the buffer of the mobile node and

depends both on the time of disconnectedness of the mobile

node and on the retry time after an unsuccessful upload.

Plot 14(a) shows that the latency is about a second most

of the time, with a maximum value of 8 seconds during a

longer time with bad connectivity. Plot 14(b) shows which

mobile node has been used in the measurement model of

the localisation algorithm. A node ID of zero means, that

the step was detected out of range of any seed nodes.

The indoor walking experiment was repeated over a

longer time period of about half an hour, walking the same

path multiple times. Figure 15 shows the probability density

distribution for both the latency and the reconstruction error

calculated from the experiments. We define the overall error
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Figure 15. Empirical probability density dis-

tribution for latency and estimation error cal-

culated from multiple experiments.

and latency as the standard deviation from zero. The overall

latency is 1.3 seconds with a maximum value of 8 seconds.

Assuming an uncertainty of 1m on the true path, the overall

estimation error with an algorithm using the map informa-

tion is 1.2m with a maximum of about 2.5m, and 2m with a

maximum of 5.2m without the map. This is consistent with

the simulation results in Figure 8.

7. Conclusions and Future Work

7.1 Conclusions

We have presented an indoor localisation system for a

wireless sensor network, which estimates the position of

mobile nodes worn by persons moving through a network

of static seed nodes with known positions. Relevant infor-

mation about the motion of the person is generated by the

mobile nodes and transferred to a central PC, where they

are combinedwith knowledge about the indoor environment

and the seed node positions using Monte Carlo based esti-

mation algorithms. Data packets are processed as soon as

they arrive at the central PC, which enables real-time track-

ing of a person while moving through a building.

We have evaluated the performance of our localisation

system through both simulations and experimental valida-

tion. Our simulations show that the algorithm is robust

against radio transmission irregularities and heading esti-

mation errors which occur from sensor noise and magnetic

disturbances. In a deployment in our office building we

showed, that a person walking through the area could be

localized with a rms error of about 1m and a maximum er-

ror of about 3.5m. The network latency was about 1 second

rms and 8 seconds maximum.

7.2 Future Work

There are several ways to improve the system into the

future. One is to extend the tracking area by using multi-

hop routing techniques in the static network. Another in-

teresting avenue is to generate more information from the

IMU data than just step events and heading values. We are

working on additional research in accelerometer-based ac-

tivity classification to detect events such as sitting, lying or

falling, which allows the system to be used for health care

applications like monitoring of elderly people in care facil-

ities. Future work will also investigate ways to estimate the

step length of a walking person to improve localisation ac-

curacy as well as detect new types of events such as stair

climbing which then enables position estimation over mul-

tiple floors.

Another direction for future work is decentralization of

the system. In the current implementation the localisation

algorithm is running on a central computer, where all the

data from the network are is collected via the base node. In

principle however, every mobile node has all the informa-

tion available that is needed to estimate its own position. In-

stead of forwarding a mobile node event message to the base

node, a seed node would simply send an acknowledge mes-

sage containing also its own position information. Given

this scenario, other nodes of the mobile network could also

be used as seed nodes.
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[16] O. Kasten and K. Römer. Beyond event handlers: program-

ming wireless sensors with attributed state machines. Pro-

ceedings of the 4th international symposium on Information

processing in sensor networks, 2005.

[17] B. Krishnamachari. Networking Wireless Sensors. Cam-

bridge University Press, 2005.
[18] L. Lazos and R. Poovendran. Serloc: Robust localisation

for wireless sensor networks. ACM Transactions on Sensor

Networks, 1(1):73–100, 2005.
[19] L. Liao, D. Fox, J. Hightower, H. Kautz, and D. Scultz.

Voronoi tracking: Location estimation using sparse and

noisy sensor data. In Proc of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2003.
[20] X. Nguyen, M. I. Jordan, and B. Sinopoli. A kernel-

based learning approach to ad-hoc sensor network localisa-

tion. ACM Transactions on Sensor Networks, 1(1):134–152,

2005.
[21] D. Niculescu and B. Nath. Ad hoc positioning system (aps)

using aoa. In INFOCOM, 2003.
[22] L. Ojeda and J. Borenstein. Personal dead-reckoning sys-

tem for gps-denied envionments. International Workshop

on Safety, Security and Rescue Robotics, 2007.
[23] S. O’Sullivan. Map viewer - a mapping tool for mobile

robotics. In http://www.skynet.ie/ sos/mapviewer/main.php,

2007.
[24] A. Raj, A. Subramanya, D. Fox, and J. Bilmes. Rao-

blackwellized particle filters for recognizing activities and

spatial context from wearable sensors. In The 10th Interna-

tional Symposium (ISER 2006), 2006.
[25] M. Rudafshani and S. Datta. Localization in wireless sensor

networks. In Information Processing in Sensor Networks

(IPSN), pages 51–60, 2007.
[26] P. Sikka, P. Corke, P. Valencia, C. Crossman, D. Swain, and

G. Bishop-Hurley. Wireless adhoc sensor and actuator net-

works on the farm. In IPSN, pages 492–499, 2006.
[27] R. Stoleru, T. He, and J. A. Stankovic. Walking gps: A prac-

tical solution for localisation in manually deployed wireless

sensor networks. In EmNets, 2004.
[28] R. Stoleru, P. Vicaire, T. He, and J. A. Stankovic. Stardust:

A flexible architecture for passive localization in wireless

sensor networks. In SenSys’06, 2006.
[29] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.

MIT-Press, 2005.
[30] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Cross-

man, P. Valencia, D. Swain, and G. Bishop-Hurley. Trans-

forming agriculture through pervasive wireless sensor net-

works. IEEE Pervasive Computing, 6(2):50–57, 2007.
[31] T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka,

P. Corke, C. Lee, J. Henshall, J. O’Grady, M. Reed, and

A. Fisher. The design and evaluation of a mobile sen-

sor/actuator network for autonomous animal control. In

IPSN, pages 206–215, 2007.
[32] P. Wilson, D. Prashanth, and H. Aghajan. Utlizing RFID

signaling scheme for localization of stationary objects and

speed estimation of mobile objects. In IEEE International

Conference on RFID, 2007.
[33] Z. Zhang. Routing in intermittently connected mobile ad

hoc networks and delay tolerant networks: Overview and

challenges. IEEE Communications Surveys and Tutorials,

8(1):24–37, 2006.
[34] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic.

Models and solutions for radio irregularity in wireless sensor

networks, 2006.

50


