
Passive Localization: Large Size Sensor Network Localization
Based on Environmental Events

YoungMin Kwon
Microsoft Corporation
ykwon4@cs.uiuc.edu

Gul Agha
Department of Computer Science

University of Illinois at Urbana Champaign
agha@cs.uiuc.edu ∗

Abstract

We develop a localization algorithm based on global en-
vironmental events observed by a sensor network. Exam-
ples of such events include the sound of thunder, the shades
of moving clouds, or the vibrations in seismic data. Because
our localization method does not generate signals for dis-
tance measurements, it saves energy. In fact, the algorithm
may use existing sensor recordings to determine the loca-
tions of nodes at which the recordings were taken. More-
over, the method does not accumulate errors, making it also
effective for large and sparse sensor networks. The local-
ization uses time synchronization; we provide an algorithm
to compensate for clock synchronization errors. Versions
for both two dimensional and three dimensional localiza-
tion of the algorithm are presented. Simulation results sug-
gest that the algorithm can provide a high degree of accu-
racy when many events are recorded.

1 Introduction

A Wireless Sensor Network (WSN) is a collection of sen-
sor nodes cooperating with others through wireless com-
munication channels. Because each node can process
data locally and can collaborate with other nodes, WSNs
have many successful applications such as structural health
monitoring, environmental monitoring, target tracking, or
shooter localization [8, 16, 9, 7]. Because many of those
applications require sensor position information, localiza-
tion has been an important problem in WSNs and a number
of approaches have been proposed.

The most intuitive localization approaches are based
on multilateration by measuring distances from multiple
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anchor nodes [10]. One popular distance measurement
method is to use use the Time Difference of Arrival (TDOA)
between two different signals. Much as we measure the dis-
tance to a lightning cloud by measuring the TDOA between
the light and the thunder, the TDOA between the radio and
the sound can be used to measure distances between sen-
sor nodes [4, 12]. Although such anchor based localization
methods are accurate and less vulnerable to error propaga-
tion, their drawback is that they require a high density of
anchor nodes.

Without anchor nodes, we can estimate relative coordi-
nate systems that may be rotated, translated, or flipped with
respect to a physical coordinate system but still preserves
the distances between nodes. If all pairs of node-to-node
distances have been estimated estimated, one can use Multi-
Dimensional Scaling (MDS) to localize [13]. In [13], the
pairs of node-to-node distances are approximated by mes-
sage hop counts between two nodes. However, there is often
non-uniformity in radio ranges of sensor nodes. Moreover,
there may be skewness in hop counts of distances in regu-
lar deployments; for example, in a grid layout, nodes in a
diagonal direction have a shorter hop distance than those
measured in a lateral direction. To mitigate these prob-
lems, incremental localization approaches have been pro-
posed [14, 3]. In these incremental approaches, local MDS
is applied to the nodes within certain hop count ranges and
the locally localized patches are incrementally stitched to-
gether. Unfortunately, errors can accumulate during the in-
cremental stitching process.

Another multi-dimensional scaling type of localization
approach that does not require all pairs of distances and
does not accumulate errors is proposed in [4]. In [4] Least
Squares Scaling (LSS) based localization method is used
to minimize the sum of squares of differences between the
available distance measures and the distances calculated
from their estimated positions.

Many localization algorithms are based on node-to-node
distances from actively generated signals. However, be-
cause sensor nodes usually have low power actuators (for
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example, the beeper of Mica motes has a range of a few
meters [2]), it is difficult to measure long range distances.
Moreover, in energy constrained sensor network applica-
tions, generating large signals can be prohibitively expen-
sive. With only short range distance measurements, local-
ization algorithms can suffer from error accumulation: lo-
calization results in local neighboring nodes may be rel-
atively accurate but they are significantly misplaced in
the global configuration. Another problem is the inabil-
ity to deal with a sparse measurement density. In order
to uniquely determine the position of a node in 2D space,
the node needs at least three independent low error mea-
surements. Sparse distance measurements may mean some
nodes fail to meet this requirement. This problem can be
more severe for the nodes at the edge of a configuration.

In this paper, we propose a new localization algorithm
called Passive Localization which addresses these prob-
lems. The proposed algorithm uses time differences of
global environmental events observed by a sensor network,
such as the sound of thunder, the shadows of moving cloud,
or the vibrations of seismic data. Because the recording
time differences are proportional to the distances from the
positions of the nodes to a plane perpendicular to the event
propagation direction, we call these time differences Pro-
jected Distances.

Consider a simple example of a localization from pro-
jected distances. Suppose we have two sets of projected
distances from two global events propagating in perpendic-
ular direction at the same speed. We can then obtain a rela-
tive coordinate system by simply pairing the two distances
of each node. However, in general, we cannot get the event
propagation directions from initially unlocalized sensor net-
works. Instead, we compute the principal axes that have the
largest variances from the set of projected distances: in this
paper, we show that the positions of nodes can be obtained
from linear combinations of the principal axes of which co-
efficients can be found using anchor nodes. Some of the
merits of the proposed method are as follows:

• Because the projected distances can be measured with-
out actively generating signals, passive localization is
good for the longevity of sensor networks.

• The environmental events span across the entire sen-
sor network. Thus, the error accumulation problem in
localization can be eliminated.

• The problems caused by sparse measurement density
can be solved. Even the nodes at the edge generally
have as many distance measurements as the nodes in
the center of the network.

• We do not assume that clock synchronization is main-
tained but provide an algorithm to mitigate time syn-
chronization errors.
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Figure 1. An example of a global event prop-
agating over a WSN.

• The proposed method can be applied to existing
recordings so that the positions of nodes can be found
post-hoc.

We present simulation results which show that our passive
localization algorithm can succeed in localizing nodes to a
median error of <6%. One weakness of passive localiza-
tion appears to be the need for dozens of events to provide
sufficient accuracy.

2 Distance Measurement

Passive localization is based on projected distances
which can be obtained from recordings of possibly multi-
ple types of sensors. In this section we describe how to de-
tect the presence of global events and how to get projected
distances from the event recording.

2.1 Detecting Global Events

In order to get projected distances, we need to detect the
presence of global events from the raw recordings first. We
detect the events by checking the covariance of recordings
of all nodes in a sliding time window, instead of looking
for any previously assumed patterns for the events. In this
section we explain the exponential complexity of the co-
variance comparison and propose a frequency domain solu-
tion. For the sliding time window, we propose an incremen-
tal spectrogram algorithm which has linear time complexity
for computing Discrete Fourier Transform (DFT) in terms
of the window size.

We begin this section with an example of a global event.
Figure 1 shows a seismic vibration of a land surface. This
vibration passes through a sensor network, marked as stars,
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from the north-east side of the figure. As the vibration
passes the system, all the nodes will record the same se-
quence of vertical accelerations of the land. However, the
sequence begins at different times at each node: the node at
the north-east corner has the first recording and the node at
the south-west corner has the last recording. The recording
time differences are proportional to the projected distances
from the nodes to a plane perpendicular to the event propa-
gation direction. In Figure 1, we draw these distances with
solid lines. Note that, since we do not know the speed of
event propagation, we do not know the actual projected dis-
tances. We now explain how to detect the global presence of
such recording sequences on the system, and in the next sec-
tion we explain how to obtain the projected distances from
the recordings.

We detect global events by checking the similarity of
recordings of all nodes. If there are similar sequences
present in all recordings then we assume that it is made from
a global event. Checking the similarity between recordings
can be done by measuring the correlation between them.
Because the sequences are time shifted by event propaga-
tion delays, we need to find the time shift between them that
will make the maximum correlation. However, because we
are interested in finding projected distances of all nodes, the
time shift between two nodes cannot be determined inde-
pendently of other nodes. For example, let tab, tbc, and tac

be the time shift amounts between node pairs (a, b), (b, c),
and (c, a). Then, the constraint tab + tbc = tac must be
satisfied. In ideal case, this constraint should be satisfied
trivially. However, in a noisy environment, we need to find
the best set of time shifts that satisfy the constraint. Note
that the whole recording of a node may have recordings of
multiple events coming from different directions at different
times. We can set a time window and limit the comparison
within the window to isolate the events. We slide the win-
dow through the entire recording. In summary, what we
want to find is the amount of time shift ti for each node ni

that maximizes:

covt =
∑

ri∈N

∑
rj∈N∧i�=j

T−1∑
τ=0

r̃i,t+ti (τ) · r̃j,t+tj (τ),

where t is the beginning of the time window, for all k, tk ∈
[0, T ) is the time shift for node nk, rk : IN → IR is the
array of samples of node nk, N is a set of recordings from
all nodes, T is the size of the time window, and r̃k : IN → IR
is the mean deviated form of the sample: r̃k,t(τ) = rk(t +
τ)− (

∑T−1
s=0 rk(t+s))/T . We can say that there is a global

event if cov is larger than a threshold value and the time shift
information ti’s to get the maximum cov are the projected
distances. Note that to get the maximum cov we need to
check all different configurations of time shifts. Thus the
worst case time complexity is O(T n) which we may want
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Figure 2. Time shift invariance of the ampli-
tude of DFT of a signal.

to avoid for large n or T. We show that the covariance can in
fact be estimated in the frequency domain (without shifting
the signals). Estimation of the time shift is discussed in the
next section.

It is well known that the amplitude spectrum of Discrete
Fourier Transform (DFT) of a time domain signal is invari-
ant to time shift [11]. As an example, Figure 2 demonstrates
the invariance to time shift of the amplitude spectrum of
DFT of the signal. The first graph shows a time domain sig-
nal and its two different time shift variations. The second
graph shows their amplitude spectrum after DFT. Note that
all the three amplitude spectrum agree regardless of their
time shift. Because DFT eliminates the time shift factor
from the recordings, we do not need to do the exponentially
complex search. Instead, we compute the covariance di-
rectly by:

cov′
t =

∑
ri∈N

∑
rj∈N∧i�=j

T−1∑
f=1

|R̃i,t(f)| · |R̃j,t(f)|,

where |R̃k,t| is the mean deviated form of |Rk,t| in the win-
dow and Rk,t : IN → IC is DFT of r:

Rk,t(f) =
T−1∑
τ=0

rk(t + τ) · e 2πiτf
T , (1)

where i =
√−1, exi = cos(x) + i · sin(x), f ∈ [0, T ),

and t is the beginning of time window. The whole set of
Rk,t of a node nk from each t is called spectrogram [6]. For
simplicity, we drop the node id k or the time index t from
Rk,t when they are obvious or not necessary.

Note that cov′ is not equal to cov: in computing cov we
compare signals of length T that begin from different time
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double Q[T], S[T], C[T];
int h=0;
void update(double d) {

for(f=0; f<T; f++) {
C[f] = C[f] - Q[h]*cos( 2π·f ·h

T
);

S[f] = S[f] - Q[h]*sin( 2π·f ·h
T

);
C[f] = C[f] + d*cos( 2π·f ·h

T
);

S[f] = S[f] + d*sin( 2π·f ·h
T

);
}
Q[h] = d;
h = (h + 1) modulo T;

}
double amplitude(int f) {

return
√

C[f]2 + S[f]2;
}
double angle(int f) {

return atan2(S[f], C[f])- 2π·h
T

;
}

Figure 3. Incremental spectrogram algorithm:
update function slides the DFT window a step
with a new sample data d. atan2(y, x) returns
an angle θ such that cos(θ) = x/

√
x2 + y2 and

sin(θ) = y/
√

x2 + y2.

steps, whereas in computing cov′ we compare the signals of
length T′ begin from the same time step. In other words,
for cov, we compare signals of length T within an actual
window of length 2T, and for cov′ we compare signals of
length T in the same window.

Note also that in cov’ the time shift terms ti and tj of
cov are eliminated and so does the need for the exponential
search. Instead, we need to do DFT of Equation (1) which
has O(T 2) time complexity – O(T · log(T )) if we do Fast
Fourier Transform. We developed an incremental spectro-
gram algorithm that reduces the time complexity to O(T )
to compute DFT for the adjacent window. Although it is a
relatively straight-forward algorithm, to the best of our ef-
fort, it has not been previously published. Note that Rt of
Equation (1) is for the window [t, t+T−1], and the window
for the next step is [t + 1, t + T ]. Let

R′
t+1(f) = Rt(f) − r(t) · e 2πif·0

T + r(t + T ) · e 2πif·T
T .

Then, R′
t+1 is computed over the next time window on

a phase shifted basis vectors. Using the addition formu-
las of sin and cos, we can easily prove that the phase
shifted basis vectors do not have any effect on the magni-
tude: |R′

t+1| = |Rt+1|, and they shift the phase by 2π
T :

� R′
t+1 − 2π

T = � Rt+1, where � a · ei·b is b. In this paper,
we also use the phasor notation a � b for a · ei·b. Figure 3
shows the incremental spectrogram algorithm. We maintain
a circular queue of length T to remove the first element of
the previous window from the computation for the current

window. Also, the index h maintains the header position in
the queue as well as the phase shift information of the basis
vectors.

2.2 Computing Projected Distances

Once a global event is detected, the next step is to get the
projected distances. In the previous section, we explained
that the magnitude spectrum of DFT is invariant to time
shift. The time shift information is encoded as phase shift
after DFT. In this section we describe a method to get the
time shift information from the phase shift and confidence
value of the estimation. We also describe a measurement
quality improvement method based on the confidence value
and by the principal axis analysis.
Converting phase shift to time shift
Let Ri(f) = ai � θi and Rj(f) = aj � θj , then the following
equality holds between phase shift and time shift:

θi − θj

2π
=

dij mod (T/f)
T/f

, (2)

where dij is the time shift between the recordings of node
ni and node nj , and mod is the remainder operator. This
equality holds because a time domain signal can be repre-
sented as a linear combination of orthogonal basis of sinu-
soidal and time shift of the signal is equivalent to phase shift
of the basis sinusoidal. Because Equation (2) is about the
remainder of time shift, there can be multiple candidates for
dij :

dij(k) = k · T

f
+

θi − θj

2π
· T

f
(3)

for any integer k ∈ [−
⌈

T
f

⌉
,
⌈

T
f

⌉
]. However, if we plot the

candidates of all frequencies together, the amount of real
shift will be evident.

Figure 4 shows the time shift candidates of all frequen-
cies for the signals in Figure 2. The first graph is about the
time shift between signal a and signal b. Note that, the can-
didates of all frequencies are present at step 15. The second
graph is the candidates for signal a and signal c. As ex-
pected, candidates of all frequencies are present at step 30.
The last graph is about signal b and signal a. However, in
this graph, the dense marks are at step 25, instead of at step
15. We will explain this later in this section.

Figure 4 is an ideal case phase shift diagram: the candi-
dates are aligned in a single column. In real measurements,
because of measurement errors, the candidates will be scat-
tered around their actual position. Because such scattering
need not be Gaussian, we choose the distance that mini-
mizes the following median error function:

Eij(d) =
T−1∑
f=1

min
k∈[−�T

f �,�T
f �]

wij(f) · |dij(k) − d|,(4)
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Figure 4. Time shift candidates from phase
shift information.

where wij : IN → IR is a weight function for the error at
frequency f. We use the geometric mean of the magnitudes
of two signals at that frequency as the weight (wij(f) =√|Ri(f)| · |Rj(f)|) so that the phase differences of the fre-
quencies with large energy have large weights.

The last factor to consider in converting phase shift to
time shift is that an angle θ can also be −(2π − θ). This
explains why the time shift candidate column of the last
graph of Figure 4 is at 25: 25 − 40 = −15. In order to
resolve this ambiguity we introduce a second time window
of different size, say T2. Let d1

ij and d2
ij are the measured

distances from the two time windows respectively and let
δf
ij = |d1

ij − d2
ij | and δr

ij = |(T − d1
ij)− (T2 − d2

ij)|. Then,
the distance between nodes ni and nj is

dij =




d1
ij if δf

ij ≤ θ ∧ δf
ij ≤ δr

ij

d1
ij − T if δr

ij ≤ θ ∧ δf
ij > δr

ij

0 otherwise

where θ is a threshold value that prevents large error.
Figure 5 shows the error function Eij of Equation (4) as

a function of dij . For this graph, we use a constant weight
function to show the median error. The first graph is plot-
ted with a time window of size 40 and the second graph is
plotted with a time window of size 50. Note that in both
graphs the minimum of errab and errac agrees at 15 and 30
respectively, and the minimum of errba agrees at 25 and 35
(25 − 40 = 35 − 50 = −15).
Measurement quality improvement
Because projected distances hold the following equality,

dij = dik + dkj for all k

a poor quality measurement can be replaced with a combi-
nation of better quality measurements.
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Figure 5. The error Eij as a function of esti-
mated distances dij .

Note that we estimate two distances from two time win-
dows of different size. Thus, the degree of their agreement
can be an indicator of a confidence of the measurement. Let
δij be the confidence of measurement (the smaller the bet-
ter),

δij = min(δf
ij , δ

r
ij).

Then, we can iteratively improve the quality of measure-
ments by replacing the low confidence measurements with
better ones:

• while there are nodes ni, nj , and nk such that δij >
max(δik, δjk) + ε update δij and dij :

δij = max(δik, δjk) + ε

dij = dik − djk,

where ε ≥ 0 is a parameter to prevent the set of en-
tire measurements from being dominated by only few
measurements.

Let ∆ ∈ IRn×n be a matrix such that ∆ij = dij , then in
ideal measurement ∆ can be written as:

∆ =




d1 1
...

...
dn 1


 ·

[ −1 · · · −1
d1 · · · dn

]
,

where di is the projected distance of node ni to a reference
plane. Because the rank of ∆ is two, the ratio, σ3/σ1, be-
tween the first and the third singular values of ∆ is an indi-
cator of the overall quality of the measurement. We discard
the whole set of measurement if this ratio is larger than a
threshold value. Also, we take the mean deviated form of
the first left eigenvector of ∆ as our final distance measure-
ment as it best represents the distances.
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Figure 6. Node positions on the axes of event
propagation direction.

3 Passive Localization

Given a sufficient number of sets of projected distances,
we can compute the coordinates of the nodes. Because pro-
jected distances are different form node to node distances,
we need to formulate a new way of computing node po-
sitions from projected distances. As will be explained in
this section, in the ideal two (or three) dimensional local-
ization, there are only two (resp. three) independent sets
of projected distances. Thus, in noisy measurements, we
need to restore the most significant two (resp. three) sets
of distances. Recall the previous perpendicular event prop-
agation example, because there are only two independent
sets of measurements the two sets of projected distances
can be expressed as linear combinations of the two inde-
pendent measurements. We can find the linear combination
coefficients using anchor nodes.

In this section we explain two dimensional and three di-
mensional localization algorithms as well as a compensa-
tion method for time synchronization error which will dis-
tort the projected distances.

3.1 Two Dimensional Localization

Suppose that we have n nodes and m sets of projected
distances, then from the m column vectors of length n we
can build a distance matrix:

D = [w1 · ũ1, . . . , wm · ũm] ,

where wi is the weight for the measurement based on its
quality, for example the ratio σ1/σ3, and ũi is the nor-
malized mean deviation form of ui. In the ideal case,
the distance matrix D can be decomposed into a matrix
of node positions and a matrix corresponding to the event
propagations. In order to illustrate this, let us explain Fig-

ure 6. In Figure 6 sensor nodes are marked as yellow cir-
cles and an event propagates with angle a from x axis. If
we convert the node positions in x − y system into po-
sitions in u − v system, where u is the event propaga-
tion direction, then their u coordinates divided by the event
propagation speed, say ve, are the time shifts or the pro-
jected distances. In this figure, a node position (s, t) is
converted to (s cos a + t sin a,−s sina + t cos a). Thus,
the node’s projected distance with respect to this event is
1
ve

(s cos a + t sina). A column of the distance matrix D is
a set of projected distances computed in this way.

Let D ∈ IRn×m be a distance matrix, let (xi, yi) be the
position of a node ni, let vj be the propagation speed of
the jth event, and let θj be its propagation angle. Then, the
distance matrix can be decomposed into the node positions,
and a matrix of the event propagation angles and speeds, as
follows:

D =


x̃1 ỹ1

...
...

x̃n ỹn


 ·

[ 1
v1

· cos(θ1) . . . 1
vm

· cos(θm)
1
v1

· sin(θ1) . . . 1
vm

· sin(θm)

]
,

where x̃i and ỹi are the ith elements of the mean deviated
form of position vectors [x1, . . . , xn]T and [y1, . . . , yn]T .
Note that in ideal case the rank of D is at most two no matter
how many measurements we made. Note also that because
we are using the mean deviated form for node positions, the
projected distances are in the mean deviated form. That is,
the sum of all elements of each column is zero. Hence, if
we take the mean deviated form of measurement, then we
get the mean deviated form of a coordinate system whose
origin is at the center of mass of the node positions. Let
x̃ = [x̃1, . . . , x̃n]T and ỹ = [ỹ1, . . . , ỹn]T be the vectors of
mean deviated x and y positions, then the two vectors span
the column space of D. Hence, x̃ and ỹ can be written as
linear combinations of any two independent vectors in the
column space of D.

In real measurement, where error is present, the rank of
D is larger than two. Thus, we need to take the two inde-
pendent vectors that best describe the projected distances.
We choose the two vectors from principal axis analysis on
D: the two orthogonal vectors in the column space of D that
will make the two largest variances if the columns of D are
projected to them. Once we have the two orthogonal vec-
tors, we can compute the linear combination coefficients us-
ing two anchor nodes in the mean deviated coordinate sys-
tem. However, because, in general, we do not know the
center of mass of the positions of the nodes, we need an-
other column vector of ones in the linear combinations and
a third anchor node.

In summary, in order to get the positions of nodes, we
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first find the SVD of the distance matrix D:

D = P · Σ · Q.

Let p1 and p2 be the first two column vectors of P, then,
they are the two most important principal axes of D we are
looking for. Now suppose that node ni is an anchor node
and its real position (xi, yi) is given, then:

xi = a1 · p1i + b1 · p2i + c1 (5)

yi = a2 · p1i + b2 · p2i + c2,

where pij is the jth element of pi, a1, a2, b1, and b2 are the
linear combination coefficients and c1 and c2 are the amount
of translation or the coefficient for the vector of ones. Be-
cause there are 6 variables and each anchor position gives
two equations, we can localize the whole system if three
anchor positions are given.

If more than three anchor positions are available then we
can leverage the redundancy in computing the linear com-
bination coefficients: we choose the coefficients such that
they minimize the sum of squared distances between real
anchor positions and the computed anchor positions as a
function of the coefficients. That is, the error functions to
minimize are:

errx =
k∑

i=1

(a1 · p1i + b1 · p2i + c1 − xi)2

= (A · s− x)T · (A · s− x),

erry =
k∑

i=1

(a2 · p1i + b2 · p2i + c2 − yi)2

= (A · t− y)T · (A · t − y),

where, k is the number of anchor nodes 1, and

A =




p11 p21 1
...

...
...

p1k p2k 1


 , (6)

x =




x1

...
xk


 ,y =




y1

...
yk


 , s =


 a1

b1

c1


 , t =


 a2

b2

c2


 .

The s and t that minimizes the error functions are

s = A+ · x, t = A+ · y,

where A+ is the pseudo inverse of A [15, 5]. Once we com-
pute the coefficients, we can get the positions of a node ni

by applying Equation (5) to the ith elements of p1 and p2.

1Without loss of generality we assume that nodes n1 to nk are the
anchor nodes.

3.2 Compensating Time Sync. Error

The projected distances of passive localization depend
mainly on the recording time differences between nodes for
the same global events. Thus, errors in time synchroniza-
tion can be critical in the localization result. However, in a
multi-hop network, like WSNs, maintaining accurate time
synchronization for a long duration requires considerable
energy consumption. Furthermore, because passive local-
ization does not require communications between nodes 2

node spacings can be larger than their radio range, mak-
ing the usual time synchronization techniques infeasible.
Instead of requiring difficult to achieve time synchroniza-
tion, we propose a compensation method to mitigate errors
in time synchronization.

First, we define a clock model used in this section [17].
Let ti : IR → IR be the function that maps the imaginary
global time to the local time of node ni. Then, the clock
model we assume in this section is:

• Each node may have different initial time when record-
ing is started: ti(g0) 	= tj(g0) → i 	= j, where g0 is
the initial global time.

• Clock drift rate is constant: for any global times ga, gb,
and gc,

ti(ga) − ti(gb)
ga − gb

=
ti(ga) − ti(gc)

ga − gc
.

In summary, our clock model allows initial clock differ-
ences and constant clock drifts between nodes. Thus, the
local clock function can be rewritten as ti(g) = σi + δi ·
(g−g0), where σi corresponds to initial time difference be-
tween nodes and δi is the clock drift speed of node ni from
the global time. With this clock model we can choose the
imaginary global time g such that∑

i

σi = 0 and
∑

i

δi = 0. (7)

That is, the global clock speed is the average clock speed of
the system and the initial global time is the average initial
local time of the system.

With the clock error, the distance matrix D can be rewrit-
ten as:

D =




x̃1 ỹ1 δ1 σ1

...
...

...
...

x̃n ỹn δn σn


 ·




1
v1

· cos(θ1) · · · 1
vm

· cos(θm)
1
v1

· sin(θ1) · · · 1
vm

· sin(θm)
g1 − g0 · · · gm − g0

1 · · · 1


 .

2Requirements for the lack of communications and a localization based
on correlations among recordings of local events are discussed in [1].
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Note that D is in the mean deviated form because of Equa-
tion (7). In other words, mean deviated form of D will have
the global time of Equation (7). In ideal case, because D has
only four independent columns, there are four nonzero sin-
gular values in Σ and the four vectors x, y, σ, and δ are in
the space spanned by the first four columns of P. Thus, by
finding the linear combination coefficients for the first four
columns of P and the column vector of ones, we can local-
ize the whole system. That is, we need at least five anchor
nodes to compensate for the clock error in two dimensional
localization.

3.3 Three Dimensional Localization.

Three dimensional localization is a simple extension of
the two dimensional localization of Section 3.1. We sim-
ply reinterpret the distance matrix D and find an extended
set of linear combination coefficients corresponding to the
additional dimension.

In three dimensional localization we need to consider the
event propagation direction in three dimensional space. In
two dimensional localization, the z component of the prop-
agation direction is encoded in the event propagation speed
that affects all the nodes equally. However, in three di-
mensional localization we cannot encode the z coordinate
of event propagation vector into its propagation speed be-
cause it affects the event recording time differently for the
nodes at different elevation. The event propagation vector
can be written as v · [cos(θ) ·cos(φ), cos(θ) · sin(φ), sin(θ)],
where v is the event propagation speed, φ is the vector’s an-
gle in x-y plane, and θ is the minimum angle from the x-y
plane to the vector. Then, in ideal case, the distance matrix
D can be written as:

D =




x̃1 ỹ1 z̃1

...
...

...
x̃n ỹn z̃n


 ·




1
v1

· cos(θ1) · cos(φ1) . . . 1
vm

· cos(θm) · cos(φm)
1
v1

· cos(θ1) · sin(φ1) . . . 1
vm

· cos(θm) · sin(φm)
1
v1

· sin(θ1) . . . 1
vm

· sin(θm)


 .

We have three independent columns in D. Thus we need
at least four anchor nodes to localize nodes in a three di-
mensional field. The compensation algorithm for time syn-
chronization error of Section 3.2 can be applied to the three
dimensional localization after an obvious extension with the
additional two dimensions.

4 Simulation Study

We now describe the results of a discrete event simula-
tion study to evaluate the performance of our localization

algorithm. We experiment with both two-dimensional and
three-dimensional localization, and study the effectiveness
of our proposed time synchronization error compensation
method. We first explain the simulation settings and then
evaluate each steps of the localization algorithm.

4.1 Simulation Settings

Assume a node n is a structure that has its position vector
n.p ∈ IR3 and an array n.r : IN → IR for signal recording.
We assume that all the nodes are time synchronized, except
for an experiment to examine the effect of time synchro-
nization error. On each sample, we disrupt the reading by
a uniform random variable NSensor representing the sensor
noise.

An event e is also a structure that has a position vector
e.p ∈ IR3 representing its origin, a scalar value e.v ∈ IR
for its propagation speed, a finite array e.s : [0, L−1] → IR
for the signal it is carrying, and another finite array e.d :
[0, L] → IR representing the propagation distance of each
piece of signal, where L is a randomly chosen length of
the signal. The event propagation distance is initialized as
e.d(t) = −v · t for t = 0, . . . , L and on each step of the
simulation the array is updated as e.d(t) = e.d(t) + v for
t = 0, . . . , L. We assume that the event is propagating
spherically. Thus, its signal strength is inversely propor-
tional to the square of the propagation distance.

Let E be a set of active events at time t, the events whose
signal did not completely pass through all the sensor nodes
yet, then the signal recording of node n at time t is

n.r(t) =
∑
e∈E

e.L−1∑
τ=0

se(τ)
|n.p − e.p|2 ,

where

se(τ) =
{

e.s(τ) if e.d(τ + 1) ≤ |n.p− e.p| < e.d(τ)
0 otherwise

On each step of the simulation we generate an event with
a uniform probability of ρ = 0.01. Because we are generat-
ing events uniformly independent of their past, there can be
more than one events present at the same time.

Figure 7 shows the configuration of 25 nodes deployed
on a plane for this simulation study. We place the nodes
on square grid blocks. The cross marks of Figure 7 are the
node positions. We also put node IDs for only the nodes at
the corner of the deployment. The node IDs for the other
nodes can be easily inferred: node 1 to node 5 are deployed
in the first row, node 6 to node 10 are deployed in the next
row, and so on. Figure 7 also shows the origins of events
generated within the first 2,000 steps of the simulation. In
order to show the height of event origin, we draw a line from
the event origin, marked as circle, to its projected position
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Figure 7. Node deployment and event origins
during the first 2,000 steps of simulation.

on the ground, marked as star. We use five anchor nodes
through out this section. They are nodes 1, 5, 13, 21, and 25:
the nodes at the center and the corners of the deployment.

Figure 8 shows the raw sample data of the four nodes at
the corner of deployment during the first 2,000 steps. Be-
cause we are interested in the recording time difference of
global events, and because the largest time difference oc-
curs between a pair of nodes at the corner, Figure 8 shows
the most distinctive situation. Figure 7 shows 13 events,
but Figure 8 shows only 8 or 9 explicit ones: some of them
are too weak to become obvious, and some of them overlap
with others.

In Figure 8 the spikes near step 600 are from event 4. By
checking the origin of the event 4 from the Figure 7, we can
imagine that the event will be first detected by node 5, then
by node 1 and node 25, and lastly by node 21, as can be
seen in Figure 8. We will see the recordings resulting from
other events in different orders.

4.2 Detection of Global Events

In this experiment, we use the time windows of size
T1 = 70 and T2 = 100. In the simulation configuration,
the longest time for an event to go through the system is
57 steps: namely, when the signal for the event passes
through the diagonal of the square block that is parallel to
the ground. Thus, there are at least 13 samples of over-
lapping recordings at the first and the last receivers of the
event, although the number of overlapping recordings will
be larger in practice. Note that enlarging the time window
size increases the sample overlap, and thus increases the
correlations for a long event; however, it also reduces the
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Figure 8. Raw sample data of nodes at the
corner of deployment.

correlation for a short event in a noisy environment. Also,
large overlaps have adverse effects when multiple events are
present in a short interval: multiple events coming from dif-
ferent directions in a time window reduce the correlation.

Figure 9 shows the time when events enter and leave the
system of nodes (the first graph) during the first 2,000 steps
of simulation, and the correlation of the amplitude spec-
trum as the time window slides over the sample recording
(the second graph). The first graph shows many overlap-
ping events near step 1,500 and different duration of events:
for example, event 8 has very short duration because from
Figure 7, its event propagation direction is almost perpen-
dicular to the ground.

From the second graph we can see large correlations
where events present. Our global event detection algorithm
starts searching for the maximum correlation once the cor-
relation becomes larger than a threshold value, θ1, until the
correlation becomes smaller than another threshold value,
θ2. We set θ1 larger than θ2 in order to avoid local minima
due to the jitter in correlation. In this simulation, given the
jitter levels, we use θ1=3.5 and θ2=3.0.

4.3 Distance Measurement

During the whole 20,000 steps of simulation we gener-
ated 194 events, we detected 74 events, and out of the 74
events, we got 55 sets of projected distances. Figure 10
shows the results of measurements with and without the
quality improvement. For comparison, we normalize the
length of the projected distances. In this graph, the horizon-
tal axis is the real distance and the vertical axis is the esti-
mated distance. The solid line in this graph shows the ideal
measurement. The circles in the graph are the distances ob-
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Figure 10. Measured distances with and with-
out the quality improvement algorithm. Mean
errors before applying the improvement al-
gorithm is 19.31% of the real distance. The
mean error is reduced to 3.61% after apply-
ing the improvment algorithm.
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Figure 11. Localization results after 2,000
and 20,000 steps. Mean and median errors
are 11.53% and 9.83% of node spacing after
2,000 steps and 6.73% and 5.80% after 20,000
steps.

tained from phase shift information. Note that this graph
shows some negatively correlated measurements which is
due to the error in resolving the circular ambiguity of phase
shift. Moreover, the vertical distribution at distance 0 is the
measurements of node 13. Because node 13 is at the center
of mass of the system, its real projected distance is always
0. The mean estimation error at this step is 19.31% of the
real distance. The plus marks in the graph are the estimated
distances after applying the measurement quality improve-
ment algorithm. Note that most of the negative correlation
is removed from this step. This indicates that the erroneous
measurements have low confidence and they are replaced
with combinations of better measurements. The improve-
ment algorithm result in a mean estimation error of 3.61%
of the real distance.

4.4 Localization

Figure 11 shows the results of localization after 2,000
steps of simulation and after 20,000 steps of simulation.
During the first 2,000 steps there were 4 events actually con-
verted to projected distances and from them we got a local-
ization result with mean and median errors of 11.53% and
9.83% of grid spacing. The position estimate after 2,000
steps are marked as ‘*’ in Figure 11. After 20,000 steps
of simulation, we got 55 distance measurements and from
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Figure 12. 3D Localization result. Mean and
median errors are 9.79% and 7.82% of node
spacing.

them the mean and the median localization errors are re-
duced to 6.73% and 5.80% of grid spacing. The estimated
positions after 20,000 steps are marked as ‘+’. Note that in
Figure 11 even anchor nodes have errors. This is because
the anchors are used for finding the linear combination co-
efficients not for the positions of individual nodes.

Figure 12 shows a three dimensional localization re-
sult. We run the simulation with the same set of events,
and the same set of anchor nodes, but we put the nodes at
[10x, 10y, 20 sin πx

5 · sin πy
5 ]. In Figure 12 the estimated

positions are marked as circles, and in order to show their
errors in z dimension we mark their projected points to the
ground by star symbols. The mean and median errors of this
three dimensional localization result are 9.79% and 7.82%
of the node spacing. The errors are increased compared to
the two dimensional result. This is due to the reduced re-
dundancy in anchor nodes and the increased dimension to
estimate.

As a final experiment, we perform two dimensional lo-
calization when time synchronization errors are present. In
order to compare the results with and without clock error,
we saved the recordings of all 25 nodes in the previous two
dimensional localization. For the recording of each node we
removed the first I samples, where I is an instance of a uni-
form random variable between 0 and 9 to simulate the ini-
tial clock error, and we removed a sample at every J+1,000
samples, where J is an instance of a uniform random vari-
able between 0 and 10,000 to simulate the clock drift error.
We added 1,000 to J to prevent dropping too many sam-
ples. As a result, the initial drops are ranging from 0 to
9 samples and the periodic sample drops are from 2 to 14
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Figure 13. 2D Localization result with clock
error. Mean and median errors are 63.00%
and 58.45% of node spacing.

samples. That is, the largest clock differences are 14.29%
and 17.14% of T1.

Figure 13 shows the localization result without compen-
sating for the time synchronization error. The mean and
median localization errors are 63.00% and 58.45% of node
spacing. The figure shows small errors in 45◦ direction but
large errors in 135◦ direction. This is because the first prin-
cipal axis closely estimates the node positions, while the
second principal axis alone does not and needs more cor-
rection with other principal axes.

Figure 14 shows the localization result with the compen-
sation algorithm enabled. With the compensation, the mean
and median localization errors are reduced to 6.74% and
5.76% of the node spacing. This error is comparable to the
two dimensional localization result without clock error even
though this experiment is done with less redundancy in an-
chor nodes.

5 Conclusion

Our passive localization algorithm interprets recorded
time differences of a global event as projected distances and
estimates locations from the set of projected distances. The
localization algorithm uses a frequency domain event detec-
tion algorithm and a phase shift based distance estimation
algorithm, along with a measurement quality improvement
method. Simulation studies show that the algorithm is effi-
cient and robust in noisy environments. Moreover, because
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Figure 14. 2D Localization result with clock
error and the compensation algorithm is en-
abled. Mean and median errors are 6.74% and
5.76% of node spacing.

our localization algorithm does not rely on node to node
distances, it works in dense as well as sparse systems.

One of the problems we want to address in future re-
search is the use of anchor nodes. Currently anchor nodes
are used to compute linear combination coefficients. How-
ever, anchor nodes can also be used in estimating distance
measurements. For example, the direction of events, or their
propagation speed, can be estimated using the anchor nodes,
and this information may provide constraints in the steps for
estimating distance measurements.

One of the difficulties in passive localization is that the
algorithm is inherently centralized: projected distances are
obtained by comparing all recordings together, and the lo-
calization algorithm requires principal axis analysis on all
sets of distance measurements. Thus, each node needs to
store its entire recording before it is sent to a central server.
Note that other distance measurement methods, such as
TDOA, convert the sample to a distance and are able to
reuse the sample buffer.

Although there are some difficulties in using global
events for localization, using such measurements prevents
the accumulation of errors that result from combining
small-scale neighborhood localization results. Moreover,
we can apply the passive localization algorithm to already
existing records, and we can seamlessly combine recordings
from different types of sensors. We believe passive localiza-
tion may provide an energy efficient and accurate solution

for large and sparse sensor networks.
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