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Abstract. This paper presents easily verifiable sufficient conditions for
the existence of Zeno behavior in Lagrangian hybrid systems, i.e., hybrid
systems modeling mechanical systems undergoing impacts.

1 Introduction

This paper is motivated by the lack of analytic tools for proving the existence
of Zeno behavior in nontrivial hybrid systems. In particular, mechanical systems
undgergoing impacts, modeled by Lagrangian hybrid systems [3], provide a large
class of systems that often appear to display Zeno behavior. While Zeno behavior
is often intuitively clear and supported with simulation results [2], formal proofs
of Zeno behavior have been limited to very simple systems, e.g., the bouncing
ball.

To study Zeno behavior, we consider Zeno equilibria—subsets of the continu-
ous domains of a hybrid system that are fixed points of the discrete dynamics but
not the continuous dynamics—which are defined in analogy to equilibria of dy-
namical systems. Given the success of studying isolated equilibria in dynamical
systems, a natural starting point to the study of Zeno behavior is a detailed anal-
ysis of isolated Zeno equilibria—those Zeno equilibria with no other nearby Zeno
equilibria. Recently, however, it was observed that Lagrangian hybrid systems
with isolated Zeno equilibria must have one dimensional configuration manifolds
[6]. Most Lagrangian hybrid systems of interest, however, have higher dimension
configuration manifolds. Thus a large set of systems believed to show Zeno be-
havior cannot be adequately studied with attention restricted to isolated Zeno
equilibria.

These observations motivate the main result of this paper: sufficient condi-
tions for Zeno behavior in Lagrangian hybrid systems with configuration spaces
of arbitrary dimension. These conditions for Lagrangian hybrid systems gener-
alize those in [6], but remain remarkably simple. When applied to examples,
such as a ball bouncing on a sinusoidal surface or a pendulum on a cart, the
conditions for Zeno behavior are easily verifiable and intuitively appealing.

This work complements other work on Zeno, including [7], [4] and [5].
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Fig. 1. Ball bouncing on a sinusoidal surface (left). Pendulum on a cart (right).

2 Simple Hybrid Mechanical Systems

Mechanical systems undergoing impacts are naturally modeled as hybrid sys-
tems. In this section, we will consider hybrid systems of this form and recall how
one obtains such systems from hybrid Lagrangians, which are the hybrid ana-
logue of Lagrangians. For more on hybrid Lagrangians and Lagrangian hybrid
systems, see [1].

Due to space constraints, we are unable to formally define hybrid systems,
executions and Zeno equilibria. We will use the definitions and notation from [6]
unchanged to avoid any confusion.

Hybrid Lagrangians and Lagrangian Hybrid Systems. In the context of
smooth mechanical systems, one begins with a Lagrangian L : TΘ → R on a
configuration space Θ and associates to this Lagrangian a dynamical system:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ) = 0,

through the Euler-Lagrange equations. Similarly, in the context of mechanical
systems undergoing impacts, one begins with a hybrid Lagrangian and associates
to this a Lagrangian hybrid system. In particular, consider the following:

Definition 1. A hybrid Lagrangian is a tuple L = (Θ, L, h), where Θ ⊂ Rn

is the configuration space, L : TΘ → R is a Lagrangian, and h : Θ → R is a
unilateral constraint function. We assume that 0 is a regular value of h.

Given a hybrid Lagrangian L = (Θ, L, h), the Lagrangian hybrid system
associated to L is the hybrid system

HL = (Γ = ({q}, {(q, q)}), DL, GL, RL, FL),

where Γ is a graph with one node and one edge, DL = {Dh} and GL = {Gh}
are given by

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}, Gh = {(θ, θ̇) ∈ Dh : h(θ) = 0, dh(θ)θ̇ ≤ 0},
FL = {fL} is the vector field obtained from the Lagrangian L, and RL = {Rh}
with Rh(θ, θ̇) = (θ, P (θ, θ̇)), where

P (θ, θ̇) = θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T , (1)



with coefficient of restitution 0 ≤ e ≤ 1. Zeno equilibria of Lagrangian hybrid
systems are exactly the fixed points of Rh. More details on this construction can
be found in [6].

Examples. We now present two examples that will be considered throughout
the rest of the paper in order to illustrate the concepts involved.

Example 1 (Ball). Our first running example is a ball bouncing on a sinusoidal
surface (cf. Fig. 1). In this case B = (ΘB, LB, hB), where ΘB = R3, and for
x = (x1, x2, x3),

LB(x, ẋ) =
1
2
m‖ẋ‖2 −mgx3, hB(x1, x2, x3) = x3 − sin(x2).

From this hybrid Lagrangian, one obtains a Lagrangian hybrid system HB.

Example 2 (Cart). Our second running example is a constrained pendulum on
a cart (cf. Fig. 1); this is a variation on the classical pendulum on a cart,
where the pendulum is not allowed to “pass through” the cart. In this case
C = (ΘC, LC, hC), where ΘC = S1 × R, q = (θ, x), and

LC(θ, θ̇, x, ẋ) =
1
2

(
θ̇ ẋ

)(
mR2 mR cos(θ)

mR cos(θ) M + m

)(
θ̇
ẋ

)
−mgR cos(θ).

where m is the mass of the pendulum, M is the mass of the cart and R is the
length of the pendulum. Finally, the constraint hC(θ, x) = cos(θ) ensures that
the pendulum cannot pass through the cart. One obtains a Lagrangian hybrid
system HC from the hybrid Lagrangian C.

3 Sufficient Conditions for Zeno Behavior in Lagrangian
Hybrid Systems

In this section, we present sufficient conditions for the existence of Zeno behavior
in Lagrangian hybrid systems. Before presenting this conditions, we characterize
Zeno equilibria in systems of this form.

Zeno equilibria in Lagrangian hybrid systems. If HL is a Lagrangian
hybrid system, then due to the special form of these systems we find that the
point z = {(θ∗, θ̇∗)} is a Zeno equilibria iff θ̇∗ = P (θ, θ̇∗), with P given in (1).
In particular, the special form of P implies that this holds iff dh(θ∗)θ̇∗ = 0.
Therefore the set of all Zeno equilibria for a Lagrangian hybrid system is given
by the hypersurfaces in Gh:

Z = {(θ, θ̇) ∈ Gh : dh(θ)θ̇ = 0}.

Note that if dim(Θ) > 1, the Zeno equilibria in Lagrangian hybrid systems are
always non-isolated (see [6])—this motivates the study of such equilibria.



Theorem 1. Let HL be a Lagrangian hybrid system and Let z = {(θ∗, θ̇∗)} be
a Zeno equilibria of HL. If 0 < e < 1 and

ḧ(θ∗, θ̇∗) = (θ̇∗)T H(h(θ∗))θ̇∗ + dh(θ∗)M(θ∗)−1(−C(θ∗, θ̇∗)θ̇∗ −N(θ∗)) < 0,

where H(h(θ∗)) is the Hessian of h at θ∗, then there is a neighborhood W ⊂ Dh

of (θ∗, θ̇∗) such that for every (θ, θ̇) ∈ W , there is a unique Zeno execution χ of
HL with c0(τ0) = (θ, θ̇).

Example 3 (Ball). We first demonstrate that the hybrid system HB modeling a
ball bouncing on a sinusoidal surface is Zeno. First, the Zeno equilibria of this
system are given by the set

Z = {(x, ẋ) ∈ GhB
: ẋ3 − ẋ2 cos(x2) = 0}.

Now, one can easily verify that for (x∗, ẋ∗) ∈ Z

ḧB(x∗, ẋ∗) = sin(x2)ẋ2
2 − g.

Therefore, there are clearly Zeno equilibria satisfying the conditions of Theorem
1, namely when ẋ2 is small, and thus HB is Zeno.

Example 4 (Cart). We now demonstrate that the hybrid system modeling a
pendulum on a cart, HC, is Zeno. First, note that the Zeno equilibria are given
by the set:

Z = {(θ, x, θ̇, ẋ) ∈ GhC
: sin(θ)θ̇ = 0},

and for (θ∗, x∗, θ̇∗, ẋ∗) ∈ Z,

ḧC(θ∗, x∗, θ̇∗, ẋ∗) = − g

R
< 0.

Therefore, for every Zeno equilibria of the pendulum on a cart there a neighbor-
hood of the Zeno equilibria such that every execution with an initial condition
in that neighborhood is Zeno.
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