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Abstract. This paper studies the discrete-time linear quadratic regu-
lation problem for switched linear systems (DLQRS) based on dynamic
programming approach. The unique contribution of this paper is the
analytical characterizations of both the value function and the opti-
mal control strategies for the DLQRS problem. Based on the particular
structures of these analytical expressions, an efficient algorithm suitable
for solving an arbitrary DLQRS problem is proposed. Simulation re-
sults indicate that the proposed algorithm can solve randomly generated
DLQRS problems with very low computational complexity. The theoret-
ical analysis in this paper can significantly simplify the computation of
the optimal strategy, making an NP hard problem numerically tractable.

1 Introduction

A switched system usually consists of a family of subsystems described by differ-
ential or difference equations and a logical rule that orchestrates the switching
among them. Such systems arise in many engineering fields, such as power elec-
tronics [1, 2], embedded systems [3, 4], manufacturing [5], and communication
networks [6], etc. In the last decade or so, the stability and stabilizability of
switched systems have been extensively studied [7–9]. Many theoretical and nu-
merical tools have been developed for the stability analysis of various switched
systems. These stability results have also led to some controller synthesis algo-
rithms which stabilize certain simple switched systems [10]. However, for many
engineering applications, ensuring the stability is only the first step rather than
an ultimate design goal. How to design a control strategy that not only stabi-
lizes a given switched system, but also optimizes certain design criteria is an
even more meaningful yet challenging research problem.

The focus of this paper is on the optimal discrete-time linear quadratic reg-
ulation problem for switched linear systems, hereby referred to as the DLQRS
problem. The goal is to develop a computationally appealing algorithm to con-
struct an optimal control law that minimizes the given quadratic cost function.
The problem is of fundamental importance in both theory and practice and has
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challenged researchers for many years. The bottleneck is mostly on the deter-
mination of the optimal switching strategy. Many methods have been proposed
to tackle this problem, most of which are in a divide-and-conquer manner. Al-
gorithms for optimizing the switching instants with a fixed mode sequence have
been derived for general switched systems in [11] and for autonomous switched
systems in [12]. Although an algorithm for updating the switching sequence is
discussed in [12], finding the best switching sequence is still an NP-hard problem,
even for switched linear systems.

This paper studies the DLQRS problem from the dynamic programming
(DP) perspective. The last few years have seen increasing interest in using DP
to solve various optimal control problems of switched systems. In [13], DP is
used to derive a search algorithm to find the optimal switching instants for fixed
switching sequences. In [14–16], DP-based numerical methods are proposed to
compute the optimal switching regions. More recently, Lincoln and Rantzer [17]
develop an iterative algorithm to approximate the true value functions with guar-
anteed accuracy. The algorithm is also used to study switched systems in [18, 19].
Compared with previous studies, the contributions of this paper are the follow-
ing. First, we characterize analytically the value function and the optimal control
strategy for general DLQRS problems. More specifically, we show that the value
function at each time step of any DLQRS problem is the pointwise minimum of
a finite number of quadratic functions, and that the optimal state-feedback gain
is of a Kalman-type form with a state-dependent positive semi-definite matrix.
Although other researchers have also suggested a piecewise affine structure for
the optimal feedback control [14–16], few of them derive explicitly the optimal
feedback gains and identify their connections with the Kalman gain and Riccati
recursion of the traditional LQR problem as we do in this paper. Secondly, we
prove that under certain conditions of the subsystems, the value function con-
verges exponentially fast as the control horizon increases. Finally, based on the
particular structure of the value function and its convergence property, an effi-
cient algorithm is proposed to solve general DLQRS problems. Simulation results
indicate that the proposed algorithm can compute the optimal switching strategy
and the optimal control input simultaneously with very low computational com-
plexity for randomly generated DLQRS problems. It is worth mentioning that
in [17], Lincoln et al. proposes a similar structure of the value function when
they apply their general theory of relaxed dynamic programming to switched
linear systems. The approach adopted in this paper follows naturally from the
traditional LQR problem and is substantially different from the one used in [17].
Moreover, different from [17], we allow nonzero terminal cost in the objective
function, which is especially important when the time horizon is finite. More
comparisons of our result with [17] can be found in Remark 4.

This paper is organized as follows. In Section 2, the DLQRS problem is
formulated. The value function of the DLQRS problem is derived in a simple
analytical form in Section 3. An algorithm is developed in Sections 4 and 5
to compute the value function in an efficient way. Numerical simulations are



performed in Section 6 to demonstrate the algorithm. Finally, some concluding
remarks are given in Section 7.

2 Problem Formulation

Consider the discrete-time switched linear system defined as:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t = 0, . . . , N − 1, (1)

where x(t) ∈ R
n is the continuous state, v(t) ∈ M , {1, . . . ,M} is the discrete

control or switching strategy, and u(t) ∈ R
p is the continuous control. For each

i ∈ M, Ai and Bi are constant matrices of appropriate dimension, and the pair
(Ai, Bi) is called a subsystem of (1). This switched linear system is time invariant
in the sense that the set of available subsystems {(Ai, Bi)}

M
i=1 is independent of

time t. We assume that there is no internal forced switchings, i.e., the system can
stay at or switch to any mode at any time instant. In this paper, the terminal
cost function ψ(x) and the running cost function L(x, u, v) are assumed to be in
the following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

where Qf = QT
f � 0 is the terminal state weight, and Qv = QT

v � 0 and

Rv = RT
v ≻ 0 are the running weights for the state and the control for subsystem

v ∈ M, respectively. The overall objective function to be minimized over the time
horizon [0, N ] can thus be defined as

J(u, v) = ψ(x(N)) +
N−1
∑

j=0

L(x(j), u(j), v(j))). (2)

The goal of this paper is to solve the following discrete-time LQR problem for
the switched linear system (1) (referred to as DLQRS problem hereby).

Problem 1 (DLQRS problem). Find the u and v that minimize J(u, v) subject
to the dynamic equation (1).

3 The Value Function of the DLQRS Problem

Following the idea of dynamic programming, for each time t ∈ {0, 1, . . . , N}, we
define the value function Vt,N : R

n → R as:

Vt,N (z)= min
v(j)∈M,u(j),

t≤j≤N−1

{

ψ(x(N))+
N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣

subject to eq. (1) with x(t) = z
}

. (3)



The Vt,N (z) so defined is the minimum cost-to-go starting from state z at time
t. The minimum cost for the DLQRS problem with a given initial condition
x(0) = x0 is simply V0,N (x0). Due to the time-invariant nature of the switched
system (1), its value function depends only on the number of remaining time
steps, i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integers m ≥ −t. In the rest of this paper, when no

ambiguity arises, we will denote by Vk(z) the value function at time t = N − k

when there are k time steps left, i.e., Vk(z) , VN−k,N (z).
In the special case when M = 1, the switched system consists of only one

subsystem, say, (A,B). Thus, the DLQRS problem degenerates into the classical
LQR problem. Denote by Q and R the state and control weighting matrices in
this degenerate case. Then, according to the LQR theory, the value function
defined in (3) is of the following quadratic form:

Vk(z) = zTPkz, k = 0, . . . , N, (4)

where {Pk}
N
k=0 is a sequence of positive semi-definite matrices satisfying the

Difference Riccati Equation (DRE)

Pk+1 = Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA, (5)

with initial condition P0 = Qf . Some important facts about the matrices Pk’s
are summarized in the following lemma.

Lemma 1 ( [20, 21]). Let A be the set of all positive semi-definite (p.s.d.)
matrices, then

1. If Pk ∈ A, then Pk+1 ∈ A.
2. If (A,B) is stabilizable, then the sequence {||Pk||2}

∞
k=0 is uniformly bounded.

3. Let C be a matrix such that Q = CTC. If (A,B) is stabilizable and (A,C) is
detectable, then limk→∞ Pk = P ∗, where P ∗ is the unique stabilizing solution
to the Algebraic Riccati Equation (ARE)

P = Q+ATPA−ATPB(R+BTPB)−1BTPA.

In general, when M ≥ 2, the value function Vk(z) is no longer a simple
quadratic form as in (4). To derive the value function for the general switched
linear system (1), define the Riccati mapping ρi : A → A for each subsystem
(Ai, Bi), i ∈ M:

ρi(P ) =Qi +AT
i PAi −AT

i PBi(Ri +BT
i PBi)

−1BT
i PAi. (6)

Let H0 = {Qf} be a set consisting of only one matrix Qf . Define the set Hk for
k ≥ 0 iteratively as

Hk+1 = ρM(Hk) , {P ∈ A : P = ρi(Pk), for some i ∈ M and Pk ∈ Hk}. (7)



In other words, each matrix in ρM(Hk) is obtained by taking the Riccati mapping
for some matrix in Hk through some subsystem i. Denote by |Hk| the number of
distinct matrices in Hk. Then it can be easily seen that |H0| = 1 and |Hk| ≤Mk

for any k ≥ 0.

Theorem 1. The value function for the DLQRS problem at time N − k, i.e.,
with k time steps left, is

Vk(z) = min
P∈Hk

zTPz. (8)

Furthermore, for k ≥ 0, if we define

(P ∗
k (z), i∗k(z)) = arg min

(P∈Hk,i∈M)

zT ρi(P )z, (9)

then the optimal mode (discrete control) and the optimal continuous control at
state z and time N − (k+ 1) are v∗(N − (k+ 1)) = i∗k(z) and u∗(N − (k+ 1)) =
−Ki∗

k
(z)(P

∗
k (z))z, respectively, where Ki(P ) is the Kalman gain for subsystem i

with matrix P , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (10)

.

Proof. The theorem can be proved through induction. It is obvious that for k = 0
the value function is Vk(z) = zTQfz, satisfying (8). Now suppose equation (8)
holds for a general integer k, i.e., Vk(z) = minP∈Hk

zTPz, we shall show that it
is also true for k+ 1. By the principle of dynamic programming and noting that
Vk(·) represents the value function at time N − k, the value function at time
N − (k + 1) can be recursively computed as

Vk+1(z) = min
i∈M,u

[

zTQiz + uTRiu+ Vk(Aiz +Biu)
]

= min
i∈M,u

[

zTQiz + uTRiu+ min
P∈Hk

(

(Aiz +Biu)
TP (Aiz +Biu)

)]

= min
i∈M,P∈Hk,u

[

zTQiz + uTRiu+ (Aiz +Biu)
TP (Aiz +Biu)

]

= min
i∈M,P∈Hk,u

[

zT (Qi +AT
i PAi)z + uT (Ri +BT

i PBi)u+ 2zTAT
i PBiu

]

, min
i∈M,P∈Hk,u

f(i, P, u). (11)

With a symmetric matrix P , it can be easily computed that

∂f(i, P, u)

∂u
= 2(Ri +BT

i PBi)u+ 2BT
i PAiz.

Since u is unconstrained, its optimal value u∗ must satisfy ∂f(i,P,u∗)
∂u

= 0, i.e.,

u∗ = −(Ri +BT
i PBi)

−1BT
i PAiz = −Ki(P )z, (12)



where Ki(P ) is the matrix defined in (10). Substitute u∗ into (11), we obtain

Vk+1(z) = min
i∈M,P∈Hk

f(i, P, u∗)

= min
i∈M,P∈Hk

[

zT
(

Qi +AT
i PAi −AT

i PBiKi(P )
)

z
]

= min
i∈M,P∈Hk

zT ρi(P )z.

Let P ∗
k (z) and i∗k(z) be the matrix and the index that minimize zT ρi(P )z, i.e.,

they are defined as in (9). Then the optimal continuous control and discrete
control at time N − (k + 1) and state z are u∗(N − (k + 1)) = −Ki∗

k
(z)(P

∗
k (z))z

and v∗(N − (k + 1)) = i∗k(z), respectively. Furthermore, observing that {ρi(P ) :
i ∈ M, P ∈ Hk} = ρM(Hk) = Hk+1, we have Vk+1(z) = minP∈Hk+1

zTPz.

According to Theorem 1, comparing to the discrete-time LQR case, the value
function of the DLQRS problem is no longer a single quadratic function; it actu-
ally becomes the pointwise minimum of a finite number of quadratic functions.
In addition, at each time step, instead of having a single Kalman gain for the
entire state space, the optimal state feedback gain becomes state dependent.
Furthermore, the minimizer (P ∗

k (z), i∗k(z)) of equation (9) is radially invariant,
indicating that at each time step all the states along the same radial direction
have the same optimal mode and optimal feedback gain.

4 Equivalent Subset of p.s.d. Matrices

According to Theorem 1, the value function Vk(·) is completely characterized
by the set Hk, which can be obtained iteratively by (7). Since the size of the
set Hk grows exponentially fast, it becomes unfeasible to compute Hk when k

gets large. However, in terms of computing the value function, we only need to
keep the matrices in Hk that give rise to the minimum of (8) for at least one
z ∈ R

n. To remove the redundant matrices in Hk and simplify the compuation,
the following definitions are introduced.

Definition 1 (Equivalent Sets of p.s.d Matrices). Let H and Ĥ be two
sets of p.s.d matrices. The set H is called equivalent to Ĥ, denoted by H ∼ Ĥ,
if minP∈H z

TPz = minP̂∈Ĥ z
T P̂ z, ∀z ∈ R

n.

Therefore, any equivalent sets of p.s.d. matrices will define the same value
function of the DLQRS problem. To ease the computation, we are more inter-
ested in finding the smallest equivalent subset of Hk.

Definition 2 (Minimum Equivalent Subset (MES)). Let H and Ĥ be two
sets of symmetric p.s.d matrices. Ĥ is called an equivalent subset of H if Ĥ ⊆ H
and Ĥ ∼ H. Furthermore, Ĥ is called a minimum equivalent subset (MES) of
H if it is the equivalent subset of H with the fewest elements. Note that the MES
of H may not be unique. Denote by Γ (H) one of the MES’s of H.



Remark 1. It is also worth mentioning that due to its special structure, the value
function is homogeneous, namely, Vk(λz) = λ2Vk(z), for all z ∈ R

n and λ ∈ R
1.

Therefore, it suffices to consider only the points z on the unit sphere in checking
the conditions in the above two definitions.

The following lemma provides a test for the equivalent subsets of Hk.

Lemma 2. Ĥ is an equivalent subset of H if and only if

1. Ĥ ⊆ H
2. ∀P ∈ H and ∀z ∈ R

n, there exists a P̂ ∈ Ĥ such that zT P̂ z ≤ zTPz.

Proof. (a) (sufficiency): We need to prove minP∈H z
TPz = minP̂∈Ĥ zT P̂ z, ∀z ∈

R
n. Obviously minP∈H zTPz ≤ minP̂∈Ĥ zT P̂ z, ∀z ∈ R

n because Ĥ ⊆ H. On the

other hand, by the second condition, for each z ∈ R
n and P ∈ H, there exist a P̂

such that zT P̂ z ≤ zTPz. Thus, minP̂∈Ĥ zT P̂ z ≤ minP∈H zTPz. (b) (necessity):
straightforward by a standard contradiction argument.

Remark 2. Lemma 2 can be used as an alternative definition of the equivalent
subset. Although the original definition is conceptually simpler, the conditions
given in this lemma provide a more explicit characterization of the equivalent
subset, which proves to be more beneficial in the subsequent discussions.

All the equivalent subsets of Hk define the same value function Vk(z). Thus,
in terms of computing the value function, all the matrices in Hk \ Γ (Hk) are
redundent. More rigorously, P̂ ∈ Hk is called redundent with respect to Hk if
for all z ∈ R

n, there exists a P ∈ Hk \ {P̂} such that zT P̂ z ≥ zTPz. Thus, to
simplify the computation, we shall prune away as many as possible redundant
matrices and obtain an equivalent subset of Hk as close as possible to Γ (Hk).
However, testing whether a matrix is redundant or not is itself a challenging
problem. Geometrically, any p.s.d. matrix defines uniquely an ellipsoid in R

n. It
can be easily verified that P̂ ∈ Hk is redundant if and only if its corresponding
ellipsoid is completely contained in the union of all the ellipsoids corresponding
to the matrices in Hk \ {P̂}. Since the union of ellipsoids are not convex in
general, there is in general no efficient way to verify this geometric condition or
equivalently the original mathematical condition of redundancy. Nevertheless, a
sufficient condition for a matrix to be redundant can be easily obtained and is
given in the following lemma.

Lemma 3. P̂ is redundant with respect to Hk if there exist nonnegative con-

stants α1, . . . , α|Hk|−1 such that
∑|Hk|−1

i=1 αi = 1 and P̂ �
∑|Hk|−1

i=1 αiP
(i), where

{P (j)}
|Hk|−1
j=1 is an enumeration of Hk \ {P̂}.

Proof. Straightforward.

For given P̂ and Hk, the condition in Lemma 3 can be easily verified using
various existing convex optimization algorithms [22]. Lemma 3 can not guarantee
to identify all the redundent matrices, however, it usually can help to eliminate



Algorithm 1

1. Denote by P (j) the j(th) matrix in Hk. Set H
(1)
k = {P (1)}.

2. For each j = 2, . . . , |Hk|, if P (j) satisfies the condition in Lemma 2 with respect

to Hk, then H
(j)
k = H

(j−1)
k , otherwise H

(j)
k = H

(j−1)
k ∪ {P (j)}.

3. Return H
(|Hk|)
k .

a large portion of the redundant matrices in Hk. During the value iteration, each
matrix in Hk will be tested according to Lemma 3. If the condition in Lemma 3
is met, then the matrix under consideration will be discarded; otherwise, the
matrix will be kept and used to generate the set Hk+1. A detailed description of

this process is given in Algorithm 1. The returned set H
(|Hk|)
k by Algorithm 1 is

an equivalent subset of Hk with usually a much smaller size.

5 Computation of the Value Function

In this section, we use the equivalent-subset concept to simplify the computation
of the value function of the DLQRS problem. For each k ≤ N , let Ĥk be an
arbitrary equivalent subset of Hk. The following corollary follows immediately
from Definition 2.

Corollary 1. The result in Theorem 1 still holds if every Hk is replaced by Ĥk.

Corrollary 1 says that to compute the value function and the optimal control
strategy, it suffices to use an equivalent subset of Hk for each k. In the last
section, we have developed an algorithm to prune the redundant matrices in Hk.
However, the complexity of the algorithm still depends on |Hk|, which grows
exponentially fast as k increases. To overcome this difficulty, the following lemma
is introduced.

Lemma 4 (Self Iteration). Let the sequence of sets {Ĥk}
N
k=0 be generated by

Ĥ0 = H0, and Ĥk+1 = Algo(ρM(Ĥk)) for 0 ≤ k ≤ N − 1, (13)

where Algo(H) denotes the equivalent subset of H returned by Algorithm 1. Then
Ĥk ∼ Algo(Hk).

Proof. The interested readers are refered to [23] for the proof of this lemma.

According to Lemma 4, Algo(Hk) is equivalent to Algo(ρM(Ĥk−1)). Thus,
to compute the desired equivalent subset of Hk, one can apply Algorithm 1 to
ρM(Ĥk−1) instead of the original set Hk. Denoted by |Ĥk| the size of Ĥk. The set
ρM(Ĥk−1) contains at most M · |Ĥk| matrices which is usually much smaller than
|Hk| = Mk. Therefore, Lemma 2 could significantly simplify the computation



of Algo(Hk). Although |Ĥk| grows reasonably slow, it is still possible to become
out of hand if the control horizon N is large. The following theorem allows us
to terminate the computation with guaranteed accuracy on the optimal cost at
some early stage for large time horizon N .

Theorem 2. Suppose that (i) Qf ≻ 0 and Qi ≻ 0 for each i ∈ M; (ii) at least
one subsystem is stabilizable. Then Vk(z) converges exponentially fast to V∞(z)
for each z ∈ R

n as k → ∞. Furthermore, the convergence is uniform on the unit
sphere in R

n and the difference between the value functions at time step N − k1

and N − k2 is bounded above by

|Vk1
(z) − Vk2

(z)| ≤ (β + λ+
f )αγk2‖z‖2, (14)

where β, λ+
f , α and γ are all parameters depending only on the subsystem ma-

trices.

Remark 3. Note that the first condition in the above theorem is not restrictive
because a randomly selected p.s.d. matrix is almost surely nonsingular. The
proof of this theorem is quite involved and is beyond the scope of this paper.
The interested readers are referred to [23] for a complete proof.

Remark 4. Compared with the convergence result in [17], Theorem 2 has several
distinctive features. Firstly, it allows nonzero terminal cost, which is especially
important for finite-horizon DLQRS problem. Secondly, its conditions are much
easier to verify as they are expressed in terms of the system matrices instead
of the infinite-horizon value functions as is the case in [17]. Finally, by inequal-
ity (14), the convergence rate can be approximated using the system matrices.
Thus, for a given tolerance on the optimal cost, an upper bound of the required
number of iterations can be simply computed before the actual computation
starts. This provides an efficient means to stop the value iterations.

The exponential convergence result is crucial for the efficient computation
of the value function. Given a reasonable tolerance on the accuracy, the value
function usually converges in only a few steps. This greatly simplifies the value
function computation, especially for the case with large time horizon N . In
practice the convergence is usually tested only on a finite set of sampling points
on the unit sphere. These sampling points should be chosen dense enough to
capture the behaviors of all the value functions on the entire unit sphere. The
existence of such sampling points is guaranteed by the following corollary of
Theorem 2.

Corollary 2. Under the same conditions as in Theorem 2, the sequence of value
functions {Vk(z)}∞k=0 is equicontinuous on the unit sphere.

Proof. Denote by Bu the unit sphere in R
n. Obviously, each value function Vk(z)

is continuous on Bu. By theorem 2, Vk(·) converges uniformly on Bu. Since Bu

is a compact set, the desired result follows directly from Theorem 7.24 in [24].

With all the results developed so far, a general procedure for solving the
DLQRS problem is summarized in Algorithm 2.



Algorithm 2

1. Set Ĥ0 = Qf and specify a tolerance ǫ for the minimum cost. Choose a finite
set of sampling points on the unit sphere of Rn and denote it by S.

2. For each step k ≥ 1, compute Ĥk = Algo(ρM(Ĥk−1)) where Algo(·) represents
Algorithm 1.

3. Compute the value function Vk(z) for each z ∈ S using Ĥk.
4. If |Vk(z) − Vk−1(z)| > ǫ for some z ∈ S, then let k = k + 1 and go back to

step 2. Otherwise let kǫ = k and continue to step 5.
5. Define Ĥk = Ĥkǫ for kǫ ≤ k ≤ N .
6. The optimal trajectory can now be obtained by

x(t + 1) = Av∗(t)x(t) + Bv∗(t)u
∗(t), with x(0) = x0,

where v∗(t) and u∗(t) are determined using Corollary 1 based on the set
ĤN−(t+1).

Table 1. |Ĥk| for Ex1

k 1 2 3 4 5 6

|Ĥk| 2 4 5 5 5 5

6 Examples

6.1 Example 1

First consider a simple DLQRS problem, referred to as Ex1, with control horizon
N = 100 and two second-order subsystems:

A1 =

[

2 1
0 1

]

, B1 =

[

1
1

]

, A2 =

[

2 1
0 0.5

]

, B2 =

[

1
2

]

.

Suppose that state and control weights areQ1 = Q2 = I2×2 andR1 = R2 = 1, re-
spectively. Both subsystems are unstable but controllable. Algorithm 2 is applied
to solve this DLQRS problem. It turns out that with the error tolerance ǫ = 10−3

the value function of Ex1 converges in 6 steps. Since Vk(z) is homogeneous, it
suffices to plot it at the points on the unit circle, i.e. the points of the form
z(θ) = [cos(θ), sin(θ)]T . It can be easily verified that Vk(z(θ)) = Vk(z(θ + π)),
i.e., the value function is periodic along the unit circle with period π. Therefore,
in Fig. 1-(a), the value function at each time step is plotted only at the points
z(θ) with θ ∈ [0, π]. The difference between the value functions in the last two
iterations are shown in Fig. 1-(b). The number of elements in Ĥk at each step
is listed in Table 1. It can be seen that |Ĥk| is indeed very small, and will stay
at the maximum value 5 as opposed to growing exponentially as k increases.

Furthermore, the optimal switching strategy is illustrated in Fig. 2. At each
time step, the whole state space is divided into several conic regions. The regions
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Fig. 1. Convergence results for Ex1. (a) Convergence of the Value function. (b) Differ-
ence between the last two iterations.

with the same gray scale have the same optimal mode. However, the points with
the same optimal mode may correspond to different optimal feedback gains. The
radial lines in Fig 2 further divide the optimal-mode regions into smaller conic
regions each with a different optimal-feedback gain. In this way, the proposed
approach actually characterizes the optimal control strategies for the entire state
space.

Table 2. |Ĥk| for Ex2

k 1 2 3 4 5

|Ĥk| 3 9 15 15 15

6.2 Example 2

Consider a more complex DLQRS example, referred to as Ex2, with 4 subsys-
tems. The first two subsystems are the same as in Ex1 and the other two are
defined as:

A3 =

[

3 1
0 0.2

]

, A4 =

[

1 1
0 0.8

]

, B3 = B1, and B4 = B2.

With the same tolerance, the value function of Ex2 converges in 5 steps. This
indicates that under the same tolerance, the speed of the convergence of the value
function may not necessarily increase with the number of subsystems. However,
with more subsystems, |Ĥk| grows more rapidly as shown in Table 2. It is worth
mentioning that the maximum |Ĥk| for this example is only 15 (as opposed to
the nominal size of HN , |HN | = 4100). Therefore, the proposed method has
dramatically simplified the problem, making an NP hard problem numerically
tractable.
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Fig. 2. Switching Regions for Ex1: Gray Region – mode 1is optimal; Black Region –
mode 2 is optimal.

6.3 Random Examples

This subsection is devoted to demonstrating the generic solvability of a general
second-order DLQRS problem using the proposed algorithm. Our goal here is
not to present a formal proof but rather to illustrate through simulations some
important observations. In this set of simulations, the proposed algorithm is
tested on 1000 randomly generated second-order DLQRS problems with a fairly
large number of subsystems (M = 10). The control horizon is the same as in the
last two examples, i.e., N = 100. All of these problems are successfully solved
and the distribution of |Ĥkǫ

|, namely, the maximum number of matrices kept
before convergence, is plotted in Fig. 3. It can be seen from the figure that
the number |Ĥkǫ

| in all of these 1000 problems are smaller than 50, and for
a majority of the problems, |Ĥkǫ

| is smaller than 15. Therefore, most second-
order DLQRS problems may be efficiently solved using the proposed algorithm.
Formally proving the generic solvability is a focus of our future research.

7 Conclusion

This paper studies the DLQRS problem based on dynamic programming ap-
proach. Different from the traditional LQR problem, the value function of the
DLQRS problem is no longer a single quadratic function; it is the pointwise min-
imum of a finite number of quadratic functions. In addition, instead of having
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Fig. 3. Distribution of |Ĥkǫ | for randomly generated problems

a single Kalman feedback gain as in the LQR case, the optimal state-feedback
gain in the DLQRS problem becomes state dependent. Analytical expressions
have been derived for both the optimal switching strategy and optimal control
inputs. The concept of minimum equivalent subsets is introduced to simplify the
computation of the value function. An efficient algorithm is developed to com-
pute the optimal control strategy with guaranteed accuracy on the optimal cost.
Simulation results indicate that the proposed algorithm can efficiently solve any
randomly generated second-order DLQRS problems. Future research will focus
on how to compute the exact MES of Hk in a general-dimensional state space
and on proving the generic solvability of general DLQRS problems.
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