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Abstract. We study the controller synthesis problem under budget con-
straints. In this problem, there is a cost associated with making an obser-
vation, and a controller can make only a limited number of observations
in each round so that the total cost of the observations does not ex-
ceed a given fixed budget. The controller must ensure some ω-regular
requirement subject to the budget constraint. Budget constraints arise
in designing and implementing controllers for resource-constrained em-
bedded systems, where a controller may not have enough power, time, or
bandwidth to obtain data from all sensors in each round. They lead to
games of imperfect information, where the unknown information is not
fixed a priori, but can vary from round to round, based on the choices
made by the controller how to allocate its budget.
We show that the budget-constrained synthesis problem for ω-regular
objectives is complete for exponential time. In addition to studying syn-
thesis under a fixed budget constraint, we study the budget optimiza-
tion problem, where given a plant, an objective, and observation costs,
we have to find a controller that achieves the objective with minimal
average accumulated cost (or minimal peak cost). We show that this
problem is reducible to a game of imperfect information where the win-
ning objective is a conjunction of an ω-regular condition and a long-run
average condition (or a least max-cost condition), and this again leads
to an exponential-time algorithm.
Finally, we extend our results to games over infinite state spaces, and
show that the budget-constrained synthesis problem is decidable for in-
finite state games with stable quotients of finite index. Consequently,
the discrete time budget-constrained synthesis problem is decidable for
rectangular hybrid automata.

1 Introduction

The controller synthesis problem asks, given a model for a plant, to construct a
controller that observes the states of the plant and provides inputs to the plant
such that the parallel composition of the plant and the controller is guaranteed
to satisfy a given specification, provided, e.g., as an ω-regular set [4, 1, 14, 13].
Controller synthesis reduces to solving two-player games on graphs between a
controller and the plant [1, 13, 5], where a winning strategy of the controller
player for the specification gives a controller.

In constructing the controller, the usual assumption is that the controller can
observe the system state completely. This assumption, called perfect information,
may not hold in many settings of practical interest. For example, an embedded



controller may only observe signals up to a finite precision, and a discrete control
process may only observe the global state of other processes, not their private
variables. Under such observability restrictions, a more relevant model is a game
of imperfect information, where the controller only observes a part of the state
space, and must construct a winning strategy based only on the observed state.

Games with imperfect information have been studied extensively [15, 13, 10,
11, 2]. Usually, the solution to a game of imperfect information proceeds with
a subset construction that reduces the imperfect-information game to a game
with perfect information (although on an exponentially larger state space). How-
ever, so far, most algorithms make the assumption of fixed partial information.
Roughly, it is assumed that of n state bits, the controller can only observe the
first k < n bits, and must come up with a strategy that makes its decisions
based on this limited observation. In the context of embedded control systems,
especially in low-power settings such as embedded sensor and actuator networks
[16], there is often a different kind of partial information. Instead of a fixed set
of bits that are visible to the controller in every round of interaction, the partial
information can be due to a cost in sensing each bit, and global constraints on
the budget available to the controller. For example, in an embedded control sys-
tem, the controller is free to sense any signal from the system, however, the act
of sensing carries a cost (e.g., cost incurred by the energy consumed to sense, or
time taken to run the sensing task, or bandwidth required to transmit the sensed
value). Thus, in each round, the controller has to make a choice in allocating its
resources (energy, time, or bandwidth) to sensing the most crucial data. More-
over, the controller is allowed to select which bits to sense in each round, so the
set of bits sensed in one round may be different from the set sensed in the next.

We introduce and study a model of controller synthesis under budget con-
straints to study imperfect information of this kind. Our model adds a notion
of cost associated with controller moves, and the winning conditions constrain
possible controls by imposing budgets on the moves either in each round (model-
ing, e.g., upper bounds on available resources) or in the long run (modeling, e.g.,
the desire to minimize average cost, or maximize lifetime). In the first model, in
each round, the controller may choose to sense a set I of state signals, as long
as the total cost of sensing all the signals in I is bounded by B. Practically, the
budget represents, e.g., bounds on available energy or bandwidth limitations of
the system. Given a two player game with a cost for every state signal, a budget
constraint B, and an ω-regular control objective, we construct a B-restricted
control strategy that satisfies the control objective while always using at most
B cost units at any round, if possible. In the second model, we construct a B-
long-run control strategy that satisfies the control objective while maintaining
the long-run average cost of sensing below B. Practically, this represents, e.g.,
control subject to available battery power. With embedded resource-scarce con-
trol problems becoming more and more common, our model presents a realistic
generalization of classically studied supervisory control problems.

Dually, we study the budget optimization problem, where given the sensing
costs for each state signal, we want to find out the minimum budget with which



a controller can achieve its goals. Here, we study two different optimization
criteria: the first aims to minimize the maximum sensing cost at any single
round, the second aims to minimize the long-run average cost of the controller.
Optimizations of the first type may be required to find out minimal power or
bandwidth requirements for the system: the battery must be able to provide
at least this power in order for the controller to effectively satisfy the control
objective. Optimizations of the second type are required to maximize the lifetime
of the controller.

Technically, there are two steps in our algorithms. For the budget constrained
synthesis problem, we construct, from the budget-constrained game, a game
of perfect information by a subset construction such that the controller has a
winning strategy in the game of perfect information iff it has a winning strategy
in the original game. For the budget optimization problem, we perform a similar
subset construction, however, the winning objectives on the transformed games
are a combination of ω-regular objectives (from the original game) as well as
a quantitative requirement to reduce either the maximum cost along the path
(corresponding to the first optimization criterion) or the long-run average cost
along the path (corresponding to the second optimization criterion). From our
reduction and solutions of games of perfect information we obtain that both
the budget synthesis and the optimization problem are EXPTIME-complete for
ω-regular objectives specified as parity conditions (a canonical form to express
ω-regular objectives).

We develop the theory both for finite-state, discrete control problems, as well
as for discrete time control for rectangular hybrid automata. In the latter, infinite
state case, we show that the control problem can be solved by reducing the
system to its stable (bisimulation) quotient. Using known results about stable
partitions of rectangular automata [6], it follows that the budget constrained
synthesis problem is decidable for rectangular automata, and indeed, for any
infinite state control problem with a stable quotient of finite index.

2 Definitions

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ,∆,O, γ〉,
where L is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet,
∆ ⊆ L×Σ×L is a set of labeled transitions, O is a finite set of observations, and
γ : O → 2L\∅ maps each observation to the set of states that it represents. We
require the following two properties on G: (i) for all ℓ ∈ L and all σ ∈ Σ, there
exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆; and (ii) the set {γ(o) | o ∈ O} partitions L.
We say that G is a game structure of perfect information if O = L and γ(ℓ) = {ℓ}
for all ℓ ∈ L. We omit (O, γ) in the description of games of perfect information.
For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆}.

In a game structure, in each turn, Player 1 chooses a letter in Σ, and Player 2
resolves nondeterminism by choosing the successor state. A play in G is an
infinite sequence π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . such that (i) ℓ0 = l0, and (ii)
for all i ≥ 0, we have (ℓi, σi, ℓi+1) ∈ ∆. The prefix up to ℓn of the play π is



denoted by π(n); its length is |π(n)| = n+1; and its last element is Last(π(n)) =
ℓn. The observation sequence of π is the unique infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have ℓi ∈ γ(oi). Similarly,
the observation sequence of π(n) is the prefix up to on of γ−1(π). The set of
infinite plays in G is denoted Plays(G), and the set of corresponding finite prefixes
is denoted Prefs(G). A state ℓ ∈ L is reachable in G if there exists a prefix
ρ ∈ Prefs(G) such that Last(ρ) = ℓ. The knowledge associated with a finite
observation sequence τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which
a play can be after this sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈
Prefs(G) and γ−1(ρ) = τ}.

Lemma 1. Let G = 〈L, l0, Σ,∆,O, γ〉 be a game structure. For σ ∈ Σ, ℓ ∈ L,
and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · ℓ, let oℓ ∈ O be the unique observation such
that ℓ ∈ γ(oℓ). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(oℓ).

Strategies. A strategy in G for Player 1 is a function α : Prefs(G) → Σ. A
strategy α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G),
if γ−1(ρ) = γ−1(ρ′), then α(ρ) = α(ρ′). In games of imperfect information we
are interested in the existence of observation-based strategies for Player 1. A
strategy in G for Player 2 is a function β : Prefs(G) × Σ → L such that for all
ρ ∈ Prefs(G) and all σ ∈ Σ, we have (Last(ρ), σ, β(ρ, σ)) ∈ ∆. We denote by AG,
AO

G, and BG the set of all Player-1 strategies, the set of all observation-based
Player-1 strategies, and the set of all Player-2 strategies in G, respectively.

The outcome of two strategies α (for Player 1) and β (for Player 2) in G is
the play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G) such that for all i ≥ 0, we have
σi = α(π(i)) and ℓi+1 = β(π(i), σi). This play is denoted outcome(G,α, β). The
outcome of a strategy α for Player 1 in G is the set Outcome1(G,α) of plays π

such that there exists a strategy β for Player 2 with π = outcome(G,α, β). The
outcome sets for Player 2 are defined symmetrically.

Qualitative objectives. A qualitative objective for G is a set φ of infinite se-
quences of observations and input letters, that is, φ ⊆ (O × Σ)ω. A play
π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G) satisfies the objective φ, denoted π |= φ,
if γ−1(π) ∈ φ. We assume objectives are Borel measurable, that is, a qualitative
objective is a Borel set in the Cantor topology on (O×Σ)ω [9]. Observe that by
definition, for all objectives φ, if π |= φ and γ−1(π) = γ−1(π′), then π′ |= φ.

We specifically consider parity objectives [5, 17]. Parity objectives are a canon-
ical form to express all ω-regular objectives [17] and lie in the intersection
Σ3 ∩ Π3 of the third levels of the Borel hierarchy. For a play π = ℓ0σ0ℓ1 . . . , we
write Inf(π) for the set of observations that appear infinitely often in γ−1(π),
that is, Inf(π) = {o ∈ O | ℓi ∈ γ(o) for infinitely many i’s}. For d ∈ N,
let p : O → { 0, 1, . . . , d } be a priority function, which maps each observa-
tion to a nonnegative integer priority. The parity objective Parity(p) requires
that the minimum priority that appears infinitely often be even. Formally,
Parity(p) = { π | min{ p(o) | o ∈ Inf(π) } is even }.

Quantitative objectives. In addition to parity (ω-regular) objectives, our algo-
rithms will require solving games with quantitative objectives. A quantitative



objective for G is a Borel measurable function f on infinite sequences of obser-
vations and input letters to reals, that is, f : (O × Σ)ω → R ∪ { ∞,−∞ }. We
specifically consider mean-payoff, mean-payoff parity and min-parity objectives.
Let r : Σ → R be a reward-function that maps every input letter σ to a real-
valued reward r(σ), and let p : O → { 0, 1, . . . , d } be a priority function. We
define the mean-payoff, mean-payoff parity and min-parity objectives as follows.
1. Mean-payoff objectives. For a play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . the mean-

payoff objective is the long-run average of the rewards of the input let-
ters [19]. Formally, for a reward function r : Σ → R, the mean-payoff
objective is a function M(r) from plays to reals that maps the play π =

ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . to M(r)(π) = lim supn→∞
1
n

∑n−1
i=0 r(σi).

2. Mean-payoff parity objectives. For a play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . the
mean-payoff parity objective is the long-run average of the rewards of the
input letters if the parity objective is satisfied and −∞ otherwise. Formally,
for a reward function r : Σ → R and a priority function p, the mean-payoff
parity objective is a function MP(r, p) defined on plays as follows: for a play
π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . we have MP(p, r)(π) = M(π) if π ∈ Parity(p),
and MP(p, r)(π) = −∞ otherwise.

3. Min-parity objectives. For a play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . the min-parity
objective is the minimum of the rewards of the input letters if the parity
objective is satisfied and −∞ otherwise. Formally, for a reward function
r : Σ → R and a priority function p, the min-parity objective is a function
MinP(r, p) defined on plays as follows: for a play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . .

we have MinP(p, r)(π) = min{ r(σi) | i ≥ 0 } if π ∈ Parity(p), and
MinP(p, r)(π) = −∞ otherwise.

Sure winning and optimal winning. A strategy λi for Player i in G is sure winning
for a qualitative objective φ if for all π ∈ Outcomei(G,λi), we have π |= φ. A
strategy λi for Player i in G is optimal for a quantitative objective f if for all
strategies λ for Player i we have infπ∈Outcomei(G,λi) f(π) ≥ infπ∈Outcomei(G,λ) f(π).
The following theorem from Martin [12] states that perfect-information games
with (qualitative or quantitative) Borel objectives are determined: from each
state, either Player 1 or Player 2 wins (for qualitative objectives), or a value can
be defined (for quantitative objectives).

Theorem 1 (Determinacy). [12] (1) For all perfect-information game struc-
tures G and all qualitative Borel objectives φ, either there exists a sure-winning
strategy for Player 1 for the objective φ, or there exists a sure-winning strategy
for Player 2 for the complementary objective Plays(G) \ φ. (2) For all perfect-
information game structures G and all quantitative Borel objectives f , we have
supα∈A infπ∈Outcome(G,α) f(π) = infβ∈B supπ∈Outcome(G,β) f(π).

3 Imperfect-information to Perfect-information Games

First, we use the results of [2] to show that a game structure G of imperfect
information can be encoded by a game structure GK of perfect information such



that for every qualitative Borel objective φ, there is an observation-based sure-
winning strategy for Player 1 in G for φ if and only if there is a sure-winning
strategy for Player 1 in GK for φ. We then show that the same construction works
for quantitative Borel objectives. We obtain GK using a subset construction. Each
state in GK is a set of states of G representing the knowledge of Player 1. In the
worst case, the size of GK is exponentially larger than the size of G.

Given a game structure of imperfect information G = 〈L, l0, Σ,∆,O, γ〉,
we define the knowledge-based subset construction of G as the following game
structure of perfect information: GK = 〈L, {l0}, Σ,∆K〉, where L = 2L\{∅}, and
(s1, σ, s2) ∈ ∆K iff there exists an observation o ∈ O such that s2 = PostGσ (s1)∩
γ(o) and s2 6= ∅. Notice that for all s ∈ L and all σ ∈ Σ, there exists a set s′ ∈ L
such that (s, σ, s′) ∈ ∆K. Given a game structure of imperfect information G we
refer to the game structure GK as Pft(G).

Lemma 2 ([2]). For all sets s ∈ L that are reachable in GK, and all observa-
tions o ∈ O, either s ⊆ γ(o) or s ∩ γ(o) = ∅.

By an abuse of notation, we define the observation sequence of a play
π = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . of observations such that for all i ≥ 0, we have si ⊆ γ(oi).
Since the observations partition the states, and by Lemma 2, this sequence is
unique. The play π satisfies an objective φ ⊆ (O×Σ)ω if γ−1(π) ∈ φ. As above,
we say that a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Plays(GK) satisfies an objective
φ iff the sequence of observations o0o1 . . . on . . . such that for all i ≥ 0, ℓi ∈ γ(oi)
belongs to φ. The following lemma follows from the results of [2].

Lemma 3 ([2]). If Player 1 has a sure-winning strategy in GK for an objective
φ, then Player 1 has an observation-based sure-winning strategy in G for φ.
If Player 1 does not have a deterministic sure-winning strategy in GK for a
Borel objective φ, then Player 1 does not have an observation-based sure-winning
strategy in G for φ.

Together with Theorem 1, Lemma 3 implies the first part of the following the-
orem, also used in [2]. The second part of the theorem generalizes the result to
quantitative Borel objectives.

Theorem 2 (Sure-winning reduction). Let G be a game structure, and
GK = Pft(G). The following assertions hold. (1) Player 1 has an observation-
based sure-winning strategy in G for a qualitative Borel objective φ if
and only if Player 1 has a sure-winning strategy in GK for φ [2]. (2)
supα∈AO

G

infπ∈Outcome(G,α) f(π) = supα∈A
GK

infπ∈Outcome(G,α) f(π).

For the second part, let v = supα∈A
GK

infπ∈Outcome(G,α) f(π). Given ǫ > 0,

consider the qualitative objective φ = {π | f(π) ≥ v−ǫ}. By the first part of the
theorem, there is a sure-winning strategy in GK iff there is an observation-based
sure-winning strategy in G for the qualitative objective φ. Since ǫ is arbitrary,
the result follows. It follows from Theorem 2 that to solve a game structure G of
imperfect information it suffices to construct the game structure GK of perfect
information and solve the corresponding objective on GK.



4 Games with Variables

We now consider game structures whose states are determined by valuations to
a set of state variables, and formulate several games of imperfect information by
restricting the variables that can be observed.

Games with Variables. A game with variables consists of: (1) a finite set
X = { x1, x2, . . . , xn } of n boolean variables; a valuation v is a truth value
assignment to all the variables, and we write V to denote the set of all valuations;
(2) a finite set Γ of input letters; and (3) a non-deterministic transition function
δ : V × Γ → 2V \ ∅ given a current valuation and an input letter gives the
non-empty possible set of next valuations. We specify the games with variables
as a tuple G = (V, Γ, δ). We introduce some notation. Given a natural number
n we denote by [n] the set { 1, 2, . . . , n }. For I ⊆ [n] and v ∈ V , we denote
by v ↾ I the restriction of the valuation on the set I of variables. Similarly, for
I ⊆ [n] we denote by V ↾ I the restriction of the set of valuations on the set I

of variables. In games with variables we have two players: the controller and the
system. The controller chooses the input letter and the system resolves the non-
determinism in the transition function. We will consider several ways to restrict
the knowledge of the controller by limiting what variables it can observe.

Games with Fixed-partial-information. To begin with, we consider games
with variables where the information of the controller is restricted to a fixed
set of size k ≤ n of variables. Without loss of generality, we consider the case
when the controller can only observe the variables x1, x2, . . . , xk. Such games
with variables have fixed partial-information.

Reduction. Let G = (V, Γ, δ) be a game with variables. A strategy for the
controller in G is [k]-restricted if the strategy only observes the variables
{ x1, x2, . . . , xk }. We present a reduction of games with variables with fixed-
partial-information to the class of imperfect information games of Section 2.
The reduction to a game with imperfect information Ĝ↾[k] = 〈L, l0, Σ,∆,O, γ〉
is as follows: (1) the set of states L = V , the set of valuations; (2) the input let-
ters Σ = Γ ; (3) the set of observations is the set of restrictions of the valuations
to {x1, . . . , xk}: O = V ↾ {1, 2, . . . , k}; (4) γ(o) = {l ∈ L | l ↾ {1, 2, . . . , k} = o};
and (5) (l, σ, l′) ∈ ∆ iff l′ ∈ δ(l, σ).

Theorem 3. Let G = (V, Γ, δ) be a game with variables, and p : V →
{ 0, 1, . . . , d } be a priority function on V . Let p̂ : 2V \ ∅ → { 0, 1, . . . , d }
be a priority function derived from p as follows: for a non-empty set Y ⊆ V

we have p̂(Y ) = max{ p(v) | v ∈ Y } if p(v) is even for all v ∈ Y ; otherwise
p̂(Y ) = min{ p(v) | v ∈ Y, p(v) is odd }. There is a [k]-restricted strategy for
the controller in G to satisfy the objective Parity(p) iff there is a strategy in

ĜK = Pft(Ĝ↾[k]) to satisfy Parity(p̂).

Example 1. Consider a plant with variables { x1, x2, . . . , xn } such that the set
{ x1, x2, . . . , xk }, for k ≤ n, is the set of public variables that can be accessed
by the controller and all the other variables are private, i.e., cannot be accessed



by the controller. Games with fixed-partial-information provide an appropriate
framework to model the interaction of the controller and the plant.

Games with Budget Constraints. We now consider games with variables
where the set of variables that the controller can observe is not fixed, but there is
a hard constraint on the amount of information that the controller can observe at
any round. We will again present a reduction to games of imperfect information,
but the reduction is more involved than the case of fixed partial-information.

Games with hard constraints. Let G = (V, Γ, δ) be a game with variables, and
let c be a cost function that assigns a cost c(i) > 0 to variable xi, i.e., there is a
cost c(i) for the controller to know the value of the variable xi. The controller
can choose to know the truth values of a subset of variables and then choose the
input letter. For a budget B > 0, a strategy of the controller is B-restricted if
at each round the controller can ask for the truth values of a subset I of vari-
ables such that the sum of the costs of the variables does not exceed B, that is,∑

i∈I c(i) ≤ B. Observe that the choice of the set of variables is not fixed and
can vary in each round. For a set I ⊆ [n] we denote by c(I) =

∑
i∈I c(i) the sum

of the cost of the variables in I. We present a reduction of games with variables
and a budget B to imperfect-information games of Section 2. The reduction to
an imperfect-information game G↾B = 〈L, l0, Σ,∆,O, γ〉 is as follows:
(1) States. The set of states is L = V × { I ⊆ [n] | c(I) ≤ B } ∪ V , where V is
a copy of the valuations. That is the set of states consists of a pair of valuation
and a subset I such that c(I) does not exceed the budget B, and copy V of V .
(2) Input letters. The set of input letters is Σ = Γ ∪ { I ⊆ [n] | c(I) ≤ B }. The
set of input letters is the set of input letters Γ of the game G and also consists
of subsets I ⊆ [n] such that c(I) ≤ B.
(3) Observations. The set of observations is O = { (o, I) | I ⊆ [n], c(I) ≤ B, o ∈
V ↾ I } ∪ { o }. The set of observations consists of pairs (o, I) where I ⊆ [n] and
o is a valuation restricted to I, and there is a special observation o.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, I) ∈ L |
l ↾ I = o } and γ(o) = V . Observe that each state in V has the observation o.
(5)Transition function. The transition function is as follows: for σ ∈ Γ ,

((l, I), σ, l̂′) ∈ ∆ iff l′ ∈ δ(l, σ) and (l, σ, (l, σ)) ∈ ∆ for σ = I ⊆ [n] such
that c(I) ≤ B. For a state (l, I) if an input letter σ from Γ is chosen, then a

next state l
′
is possible iff l′ ∈ δ(l, σ). For a state l ∈ V the input letter can be

chosen as a subset I such that c(I) ≤ B, and the next state is (l, I). Observe
that we assumed that input letters from Γ can be chosen at states (l, I), and
at states from V a subset I of [n] can be chosen. However, this can be easily
transformed to a game where at every state all input letters are available as
follows: we add an auxiliary state that is losing for the controller, and at a state
if an input letter is not available, we make it available and add a transition to
the losing state. For simplicity, we ignore the details of this reduction.

The set of observation-based strategies of G↾B represents the set of B-
restricted strategies. Let G

K
be the perfect-information game obtained from

the subset construction of G↾B , i.e., G
K

= Pft(G↾B).



Theorem 4. Let G = (V, Γ, δ) be a game with variables with a cost function
c on variables and p : V → { 0, 1, . . . , d } be a priority function on V . For
B > 0, consider the perfect-information game structure G

K
= Pft(G↾B). Let p be

a priority function on G
K

defined as follows: for s ⊆ V we have p(s) = d; and for
s ⊆ L\V we have p(s) = max{p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s;
otherwise p(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. There is a B-restricted
strategy for the controller in G to satisfy the objective Parity(p) iff there is a
strategy in G

K
to satisfy Parity(p).

Example 2. Consider the interaction of a controller with a plant with variables
{x1, x2, . . . , xn } where all the variables are public. Assume the variables are ac-
cessed through a network with a bandwidth constraint B. Let c be a cost function
that associates with a variable xi the cost c(i) that specifies the bandwidth re-
quirement to access variable xi. The games with hard-constraints provide the
right framework to model such interactions.

Budget Optimization Problems. We now consider games with soft-
constraints. These are games with variables with a cost function on variables. In
contrast to games with hard-constraints where the budget B is a hard-constraint,
in games with soft-constraints the controller can choose to know the value of a
subset I of variables and incur a cost c(I), and the goal is to either minimize the
long-run average of the cost, or minimize the maximum cost, along with satisfy-
ing a given parity objective. A strategy in such games is called soft-constrained
if whenever it asks for the valuation of a set I of variables, then it only observes
the valuation of the set I of variables.

Reduction. Let G = (V, Γ, δ) be a game with variables, and let c be a cost
function that assigns cost c(i) > 0 to variable xi. We present a reduction of
games with variables with soft-constraints to an imperfect-information game
G̃soft = 〈L, l0, Σ,∆,O, γ〉 as follows:

(1) States. The set of states is L = V ×{ I ⊆ [n] } ∪ Ṽ , where Ṽ is a copy of the
valuations. That is the set of states consists of a pair of valuation and a subset
I ⊆ [n] and copy of the valuations.
(2) Input letters. The set of input letters is Σ = Γ ∪{ I ⊆ [n] }. The set of input
letters is the set of input letters Γ of the game G and consists of subsets I ⊆ [n].
(3) Observations. The set of observations is O = {(o, I) | I ⊆ [n], o ∈ V ↾ I}∪{õ}.
The set of observations consists of pairs (o, I) where I ⊆ [n] and o is a valuation
restricted to I, and there is a special observation õ.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, I) ∈ L |

l ↾ I = o } and γ(õ) = Ṽ . Observe that each state in Ṽ has the observation õ.
(5) Transition function. The transition function is as follows: for σ ∈ Γ ,

((l, I), σ, l̂′) ∈ ∆ iff l′ ∈ δ(l, σ) and (l̃, σ, (l, σ)) ∈ ∆ for σ = I ⊆ [n]. For a

state (l, I) if an input letter σ from Γ is chosen, then a next state l̃′ is possible

iff l′ ∈ δ(l, σ). For a state l̃ ∈ Ṽ the input letter can be chosen as a subset
I ⊆ [n]. Observe that we assumed that input letters from Γ can be chosen at

states (l, I), and at states from Ṽ a subset I of [n] can be chosen.



(6) Reward function. The reward function r on input letters is as follows: for
input letters σ ∈ Γ we have r(σ) = 0 and for I ⊆ [n] we have r(I) = −c(I), i.e.,
the reward collected is the negative of the cost.
The set of observation-based strategies of G̃soft represents the set of soft-
constrained strategies. Let G̃K be the perfect-information game obtained from
the subset construction of G̃soft, i.e., G̃K = Pft(G̃soft).

Theorem 5. Let G = (V, Γ, δ) be a game with variables with a cost function
c on variables and p : V → {0, . . . , d} be a priority function on V . Consider

the perfect-information game structure G̃K = Pft(G̃soft). Let p̃ be a priority

function on G̃K defined as: for s ⊆ V , let p̃(s) = d; and for s ⊆ L \ Ṽ ,
let p̃(s) = max{ p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s; oth-
erwise p̃(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. The following assertions
hold: (1) there is a soft-constrained strategy for the controller in G to sat-
isfy Parity(p) and ensure the long-run average of the costs is at most λ iff
sup

α∈ eGK inf
π∈Outcome( eGK,π) MP(p̃, r)) ≥ −λ

2 ; and (2) there is a soft-constrained

strategy for the controller in G to satisfy Parity(p) and ensure the maximum of
the costs is at most λ iff sup

α∈ eGK inf
π∈Outcome( eGK,π) MinP(p̃, r)) ≥ −λ.

Observe that in item 1 of Theorem 5 the right-hand side is −λ
2 instead of −λ.

This is because in the modeling of a game with variables with soft-constraints,
each step of the original game is simulated in two-steps rather than one, and
hence we need a factor of 2 in the result.

Example 3. Consider the interaction of a plant with variables { x1, x2, . . . , xn }
and a controller where all the variables are public. The values of the variables
can be obtained through sensors, and the value of variable xi can be obtained
through a sensor by consuming c(i) units of power. Games with soft-constraints
provide suitable framework for such games. If the goal is to minimize the average-
power consumption, then the long-run average criterion is appropriate, and if the
goal is to minimize the peak-power consumption, then the appropriate objective
is to minimize the maximum cost.

Solution of perfection-information games. The results of [3] present solutions
of perfect-information games with mean-payoff parity objectives. The result of
Theorem 5 present a reduction of games with variables with soft-constraints to
minimize long run average of the costs along with satisfying a parity objective to
perfect-information games with mean-payoff parity objectives. Theorem 5 also
presents the reduction of games with variables with soft-constraints to minimize
the maximum cost along with satisfying a parity objective to perfect-information
games with min-parity objectives. We now briefly describe how to use solutions
of perfect-information parity games to obtain solutions of perfect-information
min-parity games. The solution of perfect-information games with min-parity
objectives can be obtained as follows: (a) sort the rewards on the edges; (b) with
a binary search on the range of rewards, keep only edges above a certain reward
value and solve the resulting qualitative parity game. The solution of perfect-
information games with parity objectives is widely studied in literature, see [8, 18,



7] for algorithmic solution of perfect-information parity games. Hence perfect-
information min-parity games with n states and m edges can be solved with
log(m) calls to perfect-information parity games. It may be noted that from the
above solution we can find the the minimum budget B that is required to satisfy
games with variables with hard-constraints to satisfy a given parity objective.

Computational complexity. It follows from the results of [2, 15] that games with
fixed-partial information are EXPTIME-hard even for reachability objectives.
The games with fixed-partial information can be obtained as a special case of
games with budget constraints as follows: set the budget as B = k, and the
cost for bits 1, 2, . . . , k as 1, and k + 1 for all other bits. Hence it follows that
games with budget constraints are EXPTIME-hard; and it also follows that the
budget optimization problem is EXPTIME-hard for reachability objectives (and
also for the more general parity objectives). From Theorem 4, Theorem 5, and
the solution of perfect-information games we obtain an EXPTIME upper bound
for the solution of games with budget constraints and the budget optimization
problem. Thus we have the following result.

Theorem 6. Let G = (V, Γ, δ) be a game with variables with a cost function c

on variables and p : V → {0, 1, . . . , d} be a priority function on V . For B > 0, it
is EXPTIME-complete to decide whether there is a B-restricted strategy for the
controller in G to satisfy the objective Parity(p); and the problem is EXPTIME-
hard even for reachability objectives.

5 Discrete Time Control of Rectangular Automata

We now apply the theory of controller synthesis with budget constraints to the
discrete time control problem for rectangular automata [6]. We obtain our results
using a general decidability result about imperfect-information games on infinite
state spaces that have a stable partition with a finite quotient.

R-stable games. In this section we drop the assumption of finite state space of
games. Let G = 〈L, l0, Σ,∆,O, γ〉 be a game structure of imperfect-information
such that L is infinite. Let R = { r1, r2, . . . , rl } be a finite partition of L. A set
Q ⊆ L is R-definable if Q =

⋃
r∈Z r, for some Z ⊆ R. The game G is R-stable if

the following conditions hold for all σ ∈ Σ: (a) the set { l ∈ L | ∃l′ ∈ L.(l, σ, l′) ∈
∆ } is R-definable; (b) for all r ∈ R, the set PostGσ (r) is R-definable; (c) for all
r, r′ ∈ R, if for some x ∈ r we have PostGσ ({ x }) ∩ r′ 6= ∅, then for all x′ ∈ r we
have PostGσ ({ x′ }) ∩ r′ 6= ∅; and (d) for all o ∈ O, the set γ(o) is R-definable.

Lemma 4. The following assertions hold. (1) Let G be a game structure of
imperfect information, and let R be a finite partition of the state space of G such
that the game G is R-stable. Then the perfect-information game Pft(G) is 2R-
stable. (2) Let G be a perfect-information game structure with a parity objective
with d-priorities. If G is R-stable, for a given finite partition R, then the sure
winning sets in G can be computed in time O(|R|d).



We present the definition of rectangular automata with budget constraints and
then reduce the problem to a game of imperfect information. Using a result of [6]
we establish the game of imperfect information is R-stable for a finite set R.

Rectangular constraints. Let Y = { y1, y2, . . . , yk } be a set of real-valued vari-
ables. A rectangular inequality over Y is of the form xi ∼ d, where d is an
integer constant, and ∼∈ { ≤, <,≥, > }. A rectangular predicate over Y is a
conjunction of rectangular inequalities. We denote the set of rectangular predi-
cates over Y as Rect(Y ). The rectangular predicate φ defines the set of vectors
[[φ]] = { y ∈ R

k | φ[Y := y] is true }. For 1 ≤ i ≤ k, let [[φ]]i be the projection on
variable yi of the set [[φ]]. A set of the form [[φ]], where φ is a rectangular predicate,
is called a rectangle. Given a non-negative integer m ∈ N, the rectangular pred-
icate φ is m-bounded if |d| ≤ m, for every conjunct yi ∼ d of φ. Let us denote
by Rectm(Y ) the set of m-bounded rectangular predicates on Y .

Rectangular automata with budget constraints. Let X = {x1, x2, . . . , xn} be a set
of boolean variables and V the set of all valuations. A rectangular automaton with
budget constraints H is a tuple 〈V,Lab,Edg , Y, Init , Inv ,Flow , Jump, c〉 where
(a) Lab is a finite set of labels; (b) Edg ⊆ V × Lab × V is a finite set of edges;
(c) Y = { y1, y2, . . . , yk } is a finite set of variables; (d) Init : V → Rect(Y ) gives
the initial condition Init(v) of a valuation v; (e) Inv : V → Rect(Y ) gives the
invariant condition Inv(v) of valuation v (i.e., the automaton can stay in v as
long as the values of variables lie in [[Inv(v)]]); (f) Flow : V → Rect(Ẏ ) governs the
evolution of the variables in each valuation; (g) c is a cost function that assigns
cost c(i) to variable xi, for 1 ≤ i ≤ n; and (h) Jump maps each edge e to a
predicate Jump(e) of the form φ∧φ′∧

∧
i6∈Update(e)(y

′
i = yi), where φ ∈ Rect(Y ),

φ′ ∈ Rect(Y ′), and Update(e) ⊆ { 1, 2, . . . , k }. The variables in Y ′ refer to the
updated values of the variables after the edge has been traversed. Each variable
yi with i ∈ Update(e) is updated nondeterministically to a new value in [[φ′]]i.
A rectangular automaton is m-bounded if all rectangular constraints are m-
bounded.

Nondecreasing and bounded variables. Let H be a rectangular automaton, and
let i ∈ { 1, 2, . . . , k }. The variable yi of H is nondecreasing if for all v ∈ V ,
the invariant interval [[Inv(v)]]i and the flow interval [[Flow(v)]]i are subsets of
the nonnegative reals. The variable yi of H is bounded if for all v ∈ V , the
invariant interval [[Inv(v)]]i is a bounded set. The automaton H is bounded (resp.
nondecreasing) if all the variables are bounded (resp. nondecreasing). In sequel
we consider automata that are bounded or nondecreasing.

Game semantics. The rectangular automaton game with a budget constraint
B is played as follows: the game starts with a valuation v and values for the
continuous variables y ∈ [[Init(v)]]. At each round the controller can choose to
observe a subset I of the boolean variables such that c(I) ≤ B; and then the
controller decides to take one of the enabled edges (if one exists). Then the
environment nondeterministically updates the continuous variables according to
the flow predicates by letting time pass for 1 time unit. Then the new round
of the game starts. We now present a reduction to imperfect-information game,
and then show that the game is stable with respect to a finite partition.



Reduction. A rectangular automaton H with a budget constraint B reduces to
an imperfect-information game H↾B = 〈L, l0, Σ,∆,O, γ〉 as follows:
(1) States. The set of states is L = V × R

k × { I ⊆ [n] | c(I) ≤ B } ∪ V × R
k,

where V is a copy of the valuations. That is the set of states consists of a tuple
of valuation, values of variables and a subset I such that c(I) does not exceed
the budget B, and copy of the valuations and the values of variables.
(2) Input letters. The set of input letters is Σ = Lab∪{1}∪{I ⊆ [n] | c(I) ≤ B}.
The set of input letters is the set of labels Lab of H, unit time 1 and subsets
I ⊆ [n] such that c(I) ≤ B.
(3) Observations. The set of observations is O = { (o, I) | I ⊆ [n], c(I) ≤
B, o is a valuation from V ↾ I } ∪ { o }. The set of observations consists of pairs
(o, I) where I ⊆ [n] and o is a valuation restricted to I, and there is a special
observation o.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, y, I) ∈
L | l ↾ I = o } and γ(o) = V × R

k. Observe that each state in V × R
k has the

same observation o.
(5) Transition function. The transition function is as follows: (a)
((v, y), σ, (v, y, σ)) ∈ ∆, for σ = I ⊆ [n] such that c(I) ≤ B; (b)
((v, y, I), σ, v′, y′) ∈ ∆, such that there exists e = (v, σ, v′) ∈ Edg with
(y, y′) ∈ [[Jump(e)]]; and (c) ((v, y, I), 1, (v, y′, I)) ∈ ∆ such that there exists
a continuously differentiable function f : [0, 1] → Inv(v) such that f(0) = y,
f(1) = y′ and for all t ∈ (0, 1) we have ḟ(t) ∈ [[Flow(v)]].

The set of observation-based strategies of H↾B represents the set of B-
restricted strategies.

Equivalence relation. Let H be a m-bounded rectangular automaton with a bud-
get constraint B, and let H↾B be the game of imperfect information obtained by
the reduction. We define the equivalence relation ≡m on the state space as fol-
lows: (v, y, I) ≡m (v′, y′, I) (resp. (v, y) ≡m (v′, y′)) iff (a) v = v′ (resp. v = v′);
and (b) for all 1 ≤ i ≤ k, either ⌊yi⌋ = ⌊y′

i⌋ and ⌈yi⌉ = ⌈y′
i⌉, or both yi and y′

i

are greater than m. We denote by R≡m
the set of equivalence classes of ≡m. It

is easy to observe that R≡m
is finite (in fact exponential in the size of H). An

extension of the result of [6] gives us the following result.

Lemma 5. Let H be a m-bounded rectangular automaton game with a budget
constraint B. The imperfect-information game H↾B is R≡m

-stable.

Theorem 7. Let H be a rectangular automaton with a budget constraint B and
let p : V → { 0, 1, . . . , d } be a priority function on V . Consider the perfect-

information game structure H
K

= Pft(H↾B). Let p be a priority function on

H
K

defined as follows: for s ⊆ V we have p(s) = d; and for s ⊆ L \ V we
have p(s) = max{ p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s; otherwise
p(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. There is a B-restricted strategy for

the controller in H to satisfy the objective Parity(p) iff there is a strategy in H
K

to satisfy Parity(p).

From Lemma 4, Lemma 5, and Theorem 7 we obtain the following corollary.



Corollary 1. Let H be a rectangular automaton with a budget constraint B and
let p : V → { 0, 1, . . . , d } be a priority function on V . Whether there is a B-
restricted strategy for the controller in H to satisfy the objective Parity(p) can be
decided in 2EXPTIME.
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