
PDL: A New Physical Synthesis Methodology

Toshiyuki Shibuya Rajeev Murgai Tadashi Konno
Fujitsu Laboratories LTD. Fujitsu Laboratories of America, Inc. Fujitsu LTD.

Kawasaki, Japan Sunnyvale, USA Kawasaki, Japan
shibu@jp.fujitsu.com murgai@fla.fujitsu.com konno.tadashi@jp.fujitsu.com

 Kazuhiro Emi Kaoru Kawamura
Fujitsu LSI Technology LTD. Fujitsu Laboratories LTD.

Kawasaki, Japan Kawasaki, Japan
emi@flt.fujit su.co.jp kawamura@jp.fujitsu.com

Abstract

In this paper, we propose a new physical synthesis
methodology, PDL, which relaxes the timing constraints
to obtain best optimality in terms of layout quality and
timing quality. It provides a common database for delay
calculation, logic optimization, placement, and routing
tools so that they can work and interact closely. We
present results on industrial circuits showing the efficacy
of this methodology.

1. Introduction

With the advent of deep sub-micron technologies,
interconnect delay is becoming dominant. Paths traveling
across the chip or going back and forth, called global
paths, limit the circuit performance.

Many timing-driven techniques have been proposed for
logic synthesis, placement, and routing. However, the
traditional design flow of iteratively performing logic
synthesis, placement, and routing runs into serious timing
convergence problems. Although each tool has its own
role in timing optimization, neither do they share a
common strategy nor have any interaction during
optimization. For example, logic synthesis tools can
compute gate delay accurately, but not interconnect delay
because it is estimated using statistical wire load models.
Placement tools can place cells lying on a critical path
close to each other in order to reduce the lengths and
delays of wires connecting them after routing. But the
interconnect delay estimated by the placement tool may
differ significantly from that of the final layout. If buffer
insertion capabilit y is available during placement,
placement tools do not have to put such cells adjacent to
each other, since inserting a single buffer could improve
the timing. Finally, routing tools can minimize
interconnect delay either by using minimum-length wires
from the source to critical sinks or by constructing a tree
topology that isolates non-critical sinks. However, the

minimum distance between the source and a critical sink
can be improved if cells are allowed to move during the
routing phase. ECO tools are expected to fix timing errors
by inserting buffers and re-routing nets, but they have to
optimize timing without significantly modifying the given
layout.

To overcome the aforementioned problems inherent in
the traditional flow, several approaches have been
proposed. These can be divided into three broad
categories: pre-layout estimation, unification-based, and
pre-routing optimization.

The pre-layout estimation approach attempts to estimate
the impact of layout without actually performing it and
then uses these estimates to guide the optimization at pre-
layout stage [11][15]. One problem with this class of
methods is that they do not actually work on a real layout.
They predict or derive an intermediate layout and generate
a netlist accordingly. The actual layout generated by the
layout tool may be entirely different.

The unification-based approach tries to perform a group
of design and optimization steps simultaneously rather
than sequentially [6][10]. Although these algorithms are
promising in concept, they guarantee optimality on very
restricted netlist topologies. Also, their applicabilit y to
industrial-strength designs remains to be seen.

Finally, the pre-routing optimization approach tries to
push certain optimization steps (such as gate resizing,
buffering, resynthesis and remapping) to later stages of the
design flow where more authentic physical information is
available [3][12]. The main drawback of this approach is
that the final routing information is still not available
during optimization.

In this paper, we present a methodology, PDL, to
handle the timing problems on practical ASIC designs. Of
the three categories of previous work, PDL methodology
is closest to the pre-routing approach, although with
significant differences, as described below. The PDL
methodology addresses new physical synthesis
optimization problems with timing constraints.

0-7695-1881-8/03 $17.00 2003 IEEE

The rest of the paper is organized as follows. In Section
2 we address the problems of current design flows.
Section 3 discusses the PDL methodology. System
overview and implementation issues are described in
Section 4. Section 5 presents experimental results of the
proposed methodology. We conclude with some
directions for future work in Section 6.

2. Problems of Current Timing-driven
Physical Synthesis Flows

A typical physical synthesis methodology consists of
tool elements related with layout, such as placer, router,
and logic optimizer. The goal of timing-driven physical
synthesis is to complete the circuit layout without
violating the timing constraints. One important issue left
unaddressed previously is whether the timing constraints
should be deemed as absolute (i.e., must be satisfied at all
costs) or not.

To complete a design considering timing constraints as
absolute, the shape of the die should be flexible. This is
because there is no guarantee that the design can be
completed under the absolute timing constraints with the
given die size. This means the die size may shrink or
enlarge depending on the given timing constraints.

Generally the die size of ASIC designs is determined
before the layout phase. The sizes of RAMs and I/O
macros dominate the chip size. Once they are placed on
the chip, designers try to complete the layout without
changing the die size. The diff iculty in this situation is that
the layout may result in too many routing errors and
timing errors.

The PDL methodology we are proposing in this paper
gives a clear direction as to what to do for ASIC designs
with the given die size.

3. PDL Methodology

The layout phase in PDL methodology consists of
global layout and detail l ayout. Global layout optimizes
cell positions using bi-partitioning-based placer. Bi-
partitioning-based placer determines cell positions on a
given layout area by hierarchically dividing the circuit
into two sub-circuits and assigning them to the divided
layout areas called blocks. At each level of partitioning,
the global router generates a loose route assigning blocks
to nets. The logic optimizer performs gate sizing, buffer
optimization, and re-synthesis, interacting with the placer
and router. Detail l ayout determines the exact cell
positions and completes the detail routing.

3.1 Policies

The PDL methodology is based on the following
policies:

1) Routabilit y and wire length should be the top
priorities. Route completion is very important for designs
in deep sub-micron (DSM) technologies, because the main
impact of such technologies, such as interconnect delay
and cross-talk noise, can be measured only after the final
routing stage. The delay and noise measurements are
meaningless if there are routing errors.

The completed layout even with timing errors can
provide useful information to designers, such as critical
paths, noise-sensitive nets, accuracy of timing constraints,
etc. When the layout results in routing errors, with
routabilit y and wire length being the top priorities, the
designers should check if the floorplan (including macro
placement), cell usage ratio, and routing resources used
for power routing are appropriate for the technology and
design.

2) Only the global critical paths should be optimized
at each level. The placement and routing tools optimize
the true critical paths in the design, called the critical limit
paths. The tools decide that these paths cannot be fixed
by other tools either at that level or at subsequent levels.
However, if fixing a critical limit path degrades routabilit y
or wire length, it is discarded.

Since the PDL methodology fixes global critical paths
hierarchically, local critical paths may be left unfixed in
final layout. However, they can be easily fixed during
post-layout optimization or clock skew adjustment.

If global critical paths are left in the final layout, they
should be carefully analyzed. In our methodology, this can
happen under three scenarios. First, making the path
shorter might cause routabilit y problems. The timing
constraints should be checked, e.g., whether a timing
over-constraint or dropping false path specification exists
at the path. Second, the path could not be optimized due
to layout constraints. For instance, the path had to go
around several floorplan blocks, or a wire was routed
through a no-buffering-resource region. Third, design
constraints, such as an option specifying the logical
hierarchy to be unchanged, prevent it from being touched
during optimization.

3) Timing constraints for non-critical limit paths
should be relaxed for better routabilit y and wire length.
The most critical problem physical synthesis optimization
should avoid is the negative feedback optimization. Sub-
optimality in routabilit y and wire length induces detours
and increased wire length, resulting in new critical paths.
Such critical paths may be improved through buffer
insertion, for instance. Buffer insertion without any
regards to routabilit y may cause other nets to detour
around the buffers. This, in turn, may generate new
critical paths, yielding a negative feedback in routabilit y
and timing.

Net-based timing-driven placement algorithms [4][14]
control the delay of a path either by imposing maximum
separation between the cells on the path or by adding
weights to the nets on the path. However, the layout
constraints on cells and the weights on nets deteriorate the
quality of placement in terms of wire length and
routabilit y. This is because these constraints, by restricting
the solution space, can prevent the tool from reaching the
optimum solution.

Another example is the case of too many critical paths
limiting the possibilit y of tree topology optimization in
routing. This over-constraint restricts the solution space
for finding the optimal path in terms of routabilit y.
Optimality in wire length is to be sought even in the case
of timing-driven layout [2].

3.2 Approach

Our approach to make the logic optimizer, placer, and
router work together has the following key cornerstones.

1) Critical path identification: One of the most
important issues is estimating the interconnect delay.
However, it is diff icult to estimate this delay accurately in
hierarchical global routing. Because locations of cells are
not determined yet, the wire length for each wire segment
may change depending on the actual cell position within a
block.

We think accuracy in the interconnect delay is not
essential during initial levels of partitioning. A consistent
delay model for optimization is more critical. Our
approach considers that a cell , if not pre-placed, is placed
at the center of the block. This means the inter-block wire
length is estimated from the center of a block to that of the
other. The intra-block wire length, corresponding to the
wire connecting cells within a block, is estimated as the
minimum distance between two cells, e.g., the width of
cells or zero.

The main advantage of this model is that when a net
that connects cells placed in the same block is partitioned,
the wire length and delay will apparently increase. This
gives the placer a consistent direction for delay
optimization. Another way to estimate wire length is to
predict the cell position within the block area. Although
this seems accurate at the level of hierarchy, it lacks a
consistent direction for optimization. This is because an
intra-block wire after partitioning may become longer than
an inter-block wire.

The disadvantage is that the delay value is not accurate
at higher levels of hierarchy. However, as the partitioning
process proceeds, the margin of error becomes smaller
and smaller. We expect the margin at the final levels is
much smaller than the uncertainty of detail l ayout.

The second important issue is that the correctness of
timing constraint specification should be carefully

discussed to determine the critical limit paths. Designs
may have multiple timing modes, such as normal mode
and test modes. Especially for signal processing circuits
handling several standards, such as NTSC and PAL for
video chips, several clock modes are specified for the
same circuit. This is modeled by multiple timing
constraint sets, usually one in each file. This is not a
problem for static timing analysis (STA), which can
analyze each file independently and eventually determine
criticality over all files. However, multiple, separated
timing constraint files may cause problems in timing-
driven layout, since the layout process usually considers
only one constraint set. The layout thus obtained may
violate the constraints in other sets. Extra iterations are
required to fix the timing. One way to avoid such
iterations is to manually merge all the constraint files into
one, without causing any timing constraint conflicts. This,
however, is prone to human errors. In any case, multiple
timing constraint sets (files) should be handled eff iciently
by the PDL methodology.

The third important issue is that the delay models
should properly handle operating conditions, such as
process, temperature, and voltage, both for cell delay and
interconnect delay. Otherwise, extra timing margin may be
needed on the critical paths, which makes achieving the
timing closure more diff icult.

2) Risk estimation of critical paths: As per the
consistent interconnect delay model discussed above,
when an intra-block wire is partitioned at a level and
becomes inter-block at the next level, its wire length or
delay increases by the width or height of the block.

The placer checks whether a net will i nduce a critical
limit path when the net is partitioned based on the
consistent delay model. If the net does induce a critical
limit path, which means increased interconnect delay does
not improve by buffer insertion, the placer tries to place
the cells on the net in the same block and renders them
fixed.

3) Timing relaxation: As mentioned in the PDL
methodology, existence of too many critical paths imposes
cell partitioning and routing space restrictions, degrading
optimality in terms of routabilit y and wire length.
Therefore, at each level of partitioning, logic optimizer
not only tries to maximize the worst negative slack and the
sum of negative slacks, but also attempts to reduce the
total cell size to improve routabilit y and increase the
possibilit y for buffer insertion. The placer calculates an
upper bound of cell usage ratio that guarantees routabilit y.
The logic optimizer improves timing under this upper
bound. Once the cell usage ratio of a region reaches the
upper bound, timing improvement by logic optimizer may
not occur unless cell usage improvement takes place. In
our methodology, the placer adjusts the local cell usage
ratio by moving the cells on the non-critical paths from an

over-congested block to other blocks, thus increasing
routabilit y and possibilit y of logic re-synthesis.

4. PDL System

4.1 Overview

The PDL system consists of a controller, delay
calculator, logic optimizer [7] [8] [9] [13], placer [1], and
router [5] (Fig. 1). Each tool is executed as a single
process so that large circuits can be handled using
multiple CPUs.

The layout information is shared among the tools by
exchanging an abstract layout model, called GridGraph
data. The GridGraph data expresses a partitioned block as
a node and a routing resource between adjacent blocks as
an edge (Fig. 2). The number of nodes doubles at each
level of partitioning. The locations of cells are specified as
the corresponding nodes. Any tool can plug-in to the
system and modify layout or netlist as long as it obeys the
GridGraph updating rules. We now describe each
component of the PDL system in detail .

4.2 Controller

The controller reads the netlist and designer’s options.
Then it translates them into data that each tool can use as
a common database (Fig. 1). At each level of partitioning,
the controller may issue commands for any tool as per the
flow specified by the designers. Finally, it outputs the
updated netlist and layout results.

The controller can store the entire GridGraph data at
each level i f so desired by the designers. This enables
designers to resume the layout process from any

partitioning level. This function is useful when designers
want to modify (manually or automatically) the layout
result at an intermediate level and use it as the starting
point for the next level to obtain higher chip performance.

4.3 Delay Calculator

Timing-driven layout tools invoke delay calculation
several times. Therefore, a fast delay calculator is
required. Most timing sign-off tools adopt a path-based
static timing analysis method. This is time-consuming,
because delay of every path may need to be reported to
designers. However, information about the most critical
paths is suff icient for the delay calculators in timing-
driven layout. The PDL system uses topology-based STA
to calculate delay quickly.

To solve the multiple timing constraint file problem,
we propose a new timing constraint model, Compatible
Constraint Set (CCS). This enables the PDL system to
handle all ti ming constraints at the same time. CCS is a set
of flip-flops (FFs) and paths on which actual arrival time
and required arrival time can be specified without any
timing constraint conflicts. The delay of FF pairs in a CCS
can be calculated independently of the other CCSs. The
delay of a set of CCSs can be calculated at the same time
if each set of FF pairs in a CCS has no intersection. In the
PDL system, all the timing constraint files are transferred
into a set of CCSs, which is then used for delay
calculation.

The increase in timing exceptions, especially multi -
cycle, and multiple clocks make topological-based STA
complicated, because a FF now has more than one set of
actual arrival time and required arrival time. The analysis
of CCSs enables designers to determine which constraints
will critically impact the timing quality.

Gate and interconnect delays are computed by using
the same function libraries that are used for the in-house
timing sign-off tool. PDL system accepts the same timing
constraint files that are used by the timing sign-off tool.

� � � � � � � � � �

� � � � 	

 � �
 � � � � � �

� � �
 � � � � � �� � � �

� � � � � � � � �

� � � � � � �� � � � � �

 � � � � � � � � � �

� � � � � � � 	 � � �

� � � � � � � � �� � � � � � � � �
� � � � � � � �

Figure 1: PDL System

� � � � � � �

� � � � � 	 �

� � � �� � � �

Figure 2: GridGraph representation of layout area

4.4 Logic Optimization

The logic optimizer in the PDL system fixes the timing
gap caused by the delay model differences between the
wire load and global routing patterns. It also reduces
layout constraints for the placer and router to obtain best
performance in routabilit y and wire length. The
requirement for logic optimizer is to cope with physical
information, layout constraints, and increasing circuit size.

The logic optimizer calculates interconnect delay using
the common delay calculator and routing patterns, which
are shared through GridGraph data. It maximizes the
worst negative slack and the total negative slack under the
cell usage ratio constraints, as mentioned in “T iming
relaxation,’’ Section 3. It is also important to handle slew
constraints and maximum signal transition times in order
to prevent nets from cross-talk noise.

Circuit designs today may contain tens of milli ons of
gates. The logic optimizer has to handle them in
reasonable CPU time and memory. We adopted an
iterative optimization method that applies local
transformations, such as buffer insertion [9], gate resizing,
and re-synthesis [13] [14], repeatedly.

4.5 Placer

The objective of the placer in the PDL system is to
minimize the number of cut nets among partitioned sub-
circuits. This is achieved using SNR [1] approach. There
are two drawbacks of the partitioning-based approach.
First, top-down optimization such as partitioning solves
global problems quite eff iciently. However, local
problems may exist within the partitioned blocks, because
the top-down decision may not always be optimum for the
local problem. For example, the partitioning-based
placement yields a smaller wire length, but the existence
of locally congested area deteriorates routabilit y. Second,
min-cut is not suitable for timing optimization. As
mentioned above, imposing maximum distance or adding
a weight on the critical net may limit the solution space
considerably.

The problem of the existence of locally congested area
is solved with refinement process in the PDL system. At
latter levels of partitioning, the router provides accurate
routing information including routing congested block
information. The placer moves non-critical cells from the
highly congested blocks to the less congested blocks
during the refinement process. The critical cells are
locked so as not to degrade the timing.

As discussed in “Risk estimation of critical paths,’’
Section 3, the cells on a critical net will be placed in the
same block if the placer predicts that buffer insertion
cannot eliminate the critical net. The diff iculty in this
approach is that since nets belonging to a critical path

share cells, too many cells may need to be placed in the
same block. This may be beyond the area resources
available in that block. We are then forced to partition the
adjacent critical nets. Therefore, we have to carefully
analyze which cells on critical nets should be placed in the
same block. We use critical path mapping technique to
identify them. This technique assigns weights to the
critical nets according to their criticality and then
determines the optimal positions of cells connected to
these nets in a block using quadratic placement. If all the
cells of a critical net are assigned to one block by the
quadratic placement algorithm, they are fixed to that
block; all other cells can be freely optimized.

4.6 Router

The main objectives of the router are to estimate
routabilit y and routing patterns hierarchically during
partitioning. The remaining tasks are handled by other
tools. For instance, the placer determines net lengths and
logic optimizer handles fanouts. However, three issues
should be considered in the router of the PDL system.

First, at any level the router should generate routing
patterns that are consistent with those at the previous
level. The router explores the solution space using the
patterns at the previous level. This improves the run time
of the router. Figure 3 shows an example of routing
pattern transformation of a net. The correlation between
routing patterns at the current level and the previous one
gives the placer a consistent optimization direction for
terminal propagation and the logic optimizer, a consistent

buffer insertion strategy. To achieve the correlation
between global and detail routing patterns, detail router
also uses the global routing patterns.

Second, even though the solution space is limited by
the routing patterns at the previous level, detours may
happen at a congested block. We prioritize the nets on
critical paths to have them routed in shortest distance.

Finally, the previous two constraints limit the solution
space for the router, which influences the routabilit y and
wire length. The router in the PDL system ignores the
constraints and expands the solution space to find better
routing patterns.

� � � � � � � �

 � � �

! � � �

� � � � � � � � "

Figure 3: Routing pattern transformation

5. Experimental Results

In this section, we present experimental results to show
the effectiveness of the PDL methodology. Five practical
circuit designs, CD1 through CD5, are used. Their
characteristics are given in Table 1. The circuit sizes
shown in the table are extracted before layout. One BC is
the size of the smallest inverter in the technology.

In our experiments, first we show the timing and layout
qualiti es. Then, the timing convergence behavior of the
PDL system is discussed.

5.1 Timing and Layout Qualities

Table 2 compares the results of the PDL system with
those of a conventional system, which is the PDL system
without its timing-driven features. To evaluate routabilit y
and wire length, the detail router is executed at the end.
The number of routing violations is the number of nets
that could not be routed with a standard detail routing
process. The number of setup errors, the minimum slack
value, and total sum of negative slack values are analyzed

before detail routing using an in-house timing sign-off
tool. This evaluates the quality of the PDL system
without any consideration for other factors that influence
the delay, such as clock skew and cross-talk.

The results show that the sum of negative slacks
improved in all the circuits without any deterioration in

the layout quality. Critical paths still remain in four
circuits. After analyzing the timing reports, we discovered
that buffers inserted manually to fix the hold errors cause
timing errors in the paths between different clock
domains. In these experiments, clock skew is set to zero to
remove the influence of the quality of clock tree
optimization. We confirmed that most of the timing errors
could be fixed by adding the actual clock phase delay to
each clock domain source. Table 3 shows the change in
the number of cells and area penalty during the process.
Both values are small , sometimes even negative.

5.2 Timing Convergence in PDL System

To show how timing converges in the PDL system and
logic optimizer improves the criticality of global paths,
the minimum slack and the total sum of negative slacks of
CD5 are plotted at each partitioning level in Figure 4.
Logic optimization is performed at every even level.

Although the placer and router try to improve timing,
the minimum slack value becomes worse when
partitioning moves to the next even levels. Newly
generated inter-block wires with partitioning cause this
degradation. However, logic optimizer improves the slack
value eff iciently, especially at levels four and eight.

The logic optimizer also improves the total sum of the
negative slacks. Interestingly, it does not become worse
with partitioning. This means it is less sensitive to the
newly generated inter-block wires than the minimum
slack. This is because dividing an intra-block wire into
half segments and partitioning cells optimally might offset
the impact of increased inter-block wires.

6. Conclusions and Future Plan

In this paper, we have proposed PDL, a new physical
synthesis methodology. The approach is to identify critical
limit paths, estimate their risk, and relax timing constraints
of non-critical paths in order to obtain the best routabilit y

Table 2: Comparison of conventional system and PDL system

$ % &
' & () * + , - .

/ % 0 1 * $ ()
2 $ 0 ' 3 * $ 0 (4

/ 4 & * 1 5
& % % 0 % 4

- $ ($ - 1 -
4 ' 3 6 7 , 5 4 .

* 0 * 3 ' (&) 3 * $ 2 &
4 ' 3 6 7 , (4 .

$ % &
' & () * + , - .

/ % 0 1 * $ ()
2 $ 0 ' 3 * $ 0 (4

/ 4 & * 1 5
& % % 0 % 4

- $ ($ - 1 -
4 ' 3 6 7 , 5 4 .

* 0 * 3 ' (&) 3 * $ 2 &
4 ' 3 6 7 , (4 .

8 9 : : ; < = > ? > : @ A B ; C : : D B : E D < ? : ; < ; A @ D F F F < F
8 9 > : : < E @ > > B : C @ ? > B > < A : : < = : F : > B : C = E > B > < :
8 9 ; D = < D D : D B E E F B ; < A ? = < F F F F F < F
8 9 A = : < ? = ; A C > D A B > C : E F B > C = : E < E = > < A : ? A : C = D F B ; C : D F B ; ; E < ;
8 9 E : > @ < E ; = C A : : > : C ; ; A B : E C @ > : B > D C E F : < @ : > ? < : E A = ; ; F B : C > D ? B @ ; < E

6 0 (2 & * $ 0 (3 ' 4 G 4 * & - H 9 I 4 G 4 * & -

Table 1: Circuit data characteristics

J K L J M N O P Q R J Q K K S R T U P Q J V W L K L X Y
U Z [\] ^ _ ` a [b c d a a [a b \ e f e g a] h i
U Z f f d d ^ _ ` a f b c e j f d] b [k k e g f] h i
U Z a [e e ^ _ ` [] d b [] [\ j \ b d f k e g f] h i
U Z k f] j ^ _ ` [a] b \ e k [b e e d b] e \ e g f] h i
U Z] [f] ^ _ ` a d \ b a j j f b a c k b e a \ e g [j h i

and wire-length layout result under the given timing

constraints. The experiments show that the total negative
slack value is significantly improved. The future work is
in the following directions. We need to improve the
number of routing violations. Also, clock tree synthesis is
an important problem for higher performance. We plan to
integrate it in our methodology.

7. References

[1] J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu,
“Large Scale Circuit Partitioning with Loose/Stable Net
Removal and Signal Flow Based Clustering” , ICCAD, San
Jose USA, November 1997, pp. 441-447.

[2] J. Cong and S. K. Lim, “Performance Driven
Multiway Partitioning” , ASPDAC, Yokohama Japan,
January 2000, pp. 441-446.

[3] L. N. Kannan, P. R. Suaris, H. G. Fang, “A
Methodology and Algorithms for Post-Placement Delay
Optimization” , DAC, June 1994, pp. 327-332.

[4] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F.
Jukl, P. Kozak, and M. Wiesel, “Chip Layout
Optimization Using Critical Path Weighting” , DAC, Los
Angeles USA, June 1984, pp. 133-136.

 [5] K. Kawamura, T. Shindo, T. Shibuya, H. Miwatari,
and Y. Ohki, “Touch and Cross Router” , ICCAD, Santa
Clara USA, November 1990, pp. 56-61.

[6] J. Lou, A. H. Salek, and M. Pedram, “An Exact
Solution to Simultaneous Technology Mapping and
Linear Placement Problem”, ICCAD, San Jose USA,
November 1997, pp. 671-675.

[7] R. Murgai, “Performance Optimization Under Rise &
Fall Parameters” , ICCAD, San Jose, 1999, pp. 185-190.

[8] R. Murgai, “On the Global Fanout Optimization
Problem”, ICCAD, San Jose, Nov 1999, pp. 511-515.

[9] R. Murgai, “Layout-driven Area-constrained Timing
Optimization by Net Buffering” , ICCAD, San Jose USA,
November 2000, pp. 379-386.

[10] T. Okamoto, and J. Cong, “ Interconnect Layout
Optimization by Simultaneous Steiner Tree Construction
and Buffer Insertion” , ACM/SIGDA Physical Design
Workshop, Reston USA, April 1996, pp. 1-6.

[11] M. Pedram, and N. Bhat, “Layout Driven Logic
Restructuring/Decomposition” , ICCAD, Santa Clara
USA, November 1991, pp. 134-137.

[12] G. Stenz, B. M. Reiss, B. Rohfleisch, and F. M.
Johannes, “Timing Driven Placement in Interaction with
Netlist Transformation” , ISPD, April 1997, pp. 36-41.

[13] Y. Tamiya, “Robust Performance Optimization Using
Padding Nodes and Separator Sets” , IEICE Transactions
on Fundamentals, vol. E84-A, No.11, November 2001,
pp.2739-2745.

[14] R. S, Tsay and J. Koehl, “An Analytic Net Weighting
Approach for Performance Optimization” , DAC, San
Francisco USA, Jun 1991, pp. 636-639.

[15] H. Vaishnav and M. Pedram, “Routabilit y-Driven
Fanout Optimization” , DAC, Dallas, 1993, pp. 230-235.

7. Acknowledgements

 The authors thank other members of this project who
contributed to this paper: Yuzi Kanazawa, Tatsuya Nakae,
Izumi Nitta, Hidetoshi Matsuoka, Yutaka Tamiya, Naomi
Tashiro, and Yoshinori Tomita.

Table 3: Increased area in PDL system

l m n o p q r p s
t n p u u r

l m n o p q r p s
t v w

v w l m n o p q r p s
o q x l y z { |

w } ~ ~ � � � � � � � � � �
w } � � ~ � � � � � � � �
w } � � � � � � � � � � � � � �
w } � � � � � � � � � � � � � � � � �
w } � ~ � ~ � ~ � � � � � � � ~ � �

� � �
� � �
� � �

� �
� �

�
�

� � � � � � � � �

� � �
� � �
� � �

� �
� �

�
� � � � � � � � �

Figure 4: Slack value convergence (CD5)

� � � � �

� ¡ ¢� £ ¡ ¢

¤ ¥ ¦ § ¨ © ª « ¥ ¬ ¤ ® ¦ ¯ ° ± ¥ « © ² ³ ¥ ± ¨ ´ ² ª « ¥ ¬

	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index

