
Elimination of false aggressors using the functional relationship
for full-chip crosstalk analysis

Jae-Seok Yang, Jeong-Yeol Kim, Joon-Ho Choi, Moon-Hyun Yoo, Jeong-Taek Kong
CAE team, Memory Division, Dept. of Device Solution Network, Samsung Electronics

{sombrero, pass8000, foco, moonyoo, jkong}@samsung.co.kr

Abstract

As the portion of coupling capacitance increases in

smaller process geometries, accurate coupled noise
analysis is becoming more important in current design
methodologies. We propose a method to determine
whether aggressors can potentially switch simultaneously
with the victim or not. The functional information is used
to classify the aggressors. Our functional pruning
algorithm inspects the conflict of the net states using
CNF(Conjunction Normal Form) and BDD(Binary
Decision Diagram). We present the experimental results
on several industrial circuits. In the experiments, 6.4% of
total aggressors are false and the accuracy of delay
calculation can be improved up to 36.6%.

1. Introduction

As process geometries become smaller, the coupling

capacitance of neighboring lines can contribute to a larger
portion of the signal delay. When two coupled lines
switch in the opposite direction, the interconnect delay
increases. If they switch in the same direction, the
interconnect delay decreases. The additional buffer
insertion or the space increase of adjacent lines is required
to prevent the crosstalk noise. These increase chip area[1]
and power consumption. The crosstalk can cause not only
delay variation but also functional failure[2],[3].

In noise analysis, all aggressors are assumed to switch
simultaneously when we do not know the true switching
relationship of the victim and aggressors. This assumption
is conservative. The pessimism due to false aggressors has
to be minimized because of the additional design cost to
fix the noise.

The aggressor pruning can be accomplished by the
functional and the temporal relationship. The functional
information has been used to find a logically false
aggressor[4]-[7]. In [4], the authors proposed an approach
to find a pair of input vectors which maximize the
crosstalk effect. A method to find the false aggressors
using ATPG is presented in [5]. In [6], false aggressors
are detected by a path sensitization procedure. Recently,
the SLI(Simple Logic Implication) is used in [7].

However, these methods cannot be adopted into the
industrial circuits having several million gates due to the
high complexity. A heuristic method is required for full-
chip crosstalk noise analysis.

In this paper, we present an efficient aggressor
classification method. The newly proposed method limits
the depth of backward search and uses a feature that two
input cones of coupled nets must have a common portion
to be logically related. If any common portion does not
exist, the coupled lines are functionally independent. The
CNF clause[8] is used to present the function of the victim
and aggressor. The false aggressor problem is simply
reduced to SAT(satisfiability) problem[9]. Finally, the
aggressor classification is done using BDDs[10]. Our
method can apply to the noise analysis as well as the delay
calculation. We suppose the zero-delay model and it is
extended to the variable real delay model in Section 2.3.

The aggressor classification method is explained in
Section 2. We present a method to reduce the complexity
in Section 3. In Section 4, the experimental results are
shown. We conclude in Section 5.

2. Functional aggressor pruning

2.1. Problem definition

When an aggressor always switches in the same

direction with a victim, the coupled lines are “in-phase
relationship”. The coupled lines are “out of phase
relationship” if an aggressor switches in the opposite
direction. An aggressor is always true if the coupled lines
are “independent relationship”. To classify the aggressor
relationship, we propose the following statements
assuming the zero-delay model.

Lemma 1: The “out of phase relationship” of the
coupled lines is valid if both vectors satisfying the
statement(1) and (2) exists.

LOW''victimandHIGH''aggressor0,tAt === (1)
HIGH''victimandLOW''aggressor,tAt ==∞= (2)

Lemma 2: The “in-phase relationship” of the coupled
lines is valid if both vectors satisfying the statement(3)
and (4) exists.

0-7695-1881-8/03 $17.00  2003 IEEE

Figure 1. An example for the aggressor classification.

Figure 2. The BDD representation of V1 and A1.

Figure 3. The CNF clauses of AND and OR.

Figure 4. The BDD representation of CNF clause.

LOW''victimandLOW''aggressor0,tAt === (3)
HIGH''victimandHIGH''aggressor,tAt ==∞= (4)

The “independent relationship” is the case that both
“out of phase relationship” and “in-phase relationship” are
available.

An example that determines the relationship of coupled
lines using BDD is shown in Figure 1. We simply
consider the case that a victim has a rising transition. V1
is a victim and A1 is an aggressor of V1. The function of
V1 is 32 NN • and the function of A1 is 21 NN + . The
BDD descriptions of V1 and A1 are represented in Figure
2. The left branches are true states and the right branches
are false states in BDD descriptions.

The opposite direction switching must satisfy the

Lemma 1. At t=0, A1 is high when N2 is high. V1 is low
when N2 is high and N3 is low from the BDD in Figure 2.
Thus, the input vector satisfying the statement (1) exists.

At t= ∞ , A1 is low when both N2 and N1 are low. V1
is high when both N2 and N3 are high. It is a
contradiction that the value of N2 is high and low
simultaneously. From this observation, we can conclude
that the “out of phase relationship” of V1and A1 is invalid.
In this case, A1 is a false aggressor and the coupling
capacitance(Cc1) cannot affect the waveform of V1. We
present a tidy method for finding the conflict in the next
Section.

2.2. Aggressor classification using BDD

Usually, the output function of a gate is represented by

inputs. However, when the function of a gate is
represented by the CNF clause, we can see the valid input
value for a specific output value. The modified CNF
clause is obtained by exclusive-OR operation with the
output signal. Simply, we call the exclusive-OR operation
as the CNF. This notation is unusual but easy to
implement. For instance, the CNF clause of a 2-input
AND gate and OR gate is presented in Figure 3.

The CNF clause is useful to classify the aggressor

because the state of an internal node can be known for a
specific output node value. If a node has to be a different
value at the same time for the crosstalk transition, the
crosstalk should not be occurred. To see the existence of a
contradiction, we propose Lemma 3 and 4 using the CNF
clauses of the victim and aggressor.

Lemma 3: The “out of phase relationship” of the
coupled lines is valid if both solutions satisfying Boolean
equation (5) and (6) exists.

0ressorCNF_of_aggtimCNF_of_vic
LOW''victimandHIGH''aggressorWhen

=+
== (5)

0ressorCNF_of_aggtimCNF_of_vic
HIGH''victimandLOW''aggressorWhen
=+

== (6)

Lemma 4: The “in-phase relation” of the coupled lines
is valid if both solutions satisfying Boolean equation (7)
and (8) exists.

0ressorCNF_of_aggtimCNF_of_vic
HIGH''victimandHIGH''aggressorWhen

=+
== (7)

0ressorCNF_of_aggtimCNF_of_vic
LOW''victimandLOW''aggressorWhen

=+
== (8)

In Figure 1, the CNF clauses of V1 and A1 are Boolean
equation (9) and (10), respectively.

 03)2(13)2,1,(=•⊕= ������� (9)
 02)1(12)1,1,(=+⊕= ������� (10)
The conjunction of Boolean equation (9) and (10) is

Boolean equation (11) when V1 is low and A1 is high.
Boolean equation (12) is when V1 is high and A1 is low.
In Figure 4, the left branches present true states and the
right branches present false states.

0)21(32)3,2,1,11,01(=++•=== NNNNNNNAVF (11)
02132)3,2,1,01,11(=++•=== NNNNNNNAVF (12)

From Figure 4, we know that the solutions of Boolean

equation (11) are {N1=1, N2=0}, {N1=1, N2=1, N3=0}

N2

N3

0 1

V1

N2

1 0

A1

N1

N1

0 1

 Equation (11)

N2 N2

N3 N3

1 1 0

N1

 Equation (12)

N2

N3

1

 Equation (12)

1 ROBDD

V1

N1

N2 Cc

A1

N3

B
A
B

Y A Y

BAY •= BAY +=
0)(=•⊕ ��� 0)(=+⊕ ���

Function
CNF

Function
CNF

Table 1. The portion of common nets.

Figure 6. Near common net (a) and far common net (b).

Figure 5. Aggressor classification under
the non-zero delay model.

and {N1=0, N2=1, N3=0}. It is clear that the equation(12)
dose not have a solution because the condition at V1=1
and A1=0 is impossible. From Lemma 3, we can conclude
that A1 is false. It is the same result in Section 2.1. We
can classify false aggressors by building BDDs and
reducing them.

2.3. Glitch consideration

A true aggressor may be false when the gate delay is

ignored because of a glitch transition. Now, we expand
the previous heuristic method to be a real delay model. In
Figure 1, we assume that the delay of OR gate is 1~3ns
and AND gate is 2~4ns. The gate delay normally has a
variable range. The Boolean variable has a tag with a time
range. To consider the glitch transition, the Boolean
equation (11) and (12) should be modified as the
following Boolean equations.

0-1])t2[-3-1]t1[-3(-2]t3[-4-2]t2[-4 =≤≤+≤≤+≤≤•≤≤ ���� (13)
0-1]t2[-3-1]t1[-3-2])t3[-4-2]t2[-4(=≤≤+≤≤+≤≤•≤≤ ���� (14)

The Boolean equation(14) is true because each of N2
has a different time range. The variable states from
Boolean equation(13) and (14) are presented in Figure 5.
When the gate delay is considered, A1 may be a true
aggressor.

If t1=-2n and t2=-3n, V1 may be no transition.

However, we assume that it is a true aggressor to have
conservatism.

To be a true aggressor, the leaf node cannot include the
glitch transition. It is an apparently true when the leaf
nodes are flip-flop output or primary input. If there are all
leaf nodes without glitches, the aggressor is true.

3. Search space reduction

As the number of nodes increases, the complexity of

BDD increases exponentially. Thus, we need to limit the
search space to save the run-time and memory usage. The
connected lines by coupling capacitances are
geometrically near at hand each other. The closeness of
placement always does not mean a functional relationship.
The coupled lines must have a common net in their input
cone in order to have a functional relationship. We define

a net as “common net” if the net belongs to both backward
search cones from a victim and an aggressor.

If a common net contradicts to have a high value and a
low value concurrently, the vector causing the crosstalk
cannot exist. If there is no common net, the coupled lines
are assumed to be “independent relation”. In Table 1, we
present the ratio to have a common net as the backward
search depth increases. Design A is a DSP core block.
Design B is the modem chip. As the backward search
depth is increased, the possibility to have a common net is
increased. To improve the ratio of pruned aggressors, we
can increase the search depth.

Design A Design B Backward

Search
Depth

of
Common nets Ratio # of

Common nets Ratio

1 1,602 5.4% 16,738 10.5%
2 2,984 10.0% 40,686 25.6%
3 4,716 15.8% 46,248 29.1%
4 6,772 22.7% 53,242 33.5%
5 8,748 29.4% 60,076 37.8%

If any common net does not exist within a given
backward search depth, we regard the aggressor as a true
one. If a common net is near at the coupling capacitance,
the functional relationship of the victim and aggressor is
strong because it has little interference of the side inputs
(Figure 6(a)). With a far common net (Figure 6(b)), the
functional relationship is weak because the side inputs can
cause a coupled interaction regardless of the common net
state.

4. Experimental results

CUDD package[11] is used to build BDD. The run-

time is on a Blade1000 750MHz. We run the proposed
method on five industrial circuits. The characteristics of
the circuits are shown in Table 2. The design A and B are
the same as shown in Table 1. The number of victims
means the number of nets that have one or more
aggressors.

The results of aggressor pruning are shown in Table 3
and 4. The transition of the opposite direction is assumed
in the results. In design A, 3.5% of total aggressors are
logically false when the backward search depth is five.

CcCc

Common net Common

(a) (b)

V1

N1

N2 Cc1

A1

N3

Delay:1~3ns

Delay:2~4ns

t3=0 t1=-4~-2n
t2=-3~-1n

Table 4. The results of aggressor pruning of four designs.

Table 3. The results of aggressor pruning for design A.

Table 5.The delay reduction due to pruning in design C.

Table 2. The summary of the circuit information.

 A B C D E
of instance 58K 198K 79K 296K 350K

of net 60K 228K 85K 326K 372K
of victim 27K 93K 37K 86K 121K

of aggressor 48K 159K 76K 152K 209K
Aggr. per victim 1.79 1.72 2.04 1.75 1.73

The number of logically false aggressors increases as
the search depth is increased. When the depth is larger
than three, the increment of the pruning ratio slows down.
This agrees with the assumption that a farther common net
has a weaker functional relationship. We should determine
the speed and functional pruning ratio by controlling the
backward search depth. As the search depth becomes
larger, the pruning ratio is increased while the run-time
gets longer.

Backward Search
Depth

False
Aggressor

Ratio Run-time

1 32 0.1% 34s
2 382 1.3% 42s
3 778 2.6% 57s
4 932 3.1% 67s
5 1,024 3.5% 79s

Several circuits are used to verify the proposed method
in Table 4. In design B, the ratio of functionally false
aggressor is 6.4% when the backward search depth is two.
The largest design E(# of net : 372K) is executed within
660s. The run-time is a reasonable to be adopted as a
crosstalk analysis tool.

depth B C D E
Number 16,738 5,662 22,074 14,706 Common

net Ratio 10.5% 7.5% 14.6% 7.0%
Number 3,662 1,002 5,608 3,092 False

aggressor Ratio 2.3% 1.3% 3.7% 1.5%
1

Run-time 164s 136s 254s 414s
Number 40,686 10.968 45,396 24,912 Common

net Ratio 25.6% 14.5% 30.0% 11.9%
Number 10,188 2,722 8,994 6,904 False

aggressor Ratio 6.4% 3.6% 5.9% 3.3%
2

Run-time 251s 281s 383s 660s

 Total
aggressors

Pruned
aggressors

W/O
pruning

delay(ns)

With
pruning

delay(ns)

Delay
reduction

Net0 5 5 0.186 0.118 36.6%
Net1 1 1 0.432 0.349 19.0%
Net2 1 1 0.473 0.387 18.2%
Net3 1 1 0.537 0.441 17.8%
Net4 1 1 0.537 0.442 17.7%

In design C, all nets of having false aggressors are
examined. The delay is measured using HSPICE. The
partial circuit by cutting the coupled net is simulated. Net0

has five aggressors. All of them turn out to be false by
functional pruning. The delay in Table 5 is the sum of the
net delay and driver gate delay. The delay reduction of
Net0 is 36.6%. If Net0 belongs to a critical path, the
longest delay should be overestimated by 0.068ns without
the proposed method.

5. Conclusion

In this paper, we propose the method to eliminate false

aggressors for accurate crosstalk analysis. The advantages
of the proposed method are summarized as: 1) the
pessimism of crosstalk analysis should be reduced. 2) the
over-shielding should be reduced. 3) the additional run-
time is not needed.

We present the logical information of the coupled lines
by the CNF clause. To determine the relationship, BDD is
built from the CNF clause. The glitch transition is
considered to guarantee the conservatism and the locality
feature is useful to reduce the complexity. The algorithm
works on the large industrial circuits in virtue of the
efficiency. Consequently, the proposed method removes
the false aggressors of 6.4% within a few minutes and the
errors of delay calculation can be reduced up to 36.6%.
The proposed method can improve the accuracy for the
crosstalk analysis without additional time consumption.

6. References

[1] H. P. Tseng, L. Scheffer and C. Sechen, “Timing-and Crosstalk-
Driven Area Routing”, IEEE Trans. Computer Aided Design, vol.20,
no.4, Apr., 2001, pp. 528-544.
[2] K. L. Shepard and V. Narayanam, “Conquering Noise in Deep-
Submicron Digital Ics”, IEEE Trans. Design and Test of Computers,
Jan.-Mar., 1998, pp. 51-62.
[3] A. B. Kahng, S. Muddu and D. Vidhani, “Noise and Delay
Uncertainty Studies for Coupled RC Interconnects”, Proc. Int. Conf.
Asic/SOC, 1999, pp. 3-8.
[4] P. Chen and K. Keutzer, “Towards True Crosstalk Noise Analysis”,
Proc. Int. Conf. Computer Aided Design, 1999, pp. 132-137.
[5] R. Arunachalam, R. D. Blanton and L. T. Pileggi, “False Coupling
Interactions in Static Timing Analysis”, Proc. Design Automation
Conference, 2001, pp. 726-731.
[6] T. Xiao and M. Marek-Sadowska, “Functional Correlation
Analysis in Crosstalk Induced Critical Paths Identification”, Proc.
Design Automation Conference, 2001, pp. 653-656.
[7] A. Glebov, S. Gavrilov, D. Blaauw, S. Sirichotiyakul and C. Oh,
“False-Noise Analysis using Logic Implications”, Proc. Int. Conf.
Computer Aided Design, 2001, pp. 515-521.
[8] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiablity”,
IEEE Trans. Computer Aided Design, v11, Jan., 1992, pp. 4-15.
[9] J. P. Marques Silva, K. A. Sakallah, "GRASP: A new search
algorithm for satisfiability", Proc. ACM/IEEE Int. Conf. Computer-
Aided Design, pp.220-227, Nov. 1996.
[10] R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manupulation”, IEEE Trans. Computers, v35, 1986, pp. 677-691.
[11] F. Somenzi, CUDD: CU Decision Diagram Package.

	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index

