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Abstract

With continuing scaling of CMOS process, process variations
in the form of die-to-die and within-die variations become sig-
nificant which cause timing uncertainty. This paper proposes a
method of analytically analyzing statistical behavior of multiple
coupled interconnects with an uncertain signal arrival time at
each interconnect input (aggressors and the victim). The method
utilizes delay change characteristics due to changes in relative ar-
rival time between an aggressor and the victim. The results show
that the proposed method is able to accurately predict delay vari-
ations through a coupled interconnect.

1 Introduction

With continuing scaling of CMOS process, die-to-die
and within-die variations have a significant impact on chip
performance and power consumption [1]. Such variations
come from process variations such as Le and Vt [2, 3, 4] as
well as supply voltage and temperature variations. Process
variations cause timing uncertainty. Current design meth-
ods for routs and wires use pessimistic approaches where
designs are assumed at their worst-case corners. Typically,
an initial design solution is simulated. Monitoring the crit-
ical nets, an incremental technique is used with a number
of iterations until the design meets its specification [5, 6].
The worst-case scenarios in measuring coupling noise are
also assumed, i.e. when the aggressor noise peaks matches
the victim switching time in the same or opposite direc-
tion. Such an approach often leads to over-designing cir-
cuits causing unnecessary elevation of power and other reli-
ability problems. Statistical design methods have been pro-
posed in the past to model the impact of process variations.
However, all the existing methods deal almost exclusively
with modelling delay variations of logical gates [7] or phys-
ical variations of interconnect wires [8, 9]. This paper deals
with a method of analytically analyzing statistical behavior
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of multiple coupled interconnects with an uncertain signal
arrival time at each interconnect input. The goal is to de-
termine the statistical behavior of signal transmission from
one point to another point in a circuit under the influence of
uncertainty multiple coupling sources.

The statistical behavior of such a delay can be obtained
by Monte Carlo simulations of the circuit involved. How-
ever, Monte Carlo simulations are expensive, faster analyt-
ical methods with enough accuracy is needed to deal with
complex VLSI designs. The method discussed in this pa-
per achieves both goals of having an analytical-based faster
method and high enough accuracy by calculating delay
change characteristics with respect to relative signal arrival
times between the aggressors and the victim. The statisti-
cal behavior of signal delay through the coupled intercon-
nect can then be easily obtained through analytical methods
rather than Monte Carlo simulations. The paper is orga-
nized as follows: Section 2 reviews the existing work on de-
lay change characteristics under the influence of coupling.
Section 3 presents a new set of noise response curves that
are easier to handle and more accurate. Section 4 describes
the proposed quadratic delay change curve. Experimental
results are presented in Section 5. Finally, conclusions and
discussions are given in Section 6.

2 Existing Delay Change Models

Sato,et al. [10] proposed an In-situ model that relates
the delay change in a victim line to the relative arrival time
of the its aggressor switching signal. The model assumes
an exponential waveform at the victim output node when
the victim line switches without noise as:

g(t) = Vdd(1− e−
t

τr ) t ≥ 0 (1)

whereτr is related to the rise time of the victim output sig-
nal without noise. When the aggressor switches with a rel-
ative time differencek to the victim input, it produces a
noise signal at the victim output node with the following

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7695-1881-8/03 $17.00  2003 IEEE 



waveform:

f(t, k) =





0 t < k
Vp

ta
(t− k) k ≤ t < ta + k

Vp e
− t−ta−k

τd t ≥ ta + k

(2)

The delay change at the victim output is then the solution
of:

g(t) + f(t, k) =
Vdd

2
(3)

There is no closed form solution to the delay change curve
of Equation (3). In [10] authors expanded Equation (3) to its
first order Taylor series att0 = τr ln 2, which is the original
victim delay without noise, and solved fort. The resulting
In-situ delay change curve,dcc, as a function of the relative
arrival time of aggressor,k, is then:

dcc(k) =





0 t0 < k
1

1+
ta

2ρ τr

(k − t0) k0 ≤ k < t0

1

1− τd

2ρτr
e
−k+ta−t0

τd

k ≤ k0

(4)
whereρ = Vp

Vdd
, andk0 ≈ t0 − ta − τr ln(2ρ + 1). The

linear approximation of the noise signal near the peak value
is found erroneous. The authors modifieddcc whenk = k0

as suggested in [11] to be:

∆tpeak = − τr ln(2ρ + 1) (5)

One of the drawbacks of the approach in [10] is that it
does not handle multiple aggressors. The authors improved
the efficiency of the above approach by using a more gen-
eral analytical approach involving 2-pole RC models rather
than SPICE simulations to obtain noise waveform [12]. As
a result of that, multiple aggressors can be handled in the
improved framework by lumping the coupling capacitance
between an aggressor and the victim to the middle of the
aggressor. For global interconnects, such an approximation
may not be valid and the structural variations of the RC
model can be wide ranging depending on numerous com-
binations between drivers, aggressor locations, and wire
lengths. Therefore, we will rely on SPICE simulations to
fit our noise waveforms to maintain accuracy.

3 Proposed Noise and Without-Noise Wave-
forms

Utilizing the superposition property of electronic cir-
cuits, one can decompose the output waveform of a given
victim line derived by a number of aggressors into two sets:
a without-noise waveform caused by the switching at the

victim input, and a set of noise signals caused by the ag-
gressors of the line when the victim line is dead. Letfi(t)
be the noise signals, andg(t) be the without-noise signal.
We propose the following shape functions forf andg:

g(t) = Vdd 2− e
−

(
t−ν
τr

)

(6)

fi(t, ki) = Vpi e
−βi ln2

(
t−ki

µi

)
(7)

whereVpi
is the peak voltage of the noise signal occurring

at timeµi when aggressori switches,βi is a shaping factor
of the noise waveform describing its wideness.τr is the rise
time of the victim output without-noise signal (defined to
be the time between the 10% to the 90% of the amplitude
value), andν is the delay of the without-noise signal. In
[10], authors suggested other waveform shapes for both the
victim without-noise signal and the noise signal. In [12], the
authors also suggested using exponential type waveforms in
the future, but the results in [12] were still based on wave-
form shapes in [10]. Figures 1 and 2 show the amount of
improvement our proposed waveform shapes have in terms
of error compared to the one proposed in [10]. We also in-
clude SPICE results for comparison.
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Figure 1. Without-Noise Signal Error,g(t)

Let the switching at the victim output node be our time-
zero reference of all signals (i.e. wheng(t = ν) = 1

2Vdd).
Let ki be the difference of the input switching times be-
tween aggressori and the input switching of the victim line.
Therefore, the time variable of Equation (7) is modified to
t → (t − ki). Employing the superposition property at the
output node of the victim line, the output voltage signal,
O(t), becomes:

O(t) = g(t) +
n∑

i=1

fi(t, ki) (8)
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Figure 2. Noise Signal Error,f(t)

with a reference time-zero att = ν.

4 Quadratic Delay Change Curve (qDCC)

From Equation (8), one can solve:

O(t) =
Vdd

2
(9)

for t and get the delay change curve (due to aggressors
noise) as a function ofki, dcc(~k). However, Equation (9)
has no closed form solution. In [10], authors expanded the
equation to the first order Taylor series aroundt = ν us-
ing the simpler shape functions forg(t) andf(t) illustrated
in Equations (1) and (2). The resulting In-situdcc equa-
tion has a linear part ofk and an exponential part, Equa-
tion (4), given one aggressor is affecting the victim line. At
the peak of thedcc function, the authors used the worst-
case delay change suggested in [11] to overcome the error
difference indcc due to bad approximation around the flat
peak of the noise signal. Deriving statistical expectations
out of In-situdcc function of [10] would be a great deal er-
roneous because of errors of the delay especially around the
peak value. However, since the peak region of the noise sig-
nal, f(t), curved like a parabola, we suggest to expand the
proposed noise function of Equation (8) to its second order
Taylor series aroundt = ν and solve the quadratic equation
for (t−ν) and get a betterdcc function. The first and second
derivatives of the proposedf(t) andg(t) at t = ν are:

g′(ν) =
Vdd ln 2

2τr
(10)

g′′(ν) =
Vdd ln 2 (ln 2− 1)

2τ2
r

(11)

For the noise signals,fi(t, ki), we have:

f ′i(ν, ki) = −2 βi Bi
fi(ν, ki)
ν − ki

(12)

f ′′i (ν, ki) =

(
1−Bi − 2βi B2

i

)

Bi

f ′i(ν, ki)
ν − ki

(13)

whereBi = ln
(

ν−ki

µi

)
. Therefore, the second order

Taylor expansion of Equation (8) aroundt = ν can be ex-
pressed as:

O(t) ' G0(~k) + G1(~k) (t− ν) +
G2(~k)

2
(t− ν)2 (14)

where,

G0(~k) = g(ν) +
n∑

i=1

fi(ν, ki) (15)

G1(~k) = g′(ν) +
n∑

i=1

f ′i(ν, ki) (16)

G2(~k) = g′′(ν) +
n∑

i=1

f ′′i (ν, ki) (17)

SolvingO(t) = Vdd

2 for (t−ν) gives the proposedquadratic

delay change curveqdcc(~k) as:

qdcc(~k) = −
G1 ±

√
G2

1 − 2
(
G0 − Vdd

2

)
G2

G2
(18)

To compare the quadraticqdcc waveform proposed in Equa-
tion (18) with the one suggested in [10], we ran a Monte
Carlo spice simulation with 1000 random arrival times for
the aggressor input with a fixed arrival time for the victim
input and obtained the simulateddcc points. Figure 3 shows
the high accuracy of the proposed quadraticdcc function
over the existing one in terms of delay difference.

5 Experimental Results

In our experimental analysis, we examined a portion of a
0.18µm technology design containing a victim line coupled
with 10 aggressors. An approximate layout of the coupled
lines is shown in Figure 4.

We extracted the equivalent distributed RC components
of the coupled interconnects. To account for non-linearity
of drivers during switching, a piece-wise linear source ap-
proximating an exponential waveform derived from SPICE
simulations was used. The goal of this study is to ana-
lytically derive the delay change statistics to the switching
statistics of the design at multiple nodes and check the val-
idation of the noise and the without-noise waveform gener-
ated by the coupled transmission lines alone.
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Figure 4. Experimented Design Layout

5.1 DCC Errors

We show in this section how different thedcc values of
the proposed models from that of the Spice model. Since
dcc is a function of~k (all the aggressors relative arrival
times), we applied 1000 random~k values from their normal
distribution functions of zero means and0.1 ns standard
deviation and sorted thedcc values in ascending order. We
compared the analyticaldcc values of the proposed model
with the Spice runs. Results are illustrated in Figure 5. On
average, the quadraticdcc function has an average error of
less than 5% from the Spicedcc values, while applying the
In-situdcc function of [10] yields an average error of 19%.

5.2 Standard Deviation Results

In this set of experiments, we checked the error in es-
timating the delay variation of the victim line given that
the statistics of its aggressors relative arrival times,~k, are
known, i.e. whenµk ’s (mean arrival time difference) and
σk ’s (standard deviation of arrival time difference) are all
known. We chose a relative arrival time difference,µk ’s,
between 0ns to0.20ns. With each choice ofµk, we ran
four different σk ’s: 10ps, 15ps, 20ps, and 30ps. Hav-
ing the statistics of the relative arrival times, we generated
1000 random data sets for each choice ofµk andσk and ran
Monte Carlo simulations to determineσdcc. The 1000 gen-
erated~k values are then fed to the proposed quadraticdcc
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Figure 5. DCC Differences of Spice and Proposed Mod-
els

model and to the In-situ model to get the modelledσdcc’s.
The simulated and computedσdcc of all the runs are shown
in Table 1 and illustrated Figure 6.
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Figure 6. DCC Standard Deviation Errors

In general, theσdcc values of the proposed model are
much closer to the Monte Carlo results than that using the
method in [10]. Table 2 shows that the average error in
estimating the standard deviation indcc is about 4% across
all the mean values of~k. Table 3 shows that the error in
estimatingσdcc using the method in [10] exceeds 25% in
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Statistics Spice In-situ Quadratic
µk(ns) σk (ps) σdcc σdcc Er σdcc Er

0.00 10 1.9 1.2 38.5% 2.0 5.7%
0.00 15 2.9 1.8 38.2% 3.0 5.8%
0.00 20 3.8 2.4 37.7% 4.0 6.1%
0.00 30 5.6 3.5 36.7% 6.0 6.8%
0.05 10 1.9 1.2 37.0% 2.0 3.8%
0.05 15 2.8 1.8 36.5% 2.9 4.0%
0.05 20 3.7 2.4 35.9% 3.9 4.1%
0.05 30 5.5 3.6 34.5% 5.7 4.2%
0.10 10 1.9 1.3 29.4% 1.9 0.7%
0.10 15 2.9 2.0 29.1% 2.8 1.0%
0.10 20 3.8 2.7 28.8% 3.7 1.3%
0.10 30 5.6 4.2 24.6% 5.5 2.0%
0.15 10 1.8 2.2 19.3% 1.7 4.0%
0.15 15 2.7 3.5 27.2% 2.6 4.2%
0.15 20 3.6 5.3 46.5% 3.5 4.5%
0.15 30 5.4 8.8 62.8% 5.1 5.3%
0.20 10 1.8 29.1 1565% 1.7 3.3%
0.20 15 2.6 31.6 1106% 2.5 3.5%
0.20 20 3.5 31.2 792% 3.4 3.7%
0.20 30 5.2 28.5 447% 5.0 4.2%

Table 1. σdcc for Differentk Statistics (in ps)

the best case.

σk

µk 10ps 15ps 20ps 30ps Average

0.00µs 5.7% 5.8% 6.1% 6.8% 6%
0.05µs 3.8% 4.0% 4.1% 4.2% 4%
0.10µs 0.7% 1.0% 1.3% 2.0% 1%
0.15µs 4.0% 4.2% 4.5% 5.3% 5%
0.20µs 3.3% 3.5% 3.7% 4.2% 4%

Table 2. DCC Standard Deviation Errors of QDCC

In another set of experiments, we examined the effect of
increasing the aggressors arrival times standard deviation on
the estimation of the line delay statistics. Here, we fixed the
nominal arrival times of the aggressors and set their stan-
dard deviations to certain values. Figure 7 shows that the
error in estimating the delay standard deviation using our
proposed model is almost the same as the result obtained
by the expensive Spice simulations. On the average, the er-
ror in the estimation does not exceed 5% in the worst case,
while using the In-situ model of [10] yields an error of more
than 30% in the best case.

5.3 In-Phase and Out-Phase Switching

In this set of experiments, we randomly chose the arrival
times of the aggressors with random standard deviations but

σk

µk 10ps 15ps 20ps 30ps Average

0.00µs 39% 38% 38% 37% 38%
0.05µs 37% 37% 36% 35% 36%
0.10µs 29% 29% 29% 25% 28%
0.15µs 19% 27% 47% 63% 39%
0.20µs 1564% 1106% 792% 447% 977%

Table 3. DCC Standard Deviation Errors of In-situ
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Figure 7. DCC Standard Deviation Errors

we forced some aggressors to switch in-phase with the vic-
tim and other to switch out-phase. Figure 8 shows two ex-
periments: In the first case, we toggle the direction of the
aggressors to be rising (u) and falling (d) as shown. Figure
8 shows the results of comparing the proposed model in es-
timatingσdcc to that using models in [10] and Monte Carlo
results. On the average, the error of the proposed model is
about 2%, while using the In-situ model yields more than
75% error comparing to Monte Carlo simulations. In the
second case, we set the first five aggressors to switch in-
phase with the victim, and the rest of the aggressors to
switch one out-phase and one in-phase. The results show
that the error using the proposed model is about 7%, while
the error using the In-situ model is 118%.

6 Conclusion

In this paper, we presented a method of deriving statis-
tical timing information for a given coupled interconnect
due to the uncertainties of signal arrival times at its aggres-
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sors and the victim. The proposed approach utilizes delay
change characteristics of the coupled interconnect to ana-
lytically obtain statistical timing without relying on circuit
level Monte Carlo simulations. Deriving delay change char-
acteristics of a given coupled interconnect involves fitting
the proposed noise model through SPICE simulations. The
errors ofσdcc for a given coupled interconnect is an order
of magnitude lower than that using an existing delay change
curve method in [10]. The higher accuracy of the proposed
method is due to

• a better noise waveform shape function proposed in
this paper for deriving delay change characteristics,
and

• use of quadratic delay change characteristics rather
than linear ones to more accurately model delay
changes when relative arrival time between aggressors
and the victim are close.

One limitation of the proposed method is that it requires
SPICE simulations of a given coupled interconnect to fit its
noise waveform shape. This can be a lot of simulations for a
complex chip even though each simulation is very fast. One
method to mitigate this requirement is to set a threshold for
the amount of coupling required versus the driver strength to
reduce the amount of simulations needed. Another method
can be similar to that proposed in [12] to reduce the amount
of SPICE simulations. However, the analytical method in
[12] is only used for determining the peak noise voltage and
the time in which it occurs. Furthermore, a wide range of
models still need to be developed to cover arbitrary coupling
cases as the authors in [12] pointed out. The extent of such

a range of models is unknown for practical applications.
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