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Abstract

Test scheduling for core-based SoCs is a challenging
problem. Test schedules must be crafted with the objec-
tives of minimizing testing time and ATE vector memory re-
quirements, to reduce test cost, under the constraints of to-
tal available test access mechanism (TAM) width. Prior re-
search in test scheduling has mainly used search procedures
like ILP and rectangle packing to solve this problem, but
these approaches are inherently computationally expensive.
In this paper we describe a novel algorithm to solve the test
scheduling problem using a combination of network flow
algorithms, malleable job scheduling and reconfigurable
wrapper design. Our approximation algorithm has poly-
nomial time complexity and produces schedules close to the
theoretical lower bound. Extensive experimental results us-
ing the new ITC’02 SoC benchmarks validate the quality of
our solutions.

1 Introduction

The widening gap between VLSI system capacities and
design engineering capability, in a limited time to market
scenario, has prompted many design groups to adopt a pol-
icy of design reuse at the core level [16]. Typical cores
include CPUs like MIPS and ARM, network controllers,
embedded memories, DSP cores and associated peripher-
als like the IEEE 1394 Firewire and UARTs. As has been
noted in [28], reusability of design alone is not sufficient as
the verification and test generation efforts now dominate the
typical design time. Reusability of tests is crucial for reduc-
ing total design time. This raises the problem of test knowl-
edge transfer and physical test application. The proposed
IEEE P1500 (SECT) [8] standard provides facilities for test
knowledge transfer using Core Test Language (CTL) [15]
and has advocated the use of a core test wrapper to facilitate
modular test of embedded cores. The complete problem of
core test application can be divided into three sub-problems:

1. Top level TAM partitioning : As the number of test
pins available at the IC level is constrained, an optimal
partition of these test bits must be done so as to reduce
the total test cost. Test cost in this paper refers to the
test application time on the automatic test equipment
(ATE). The test application model assumed in this pa-
per is based on a TESTBUS model which is a special
case of the model proposed in [21]. In [21], Marinis-
senet al. propose a structured and scalable method
of test access to embedded cores. Their design sepa-
rates the problem of providing test access into (a) test
data transport, accomplished using a test access mech-
anism (TAM) called a TestRail, and (b) test application
to cores, accomplished using a wrapper called a Test-
Shell. A similar approach is advocated in the upcom-
ing IEEE P1500 standard,

2. Test port partitioning at core level: The second prob-
lem is scan chain (or test ports) partitioning at the core
level; given a particular width of the TAM, how should
the core level scan chains be connected so as to reduce
the length of the longest scan chain for that core,

3. Test scheduling: Given a set of tests and the test re-
sources like TAMs (many of which are shared between
many cores), determine the TAM assignment to cores
during the test schedule, such that the total SoC testing
time is reduced.

These problems are referred to in literature as (i) the TAM
design problem [3], (ii) the wrapper design problem [22]
and (iii) the test scheduling problem [2], respectively. In
this paper we focus our attention on the test scheduling
problem.
Notation: Throughout this paper we refer to the top-level
TAM width by W , the number of TAMs byB, the width
of the TAM assigned to a core bywi, and the number of
cores byNC . Each core has a testTi. TestTi is charac-
terized by its number of patternspi and by the bitwidth1

1Bitwidth for a core is defined as the minimum TAM width beyond
which there is no decrease in the test time for a core.
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of the core,φi. The schedule is denoted byΣ and the
TAM assignment vector byπ. The schedule contains tu-
ples of the form(Ti, wi, t1 ↔ t2) to denote the width of
the TAM responsible for executing testTi from time in-
stancet1 up-to time instancet2. The length of the schedule
(makespan) is denoted|Σ|. The assignment vectorπ is de-
fined asπ = {wi} :

∑B
i=1 wi ≤ W . The test time function

is denotedFT (C,W ) to represent the time for testingC on
a TAM width ofW . The entityC may be an individual core,
in which caseFT depends only on the wrapper design, orC
can be acollectionof cores (like an SoC), in that caseFT

depends on both the wrapper design and TAM design.
The remainder of this paper is organized as follows. In

the next section we survey previous work in the field of
TAM and wrapper design, and SoC test scheduling. In Sec-
tion 3 we describe the reconfigurable wrapper design we
have used; in Section 4 we show that using reconfigurable
wrappers embedded core test scheduling can be represented
as a malleable job scheduling problem. In Section 5 we
present the network flow model of the embedded core-based
SoC test scheduling problem. Experimental results on the
new ITC’02 benchmarks [23] are presented in Section 6.
We conclude the paper in Section 7.

2 Prior work

Prior research in TAM design has examined the use
of a dedicated test bus [26], reuse of the existing system
bus [6], and a scalable bus-based architecture called TES-
TRAIL [21]. TAM optimization for testing time minimiza-
tion was investigated in [3, 13], and TAM optimization un-
der power and routing constraints was studied in [9]. A
novel re-configurable wrapper design was proposed by Ko-
ranne in [17] which allows for a dynamic change in the
width of the TAM executing a core test. We shall use
this wrapper design to model the core test scheduling as
a malleable job rather than a static job. In addition, sev-
eral techniques for SoC test scheduling, independent of
TAM optimization, have been proposed in the literature.
These include combinatorial optimization [25], test reorder-
ing for a large batch of ICs [14], Macro Test and test pro-
tocol scheduling [24], integer linear programming [2], and
power-constrained scheduling [4, 20, 27]. All these papers
have studied TAM optimization and test scheduling as sep-
arate problems. However, test access architectures and the
test schedules executed on these architectures are interre-
lated. A test schedule that is designed for a specific TAM
structure can significantly impact testing time, if applied to
a different TAM design. Therefore, in order to achieve a
tightly-integrated, effective SoC test architecture, it is re-
quired that TAM design and test scheduling be carried out
in conjunction.

While solutions to the problem of integrated TAM de-

sign and test scheduling were proposed in [12, 18, 19], all
of these methods are based on search procedures like in-
teger linear programming, enumeration, and more recently
2-d bin packing in the form of rectangle packing. In particu-
lar, the use of rectangles for representing SoC test schedules
was proposed as an attractive, intuitive interface for test in-
tegrators in [4, 7, 12, 20]. We compare the results of our
proposed algorithm with exact methods based on ILP and
rectangle packing methods in Section 6.

In this paper we propose a novel formulation of the
SoC embedded core test scheduling (ECTSP) problem as a
malleable job scheduling problem using the Reconfigurable
Core Wrapper design as presented in [17]. We solve this
malleable job scheduling problem using a simple reduc-
tion to network flow where the automatic test equipment is
treated as a source oftest bitsand cores are modelled ascon-
sumersor terminals. The TAM responsible for transporting
the test data are treated aschannelswith capacities propor-
tional to the TAM width. We first describe the general idea
of reconfigurable wrapper as presented in [17] below.

3 Reconfigurable Core Wrappers

In [17] Koranne describes a novel design of reconfig-
urable core wrapper which enables a dynamic change in the
width of the TAM executing a core test. The central idea is
to put multiplexers at the head of certain scan chains (the ex-
act method of choosing the scan chains which can be recon-
figured is described in the original paper [17] and is based
on a graph theoretic representation of the scan chains). Us-
ing these multiplexers different scan chain configurations
can be formed, an example is shown in Figure 1(a), (b) and
(c). In Figure 1(a) the core consists of three scan chains
of length 10, 5 and 4, respectively. It is obvious that an
optimal partition of these scan chains for wrapper design
is {10,5,4} when connected to a TAM of width 1 bit, and
{10},{5,4} when connected to a TAM of 2 bit width. Test-
ing of this core on TAM of 3 bits or more would not reduce
the test time as the length of the longest scan chain (10)
cannot be decreased. Hence,φ = 2 for this core. It is also
clear that in any scan chain configuration the scan chain of
length 10 (let us denote that byL10) is always connected
directly to the scan input, and likewise the scan out ofL4 is
always connected to the TAM output. The rest of the scan
connections depend on the TAM width. Hence, we put a
multiplexer on the head of theL5 which is controlled by a
signalrecon signal. Whenrecon signal = 0 this forms
a scan connection which is optimal for TAM width of 1 bit,
as shown in Figure 1(b), but if we want to test the core with
2 bits of TAM then we can setrecon signal = 1, and the
appropriate scan connections are formed as shown in Fig-
ure 1(c).

This idea can be generalized to more than one scan con-
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Figure 1. Reconfigurable Core Wrapper Design

figurations, multiple scan chains, and even multiple cores
in the SoC. Typically, therecon signal will be encoded
and implemented as a test control signal either from a core
internal test control blockor from a SoC wide TAP con-
troller. Routing issues, timing issues have been dealt with
and explained in [17]. Area and performance effects of the
multiplexers on the scan chain have also been analyzed and
found to be of little impact, as the multiplexer can be re-
moved from the functional path.

An important point regarding the use of reconfigurable
core wrappers is the fact that the scan chain reconfigura-
tion can be changed dynamically while the core test is in
progress; by halting the scan shifting and switching to a dif-
ferent test modes the TAM external width can be efficiently
utilized. This has been used in the original paper to derive
an algorithm which utilizes the idle TAM bits to optimize
core test schedules. But the algorithm only optimizes idle
space on TAMs at the end of a schedule. In this paper we
propose a better solution by formulating core test schedul-
ing as a malleable job and solving it using network flow.

4 Malleable Job Scheduling

Previous approaches (e.g., [3, 10]) to solve the core
test scheduling problem have treated it as the minimum
makespan job scheduling problem on unrelated parallel ma-
chines, denotedR||Cmax in Operation Research terminol-
ogy. A schedule obtained using the above model can be de-
picted as a Gantt chart as shown below in Figure 2(a). The
TAM width is shown on the Y-axis and the X-axis denotes
test time. The individual rectangles correspond to core tests
being executed on the TAM. The width of the TAM assigned
to a core does not change for the duration of the test. Thus,
the jobs are treated asstatic jobs.

In the previous section we have seen that by using re-
configurable core wrappers the width of a TAM executing
a core test may be changed dynamically. Thus, it is pos-
sible for coreT1 to start executing its test on a widthw1

and during the test (lets say that afterp1 patterns have been
executed) the scan shifting is stopped, and the scan con-
figuration is changed to form an optimal wrapper for TAM
width w2, and the remainder of the core patternspA − p1
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Figure 2. Job scheduling Gantt chart

are executed on a TAM width ofw2. Such a schedule for
coresT1 andT2 is shown in Figure 2(b).

In Figure 2(b) coreT1’s test is executed on a width ofw1

for a period∆t1, then there is a small reconfiguration time
period, and testing of coreT1 resumes on widthw3 for time
∆t2. CoresT1 and T2 are equipped with reconfigurable
wrappers which form balanced core scan chains at width
w1, w3 andw2, w4 for coreT1 andT2 respectively. Thus,
embedded core test scheduling for cores with reconfigurable
core wrappers can be modelled as malleable job scheduling
problem.

An interesting observation can be made by comparing
Figures 2(a) and (b); in (a) there is idle time on the 2 TAMs
of width w = 4 andw = 6 (the idle time is at the end of
the schedule), but the malleable job schedule by definition
cannot have any idle time (even when the scheduling formu-
lation has precedence constraints or test conflicts), as any
idle time on any TAM can be re-assigned to a TAM which
is currently executing a core test. Using this information a
simple heuristic would be optimize static job schedules by
pushing idle time on TAMs to executing TAMs as a post-
processing step. This heuristic does not handle cases when
the idle time is sandwiched in between core tests; hence,
we propose a better model of ECTSP by formulating it as a
network flow problem.

5 ECTSP as a Network Flow Problem

The automatic test equipment (ATE) can be thought of
as thesourceof all the test bits needed by cores to com-
plete their tests. The cores can be represented asterminals



with demandsof bi test bits (for test stimuli). Test control
bits are assumed to be handled separately using either core
level test control blocks or top level test controllers. The
TAMs responsible for transporting the test data to and from
the cores can be modelled aschannelswith finite capacities.
Obviously, the TAM which is the last to finish transporting
data will constitute the schedule makespan. With this back-
ground we are now able to define the network flow model
of ECTSP formally.

Let G = (V,E) be a capacitated directed graph with
edge capacitiesc : E → R+, a sources andk commodities
with terminalsti and demandsdi ∈ R+, 1 ≤ i ≤ k. A
vertex may contain a number of terminals. For eachi, we
would like to routedi units of commodityi along a path
from s to the corresponding terminal so that the total flow
through an edgee is at most its capacityc(e). There exists
aflow, respecting the capacities iff thecut conditionis met:

For any setS with s /∈ S, the total demand of
terminals withinS is at most the total capacity
of the edges enteringS.

An excellent source of more information on the topic of net-
work flows is the book by Ahuja et. al. [1].

Let us assume w.l.o.g. that there areNC tests for theNC

core in a system. Each of theseNC tests has a testability
requirement ofbi bits to be transported to and from the core,
1 ≤ i ≤ NC . Let there beB test resources like TAMs of
width w1 ≤ w2 ≤ . . . ≤ wB bits or BIST resources.
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Figure 3. ECTSP as Network Flow

We now construct a graphG = (NC ∪B ∪ s,E), where
B is the set of test resources,NC is the set of tests ands is
a source vertex. Each test vertexi has a terminal which has
an associated demandbi of a commodity (the commodities
are test bits). The edge setE is defined as follows:

We define a parameterCmax to be the measure of the
total number of test bits that will be transported across the

slowest test resource (or generated at a BIST engine). For
each testti ∈ NC which can be executed with test resource
wj we add an edge between vertexi andj. The capacity of
this edgeeij is∞. We add an edgeesj betweens and each
test resourcej of capacityCmax for TAMs. The quantity
Cmax is an estimate of the expected schedule makespan and
is computed in number of bits to be transported for all the
core tests. We then compute a maximum-flow of this graph;
the flow can be computed in timeO(BNC

2 log NC).
An illustrative example is shown in Fig. 3. If there is a

flow in G such that all demands are satisfied without vio-
lating the edge capacities, then the number of bits flowing
across the slowest TAM (or generated at a BIST) is at most
Cmax. By dividing Cmax by the clock frequencyα, we will
get a schedule of makespan at mostCmax

α time units. Once
we have the flow forG, the test schedule can be calculated
by noting that the path the commodityi takes froms to ti is
exactly the resource mapping we need. Re-ordering of tests
per test resource would not change the schedule, and we
can calculate the starting time for each test per test resource
locally.
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Figure 4. Converting flow to schedule

The general outline of the algorithm is as follows; the
biggest core is scheduled on the widest TAM; if there is
a residual capacityon that TAM then the next core is also
scheduled on the same TAM. Residual capacity is initial-
ized as the estimate of the schedule makespan. As cores are
assigned to TAMs the residual capacity is reduced. Assume
that corei is being considered for assignment on TAMj,
but the residual capacity of TAMj does not satisfy the de-
mand ofbi bits, then apartial assignment is done so that
corei is assigned TAMj and TAM j + 1. If TAM j + 1
does not exist, then corei is assigned TAMj till the time
the residual capacity is met, and then reconfigured to exe-
cute on allW total top level TAM bits. The flow which is
returned from the above method might have test bits of core
i being transported on TAMsw1 and w2. Also TAM w2

might be serving another core also. This implies that corei
needs reconfiguration. In Figure 4(a) the resultant flow for



a simple SoC with two TAMs is shown. The corresponding
schedule is shown in Figure 4(b). It should be noted that at
most onlyB cores can then have reconfiguration, whereB
is the number of TAMs.

6 Experimental Results

We have implemented the network flow based schedul-
ing algorithm presented in this paper (termed NFRECON).
The algorithms were implemented using C++ language, and
the benchmarks were executed on an Intel Pentium Celeron
1.2GHz machine with 768MB RAM running Linux. We
present the results of our experiments on the ITC’02 SoC
Benchmark Suite [23] in Table 1. The names of the SoCs
are a measure of their test complexity. SOC d695 is an
academic SoC from Duke University consisting of ISCAS
benchmark circuits. The other benchmark SoCs are indus-
trial ICs from Philips. SOC p22810 contains 6 memory
cores and 22 scan-testable logic cores. SOC p34392 con-
tains 15 memory cores and 4 scantestable logic cores. SOC
p93791 contains 18 memory cores and 14 scan-testable
cores.

The test planner software we have written accepts SoC
data in the ITC’02 benchmark format, and proceeds to cre-
ate optimized TAM architecture for a user specified top
level TAM width. Then it uses this architecture to schedule
each of the core test, and reports the makespan (the schedule
time) in clock cycles. The software also prints useful diag-
nostic information and graphical plots. A number of exper-
iments for varyingW were conducted, and the results are
shown below. All schedules from NFRECONwere obtained
within 1 second of runtime. For comparison, we have also
given alongside the results given by Iyengaret. al. in [10].
It should be noted that the method of [10] is based on ILP
(which is not scalable). When compared to the approximate
methods presented by the same authors in [11], our archi-
tecture+ scheduling algorithms outperforms it as seen from
the next column. We compare the schedules with rectangle
packing based methods as proposed by Iyengar et. al [12]
in the third column. For the comparison with test-rail based
methods we have compared our results against those pre-
sented by Goel and Marinissen in [5]. One significant im-
provement of our method is that the width of the top level
TAM can be less than the number of cores, this is a limi-
tation of [5] and hence some of the values for smallW are
omitted in the experiment. For an empirical comparison we
also show a lower bound for each schedule; the lower bound
was computed using the relation:

FT (C,W ) ≥

⌈∑C
i=1 FT (i, 1)

W

⌉
The columns labelled∆T show the relative comparison in
percentage from the computed lower bound for each of the

methods;∆T = T−LB
LB ∗ 100. In the last column we

present the schedule makespan obtained using our proposed
method using network flow and reconfigurable wrappers
(NFRECON).

7 Conclusion

In this paper we have described a method of schedul-
ing core tests for SoCs using techniques from malleable job
scheduling, network flow and reconfigurable wrapper de-
sign. We have presented a polynomial time algorithm which
works very well in practice as demonstrated by our experi-
ments on the ITC’02 benchmarks. Further work needs to be
performed in integrating precedence, power and test con-
flict constraints into our formulation, and these are future
directions of research for us.
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