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Abstract 

 
This paper addresses a low-cost and real-time solution 

for the implementation of super-resolution (SR) 
algorithms over SOC (System-On-Chip) platforms in 
order to achieve high-quality image improvements. Low-
cost constraints are accomplished in the sense that SR is 
performed without developing a specific hardware, but 
re-using a video encoder IP block. This encoder can be 
used either in compression mode or in SR mode. This 
video encoder together with the new SR features 
constitutes an IP block inside Philips Research, upon 
which several SOC platforms are being developed. 
Furthermore, this work can be easily adapted to other 
video encoder platforms. 
 
1. Introduction 
 

The straightforward way to increase the resolution of 
an image is to use higher resolution sensors, at the 
expense of higher cost. This however results in a decrease 
of the size of the active pixel area where the integration of 
light is performed. As lower amounts of light reach the 
sensor it will be less sensitive to shot noise. It has been 
estimated that the minimum photo-sensor size is around 
50µm2 [1], a limit that has already been reached by the 
CCD technology. One solution to this problem is to 
increase the resolution using algorithms such as the super-
resolution (SR) algorithm, wherein high-resolution images 
are obtained with low-resolution sensors at low cost. SR is 
also a smart way to perform image zooming without using 
mechanical parts to move the lenses. 
 
1.1. SR algorithms and previous work 

 
From the first frequency domain based SR algorithm, 

initially proposed by Huang and Tsay in 1984 [2], several 
SR algorithms have been proposed with diverse results. In 
order to obtain significant improvements in the resulting 
SR image, some amount of aliasing in the input low-
resolution images must be provided. Although unlike [3] 
this approach is not performed in the frequency domain, 
we maintain the general scheme of registration and 
restoration. This work is more related to [4] in the sense 
that it is performed in the spatial domain and starts from a 

set of low-resolution displaced images, but without a blur 
correction and without the need of a precise knowledge of 
the motion among images. As in [5] we take into account 
sub-pixel displacements and like [6] we use the approach 
of multiple image restoration. Nevertheless, all the 
previous methods assume global and uniform translation 
among the different pictures, whereas this work makes no 
assumption about the motion among scenes.  

The SR algorithm presented in this paper is the non-
iterative version of the algorithm presented in [7] in order 
to enable real-time implementation. The new algorithm is 
able to combine in a single step a new incoming frame, 
keeping all the information from the previous frames. As 
we allow new frames to be combined (provided that some 
temporal correlation among them exists) the quality of the 
resulting frame will be considerably increased, whenever 
the incoming frames are shifted with respect to the 
reference one, in the sense that they incorporate some new 
information. Nevertheless, we have an obvious trade-off 
between the quality and the time spent obtaining the 
super-resolved frame: the higher the number of frames 
combined, the longer the time to deliver a new SR frame.  
 
1.2. The hybrid video encoder platform 
 

We begin with the hardware/software platform that 
exists in a hybrid video encoder. We seek to modify the 
existing platform as less as possible (low cost constraints) 
in order to map the SR algorithm. Although we have used 
an existing hybrid video encoder developed by Philips 
[8,9] the SR algorithm can probably easily fit in any other 
video encoder.  

The architecture used in Philips is shown in Figure 1. 
The software tasks are executed on an ARM processor 
and the hardware tasks are executed on the VLIW 
processors (namely, pixel processor, motion estimator 
processor, texture processor and stream processor). The 
pixel processor (PP) communicates with the pixel-domain 
(image sensor or display) and performs line to stripe (16 
lines) conversion. The motion estimator processor (MEP) 
evaluates a set of candidate vectors received from 
software and selects the best vector for full, half and 
quarter pixel refinements. The output of the MEP consists 
of motion vectors, sum-of-absolute-difference (SAD) 
values, and intra metrics. This information is used in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7695-1881-8/03 $17.00  2003 IEEE 



software (running on ARM) to determine the encoding 
approach for the current macro-block (MB). 

The texture processor (TP) performs the encoding of 
MBs and stores the decoded MBs in the loop memory. 
The output of the TP consists of VLE (variable length 
encode) codes for the DCT coefficients of the current MB. 
The stream processor (SP) packs the VLE codes for 
coefficients and VLE codes for headers generated by 
software on the ARM.  
 
2. Algorithm description 
 

Although the iterative version described in [7] offers 
very good image quality mapped onto a hybrid video 
encoder, the challenge is to create a new type of algorithm 
that, using the same resources, could operate in a single 
step, i.e. a non iterative algorithm. The main idea is based 
on the following considerations: 
• Every new image adds new information that must be 

combined into a new high-resolution grid. 
• It is impossible to know ‘a priori’ (for the super-

resolution algorithm scope) the position of the new 
data and whether or not they contribute new 
information  
Based on the previous considerations, the following 

algorithm has been developed: 
1. Initially, the first low-resolution image is taken and its 

pixels are placed in a high-resolution grid, leaving the 
uncovered pixels to a zero value. From now on, this 
process will be denominated ‘up-sample holes’. As 
the size-increase is a factor of two in both directions, 
the location and relationship among the pixels of high 
and low resolution is as seen in Figure 2.  

2. Next, the contributions of the pixels are generated. 
The contributions are the weights assigned to each 
pixel to denote the amount of information provided to 
that pixel position. As we are initially combining 
several low-resolution images in a grid 2-by-2 times 
bigger, an initial contribution of 4, for ½ pixel 
precision in low-resolution will be enough. If the 
resolution of the motion estimator was increased or 
the motion-estimation was performed in high-
resolution, higher values would be necessary. These 
contributions are expressed over the high-resolution 
grid. Thereby, the contributions of the image in 
Figure 2 are shown in Figure 5 (b)-left, pointing out 
that the original pixels have maximum contribution 
(four) and the rest have zero value. 

3. Now, the relative displacements between the next 
input image and the first image, that will be the 
reference, are estimated. These displacements are 
stored in memory, as they will be used later on. 

4. Steps 1 and 2 are applied to the new input image, i.e. 
it is adapted to the high-resolution grid, leaving the 

missing pixels to zero and generating the initial 
contributions.  

5. In this step, both the new image over the high-
resolution grid and its associated contributions are 
motion compensated toward the reference image.  
The real contributions of the new pixels to the high-
resolution reference image will be reflected in the 
compensated contributions. 

6. Now, the linear summation of the initial image and 
contributions with the compensated image and 
contributions is performed. This summation assures 
further noise reduction in the resulting image.   

7. Steps 3 to 6 are applied to the next incoming images. 
8. Once step 7 is finished, we will have a high-

resolution image with the summation of all the 
compensated pixels and a memory with the 
summation of all the compensated contributions. 
Then the high-resolution image is adjusted depending 
on the contributions, as it is indicated in equation (1), 
where N is the number of frames to be combined. 
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9. After the adjustment, it is possible that some pixel 
positions remain empty, i.e., from the input image set 
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Figure 1. Architecture for the multi-standard 
video/image codec developed in Philips Research. 

High-resolutionLow-resolution  
Figure 2. Mapping of the low-resolution pixels in the 
high-resolution grid, leaving holes for the missing 
pixels. 



certain positions do not add new information. This 
case will be denoted with a zero, both in the high-
resolution image position and in the contribution and 
the only solution is to interpolate the zeroes with the 
surrounding information. However, we cannot 
conclude that a zero in the image implies that the 
value must be interpolated, because a zero is a 
possible and valid value in an image. A pixel will be 
interpolated only if its final contribution is zero. 

Assigning to the accumulative memory HR_A a length 
of 12 bits, 16 frames can be safely stored in it. In the 
worst case, we would accumulate a value of 255, which 
multiplied by 16 gives 4080, that fits in 12 bits.  Figure 3 
shows this algorithm in pseudo-code, using the memories 
and the resources of the Philips video hybrid encoder. 

With respect to the iterative version of [7], not only the 
iterative behaviour has been removed, but also one of the 
motion estimations has been eliminated. As the motion 
estimation is performed in low-resolution and the motion 
compensation in high-resolution, it is necessary to 
multiply by two all the motion vectors to scale them 
properly.  
 
3. Implementation on the video encoder 
 

In order to fit the SRA in the video encoder originally 
developed by Philips Research, it was necessary to 
perform several changes in the architecture, namely in the 
motion compensator and in the chrominance treatment, 
thereby creating a more flexible SOC platform.  

3.1 Adjustments in the motion compensator 
 

The motion compensator implemented in the existing 
video encoder was designed to avoid visual distortions in 
the resulting images when decompressing them, and in 
that sense, when an image is shifted out of the physical 
boundaries, it fills the empty zone by replicating the 
borders. As the motion vectors are usually small 
compared with the image size and due to the lower 
attention of the human eye to the borders compared with 
the centre of the images, this effect is negligible. But, 
when we want to obtain super-resolution improvements, 
the artificial introduction of non-existing data results in 
quality degradation in its borders. The solution was to 
modify the motion compensator to fill the empty values 
with zeroes, so that the SRA would have an opportunity to 
fill the holes with valid values coming from other images. 
The algorithm does not expect the spontaneous generation 
of “new” data, which have not been taken into account, 
neither in the previous stages of the algorithm or in the 
contributions. 
 
3.2 Adjustments in the chrominances 
 

Due to the different sampling scheme used for the 
luminance and the chrominances, it is necessary to 
perform some modifications in the proposed algorithm to 
obtain super-resolution improvements also in the 
chrominance images. 

First of all, for the chrominance pixels, the way to take 
the samples to the high-resolution grid or up-sample, 
cannot be the same as with the luminance. This fact is 
reflected in Figure 4, where it can be seen how every 
chrominance pixel affects four luminance pixels, and 
therefore, when the chrominance high-resolution grid is 
generated, every pixel must be replicated four times, in 
order to keep the chromatic coherence, as shown in 
Figure 5 (a).  

For the same reason, the initial contributions cannot be 
same as luminance. As there is no zero-padding, all the 
chrominance pixels must initially have the same 
contribution weights. Figure 5 (b) shows the initial 
contributions for the luminance and the chrominances. 

It must be noticed that the output image will be four 
times larger (2× in horizontal and vertical direction) than 
the input image, so memory requirements increase. 

The motion estimation and motion compensation tasks 
are performed using the motion estimator and the motion 
compensator blocks, but have been modified to work in 
quarter pixel precision. The arithmetic operations such as 
additions, subtractions and arithmetic shifts are 
implemented on the texture processor. The overall control 
is done in software, on the ARM. 

nr_frames = scale*scale, M’= scale*M, N’= scale*N 
HR_B, HR_S, HR_T, HR_T2, HR_Cont and HR_S2 are all of 8 
bits and size [M’][N’]. 
HR_A is 12 bits and size [M’][N’].   
LR_I[M][N] for the motion estimation 
Store the first frame in LR_I_0[M][N] and the remainders in 
LR_I[M][N] 
HR_A.lum     = Upsample_Holes(LR_I_0.lum)  
HR_A.chrom = Upsample_Neighbours(LR_I_0.chrom) 
HR_Cont       = Create_image_contributions  
FOR fr = 1 .. nr_frames-1 
     MV = Calc_Motion_Estimation ( LR_I, LR_I_0) 
     MV = 2 .* MV 
     HR_S.lum     = Upsample_Holes(LR_I.lum) 
     HR_S.chrom = Upsample_ Neighbours(LR_I.chrom) 
     HR_S2 = Create_image_contributions 
     HR_T   = Motion_Compensation(HR_S, MV) 
     HR_T2 = Motion_Compensation(HR_S2, MV) 
     HR_A      = HR_A + HR_T  
     HR_Cont = HR_Cont + HR_T2 
END FOR 
HR_A = 4*HR_A /HR_Cont 
If  (HR_Cont(i,j)==0) THEN HR_B = Interpolate(HR_A(i,j)) 
ELSE   HR_B = HR_A   
Clip(HR_B, 0, 255) // result image in HR_B 

Figure 3. Kernel pseudo-code of the non-iterative 
versions of the super-resolution algorithm. 



4. Results  
 
In order to demonstrate the quality increase in the SR 
image when combining several low resolution images, we 
have designed the following experiment: A set of 12 
displacement vectors have been generated, wherein the 
first is the zero vector and the remaining eleven are 
random vectors. The first displacement vector is (0,0) to 
assure that the resulting image will remain with zero 
displacement with respect to the reference, enabling 
reliable quality measurements. From this vector set, the 
first three vectors are applied to the first frame of the 
KRANT sequence and these frames are used to compose a 
super-resolved image (frame 0 in the Figure 8-a.1) based 
on three low-resolution frames. After that, a new vector is 
added to the previous set and these four vectors are 
applied again to the frame 0 of KRANT to generate a new 
super-resolved image based on four input images, and so 

on until a super-resolved image based on 12 low-
resolution frames have been generated. In total, a number 
of 3+4+5+6+7+8+9+10+11+12=75 low-resolution frames 
have been generated to be used as inputs to the SRA. 
These 75 input frames will generate 10 output frames, 
whose qualities are shown in Figure 6. 

As it was expected, as the number of input frames to be 
combined increases, the PSNR increases until it reaches 
38.45 dB when combining 12 low-resolution input frames. 
Empirically it can be verified that after combining 6 input 
frames, i.e. when the 34.57 dB is reached, the human eye 
hardly perceives enhancements in the quality of the image. 
In addition, it can be seen that the greater increment in the 
quality (greater PSNR slope) takes place in the first four 
output frames. All the established facts lead us to the 
conclusion that a system can be limited to combine 5 or 6 
input frames, depending on the available resources and the 
desired output quality. Comparing these results with the 
iterative algorithm in [7] we appreciate that for the best 
case we reached 34.37 dB after 42 iterations, nearly 4 dB 
below the combination of 12 low-resolution frames, 
performing only 11 motions estimations instead of 42 
motions estimations. Combining only 6 frames we reach a 
similar quality (34.57 dB) than using 42 iterations.  

In Figure 7 (showing results for combining 12 low-
resolution frames) it can be noticed that the image error in 
the spatial domain (a.2) is highly uniform, which indicates 
a low error with respect to the reference image. The bi-
dimensional Fourier transform in magnitude shows an 
almost complete removal of the aliasing, exhibiting a 
minimal image error in the high-power spectral bands 
(b.2). The minimal spectral error in phase (c.2) also 
follows the same trend. 

In Figure 8 (showing results for combining 3 low-
resolution frames) higher amount of aliasing and 
consequently higher error can be seen. 
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Figure 5. Mapping of the chrominance C to the 
high-resolution grid by means of replicating the 
pixels and its relationship with the luminance Y (a). 
Initial contributions for the luminance and 
chrominance images (b). 
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Figure 4. Relationship between the chrominance 
and the luminance for sampling format YCbCr 4:2:0. 
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Figure 6. PSNR of the Krant sequence with 10 
incremental output frames. 



  The chrominance PSNR (Figure 9) are always above 
the interpolation levels, although they do not follow as 
good as the luminance (Figure 6).  

Figure 10 shows in detail the upper-right corner of the 
image KRANT, before (a) and after (b) the super-resolution 
process, together with the bilinear interpolated image (c). 
The quality improvement of the image is apparent, 
wherein the letters above the newspaper headlines are 

easier to read unlike the enlarged original input image and 
the interpolated image. 
 
5. Conclusions 
 

We presented, in this paper, an incremental SR 
algorithm that can be implemented on a video encoder 

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)  
Figure 8. Super-resolved frame after combining 3 low-res frames in the spatial domain (a), in the frequency 
domain in magnitude (b) and in phase (c), together with their associated errors (2). 

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)  
Figure 7. Super-resolved frame after combining 12 low-res frames in the spatial domain (a), in the frequency 
domain in magnitude (b) and in phase (c), together with their associated errors (2). 



with minimal changes. The experiments carried out 
exhibit a clear quality increase of the super-resolved 
image as the number of low-resolution frames to be 
combined also increases. The introduction of the 
contribution concept allows the algorithm to be relatively 
independent from the problems of the borders and, at the 
same time, proposes adaptive weights for every pixel, 
depending on the motion and therefore on the new 
information.  

The SR algorithm works both in the luminance and in 
the chrominances, although the major improvements with 
respect to the interpolation levels are in the luminance 
component. This is mainly due to the lower entropy of the 
chrominances in the YCbCr 4:2:0 sample format, which 
does not allow a so accurate edge reconstruction as in the 
luminance. In other words, the chrominances have 
insufficient high frequency information to reconstruct a 
high-resolution color image with a quality much above the 
interpolated levels.   

This algorithm presents an interesting approach to 
implement SR when a video-encoder architecture is 
available, as the cost in this case would be negligible. If 
the number of frames to be combined is limited to three or 
four, it is easy to achieve real-time constraints. 

Nevertheless, the memory requirements are still high and 
the application to a video sequence must be further 
refined.    
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Figure 10. Enlarged detail of the original image (a) and the super-resolution image (b) and the bilinear 
interpolation of the input image (c) for the KRANT sequence of 10 output frames. 
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Figure 9. Red chrominance of the PSNR of the 
super-resolved and the interpolated images for the 
Krant sequence with 10 incremental output frames 
with and without borders. 
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