
Low-Cost and Real-Time Super-Resolution over a Video Encoder IP

Gustavo M. Callicó, Antonio Núñez Rafael Peset Llopis1, Ramanathan Sethuraman2
Applied Microelectronics Research Institute 1Philips Consumers Electronics

Department of Elect. and Automatic Engineering 2Philips Research Laboratories Eindhoven,
ULPGC, Canary Islands, Spain Royal Philips Eindhoven, The Netherlands
gustavo,nunez@iuma.ulpgc.es rafael.peset.llopis, ramanathan.sethuraman@philips.com

Abstract

This paper addresses a low-cost and real-time solution

for the implementation of super-resolution (SR)
algorithms over SOC (System-On-Chip) platforms in
order to achieve high-quality image improvements. Low-
cost constraints are accomplished in the sense that SR is
performed without developing a specific hardware, but
re-using a video encoder IP block. This encoder can be
used either in compression mode or in SR mode. This
video encoder together with the new SR features
constitutes an IP block inside Philips Research, upon
which several SOC platforms are being developed.
Furthermore, this work can be easily adapted to other
video encoder platforms.

1. Introduction

The straightforward way to increase the resolution of
an image is to use higher resolution sensors, at the
expense of higher cost. This however results in a decrease
of the size of the active pixel area where the integration of
light is performed. As lower amounts of light reach the
sensor it will be less sensitive to shot noise. It has been
estimated that the minimum photo-sensor size is around
50µm2 [1], a limit that has already been reached by the
CCD technology. One solution to this problem is to
increase the resolution using algorithms such as the super-
resolution (SR) algorithm, wherein high-resolution images
are obtained with low-resolution sensors at low cost. SR is
also a smart way to perform image zooming without using
mechanical parts to move the lenses.

1.1. SR algorithms and previous work

From the first frequency domain based SR algorithm,

initially proposed by Huang and Tsay in 1984 [2], several
SR algorithms have been proposed with diverse results. In
order to obtain significant improvements in the resulting
SR image, some amount of aliasing in the input low-
resolution images must be provided. Although unlike [3]
this approach is not performed in the frequency domain,
we maintain the general scheme of registration and
restoration. This work is more related to [4] in the sense
that it is performed in the spatial domain and starts from a

set of low-resolution displaced images, but without a blur
correction and without the need of a precise knowledge of
the motion among images. As in [5] we take into account
sub-pixel displacements and like [6] we use the approach
of multiple image restoration. Nevertheless, all the
previous methods assume global and uniform translation
among the different pictures, whereas this work makes no
assumption about the motion among scenes.

The SR algorithm presented in this paper is the non-
iterative version of the algorithm presented in [7] in order
to enable real-time implementation. The new algorithm is
able to combine in a single step a new incoming frame,
keeping all the information from the previous frames. As
we allow new frames to be combined (provided that some
temporal correlation among them exists) the quality of the
resulting frame will be considerably increased, whenever
the incoming frames are shifted with respect to the
reference one, in the sense that they incorporate some new
information. Nevertheless, we have an obvious trade-off
between the quality and the time spent obtaining the
super-resolved frame: the higher the number of frames
combined, the longer the time to deliver a new SR frame.

1.2. The hybrid video encoder platform

We begin with the hardware/software platform that
exists in a hybrid video encoder. We seek to modify the
existing platform as less as possible (low cost constraints)
in order to map the SR algorithm. Although we have used
an existing hybrid video encoder developed by Philips
[8,9] the SR algorithm can probably easily fit in any other
video encoder.

The architecture used in Philips is shown in Figure 1.
The software tasks are executed on an ARM processor
and the hardware tasks are executed on the VLIW
processors (namely, pixel processor, motion estimator
processor, texture processor and stream processor). The
pixel processor (PP) communicates with the pixel-domain
(image sensor or display) and performs line to stripe (16
lines) conversion. The motion estimator processor (MEP)
evaluates a set of candidate vectors received from
software and selects the best vector for full, half and
quarter pixel refinements. The output of the MEP consists
of motion vectors, sum-of-absolute-difference (SAD)
values, and intra metrics. This information is used in

0-7695-1881-8/03 $17.00  2003 IEEE

software (running on ARM) to determine the encoding
approach for the current macro-block (MB).

The texture processor (TP) performs the encoding of
MBs and stores the decoded MBs in the loop memory.
The output of the TP consists of VLE (variable length
encode) codes for the DCT coefficients of the current MB.
The stream processor (SP) packs the VLE codes for
coefficients and VLE codes for headers generated by
software on the ARM.

2. Algorithm description

Although the iterative version described in [7] offers
very good image quality mapped onto a hybrid video
encoder, the challenge is to create a new type of algorithm
that, using the same resources, could operate in a single
step, i.e. a non iterative algorithm. The main idea is based
on the following considerations:
• Every new image adds new information that must be

combined into a new high-resolution grid.
• It is impossible to know ‘a priori’ (for the super-

resolution algorithm scope) the position of the new
data and whether or not they contribute new
information
Based on the previous considerations, the following

algorithm has been developed:
1. Initially, the first low-resolution image is taken and its

pixels are placed in a high-resolution grid, leaving the
uncovered pixels to a zero value. From now on, this
process will be denominated ‘up-sample holes’. As
the size-increase is a factor of two in both directions,
the location and relationship among the pixels of high
and low resolution is as seen in Figure 2.

2. Next, the contributions of the pixels are generated.
The contributions are the weights assigned to each
pixel to denote the amount of information provided to
that pixel position. As we are initially combining
several low-resolution images in a grid 2-by-2 times
bigger, an initial contribution of 4, for ½ pixel
precision in low-resolution will be enough. If the
resolution of the motion estimator was increased or
the motion-estimation was performed in high-
resolution, higher values would be necessary. These
contributions are expressed over the high-resolution
grid. Thereby, the contributions of the image in
Figure 2 are shown in Figure 5 (b)-left, pointing out
that the original pixels have maximum contribution
(four) and the rest have zero value.

3. Now, the relative displacements between the next
input image and the first image, that will be the
reference, are estimated. These displacements are
stored in memory, as they will be used later on.

4. Steps 1 and 2 are applied to the new input image, i.e.
it is adapted to the high-resolution grid, leaving the

missing pixels to zero and generating the initial
contributions.

5. In this step, both the new image over the high-
resolution grid and its associated contributions are
motion compensated toward the reference image.
The real contributions of the new pixels to the high-
resolution reference image will be reflected in the
compensated contributions.

6. Now, the linear summation of the initial image and
contributions with the compensated image and
contributions is performed. This summation assures
further noise reduction in the resulting image.

7. Steps 3 to 6 are applied to the next incoming images.
8. Once step 7 is finished, we will have a high-

resolution image with the summation of all the
compensated pixels and a memory with the
summation of all the compensated contributions.
Then the high-resolution image is adjusted depending
on the contributions, as it is indicated in equation (1),
where N is the number of frames to be combined.

[]()()

[]()∑

∑

=

=⋅= N

fr

N

fr

fronscontributiCompesateMotion

frILRHolesUpsampleCompesateMotion
NjiSR

1

1

_

),(

(1)

9. After the adjustment, it is possible that some pixel
positions remain empty, i.e., from the input image set

BCU

ME
Processor

ME
Processor

Texture
Processor
Texture
Processor

Stream
Processor

Stream
Processor

Pixel
Processor

Pixel
Processor

Pixel
Processor

ARM
Memory

ARM

BCU

Image
Memory
Image

Memory

ctrl-bus

data-bus

BridgeBridge

Figure 1. Architecture for the multi-standard
video/image codec developed in Philips Research.

High-resolutionLow-resolution
Figure 2. Mapping of the low-resolution pixels in the
high-resolution grid, leaving holes for the missing
pixels.

certain positions do not add new information. This
case will be denoted with a zero, both in the high-
resolution image position and in the contribution and
the only solution is to interpolate the zeroes with the
surrounding information. However, we cannot
conclude that a zero in the image implies that the
value must be interpolated, because a zero is a
possible and valid value in an image. A pixel will be
interpolated only if its final contribution is zero.

Assigning to the accumulative memory HR_A a length
of 12 bits, 16 frames can be safely stored in it. In the
worst case, we would accumulate a value of 255, which
multiplied by 16 gives 4080, that fits in 12 bits. Figure 3
shows this algorithm in pseudo-code, using the memories
and the resources of the Philips video hybrid encoder.

With respect to the iterative version of [7], not only the
iterative behaviour has been removed, but also one of the
motion estimations has been eliminated. As the motion
estimation is performed in low-resolution and the motion
compensation in high-resolution, it is necessary to
multiply by two all the motion vectors to scale them
properly.

3. Implementation on the video encoder

In order to fit the SRA in the video encoder originally
developed by Philips Research, it was necessary to
perform several changes in the architecture, namely in the
motion compensator and in the chrominance treatment,
thereby creating a more flexible SOC platform.

3.1 Adjustments in the motion compensator

The motion compensator implemented in the existing
video encoder was designed to avoid visual distortions in
the resulting images when decompressing them, and in
that sense, when an image is shifted out of the physical
boundaries, it fills the empty zone by replicating the
borders. As the motion vectors are usually small
compared with the image size and due to the lower
attention of the human eye to the borders compared with
the centre of the images, this effect is negligible. But,
when we want to obtain super-resolution improvements,
the artificial introduction of non-existing data results in
quality degradation in its borders. The solution was to
modify the motion compensator to fill the empty values
with zeroes, so that the SRA would have an opportunity to
fill the holes with valid values coming from other images.
The algorithm does not expect the spontaneous generation
of “new” data, which have not been taken into account,
neither in the previous stages of the algorithm or in the
contributions.

3.2 Adjustments in the chrominances

Due to the different sampling scheme used for the
luminance and the chrominances, it is necessary to
perform some modifications in the proposed algorithm to
obtain super-resolution improvements also in the
chrominance images.

First of all, for the chrominance pixels, the way to take
the samples to the high-resolution grid or up-sample,
cannot be the same as with the luminance. This fact is
reflected in Figure 4, where it can be seen how every
chrominance pixel affects four luminance pixels, and
therefore, when the chrominance high-resolution grid is
generated, every pixel must be replicated four times, in
order to keep the chromatic coherence, as shown in
Figure 5 (a).

For the same reason, the initial contributions cannot be
same as luminance. As there is no zero-padding, all the
chrominance pixels must initially have the same
contribution weights. Figure 5 (b) shows the initial
contributions for the luminance and the chrominances.

It must be noticed that the output image will be four
times larger (2× in horizontal and vertical direction) than
the input image, so memory requirements increase.

The motion estimation and motion compensation tasks
are performed using the motion estimator and the motion
compensator blocks, but have been modified to work in
quarter pixel precision. The arithmetic operations such as
additions, subtractions and arithmetic shifts are
implemented on the texture processor. The overall control
is done in software, on the ARM.

nr_frames = scale*scale, M’= scale*M, N’= scale*N
HR_B, HR_S, HR_T, HR_T2, HR_Cont and HR_S2 are all of 8
bits and size [M’][N’].
HR_A is 12 bits and size [M’][N’].
LR_I[M][N] for the motion estimation
Store the first frame in LR_I_0[M][N] and the remainders in
LR_I[M][N]
HR_A.lum = Upsample_Holes(LR_I_0.lum)
HR_A.chrom = Upsample_Neighbours(LR_I_0.chrom)
HR_Cont = Create_image_contributions
FOR fr = 1 .. nr_frames-1
 MV = Calc_Motion_Estimation (LR_I, LR_I_0)
 MV = 2 .* MV
 HR_S.lum = Upsample_Holes(LR_I.lum)
 HR_S.chrom = Upsample_ Neighbours(LR_I.chrom)
 HR_S2 = Create_image_contributions
 HR_T = Motion_Compensation(HR_S, MV)
 HR_T2 = Motion_Compensation(HR_S2, MV)
 HR_A = HR_A + HR_T
 HR_Cont = HR_Cont + HR_T2
END FOR
HR_A = 4*HR_A /HR_Cont
If (HR_Cont(i,j)==0) THEN HR_B = Interpolate(HR_A(i,j))
ELSE HR_B = HR_A
Clip(HR_B, 0, 255) // result image in HR_B

Figure 3. Kernel pseudo-code of the non-iterative
versions of the super-resolution algorithm.

4. Results

In order to demonstrate the quality increase in the SR
image when combining several low resolution images, we
have designed the following experiment: A set of 12
displacement vectors have been generated, wherein the
first is the zero vector and the remaining eleven are
random vectors. The first displacement vector is (0,0) to
assure that the resulting image will remain with zero
displacement with respect to the reference, enabling
reliable quality measurements. From this vector set, the
first three vectors are applied to the first frame of the
KRANT sequence and these frames are used to compose a
super-resolved image (frame 0 in the Figure 8-a.1) based
on three low-resolution frames. After that, a new vector is
added to the previous set and these four vectors are
applied again to the frame 0 of KRANT to generate a new
super-resolved image based on four input images, and so

on until a super-resolved image based on 12 low-
resolution frames have been generated. In total, a number
of 3+4+5+6+7+8+9+10+11+12=75 low-resolution frames
have been generated to be used as inputs to the SRA.
These 75 input frames will generate 10 output frames,
whose qualities are shown in Figure 6.

As it was expected, as the number of input frames to be
combined increases, the PSNR increases until it reaches
38.45 dB when combining 12 low-resolution input frames.
Empirically it can be verified that after combining 6 input
frames, i.e. when the 34.57 dB is reached, the human eye
hardly perceives enhancements in the quality of the image.
In addition, it can be seen that the greater increment in the
quality (greater PSNR slope) takes place in the first four
output frames. All the established facts lead us to the
conclusion that a system can be limited to combine 5 or 6
input frames, depending on the available resources and the
desired output quality. Comparing these results with the
iterative algorithm in [7] we appreciate that for the best
case we reached 34.37 dB after 42 iterations, nearly 4 dB
below the combination of 12 low-resolution frames,
performing only 11 motions estimations instead of 42
motions estimations. Combining only 6 frames we reach a
similar quality (34.57 dB) than using 42 iterations.

In Figure 7 (showing results for combining 12 low-
resolution frames) it can be noticed that the image error in
the spatial domain (a.2) is highly uniform, which indicates
a low error with respect to the reference image. The bi-
dimensional Fourier transform in magnitude shows an
almost complete removal of the aliasing, exhibiting a
minimal image error in the high-power spectral bands
(b.2). The minimal spectral error in phase (c.2) also
follows the same trend.

In Figure 8 (showing results for combining 3 low-
resolution frames) higher amount of aliasing and
consequently higher error can be seen.

Y

C

(a)

4 0
0 0

Luminance
contributions:

Chrominance
contributions:

4 4
4 4

(b)

Figure 5. Mapping of the chrominance C to the
high-resolution grid by means of replicating the
pixels and its relationship with the luminance Y (a).
Initial contributions for the luminance and
chrominance images (b).

Y

C

Figure 4. Relationship between the chrominance
and the luminance for sampling format YCbCr 4:2:0.

PSNR Luminance. Krant 75 input frames. SR vs Interpolation

29.21

32.56

34.57

27.69

38.45

38.08
37.6236.56

35.79

35.82

24

26

28

30

32

34

36

38

3 4 5 6 7 8 9 10 11 12
Combined frames

P
S

N
R

 (
d

B
)

PSNR Luminance Super-Resolution
PSNR Luminance nearest neighbour interpolation
PSNR Luminance bilinear interpolation

24.48

25.18

Figure 6. PSNR of the Krant sequence with 10
incremental output frames.

 The chrominance PSNR (Figure 9) are always above
the interpolation levels, although they do not follow as
good as the luminance (Figure 6).

Figure 10 shows in detail the upper-right corner of the
image KRANT, before (a) and after (b) the super-resolution
process, together with the bilinear interpolated image (c).
The quality improvement of the image is apparent,
wherein the letters above the newspaper headlines are

easier to read unlike the enlarged original input image and
the interpolated image.

5. Conclusions

We presented, in this paper, an incremental SR
algorithm that can be implemented on a video encoder

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)
Figure 8. Super-resolved frame after combining 3 low-res frames in the spatial domain (a), in the frequency
domain in magnitude (b) and in phase (c), together with their associated errors (2).

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)
Figure 7. Super-resolved frame after combining 12 low-res frames in the spatial domain (a), in the frequency
domain in magnitude (b) and in phase (c), together with their associated errors (2).

with minimal changes. The experiments carried out
exhibit a clear quality increase of the super-resolved
image as the number of low-resolution frames to be
combined also increases. The introduction of the
contribution concept allows the algorithm to be relatively
independent from the problems of the borders and, at the
same time, proposes adaptive weights for every pixel,
depending on the motion and therefore on the new
information.

The SR algorithm works both in the luminance and in
the chrominances, although the major improvements with
respect to the interpolation levels are in the luminance
component. This is mainly due to the lower entropy of the
chrominances in the YCbCr 4:2:0 sample format, which
does not allow a so accurate edge reconstruction as in the
luminance. In other words, the chrominances have
insufficient high frequency information to reconstruct a
high-resolution color image with a quality much above the
interpolated levels.

This algorithm presents an interesting approach to
implement SR when a video-encoder architecture is
available, as the cost in this case would be negligible. If
the number of frames to be combined is limited to three or
four, it is easy to achieve real-time constraints.

Nevertheless, the memory requirements are still high and
the application to a video sequence must be further
refined.

6. References

[1] T. Komatsu, et al, “Very high resolution imaging
scheme with multiple different-aperture cameras,” Signal
Processing: Image Communication vol. 5, pp. 511-526,
Dec. 1993.
[2] T. S. Huang and R. Y. Tsay, "Multiple Frame Image
Restoration and Registration," Advances In Computer
Vision and Image Processing (Ed. -T. S. Huang), vol. 1,
JAI Press Inc., Greenwich, CT, 1984, pp. 317-339.
[3] H. Ur and D. Gross, “Improved Resolution from Sub-
pixel Shifted Pictures,” CVGIP: Graphical Models and
image Processing, vol. 54, pp. 181-186, March 1992.
 [4] Lucas J. Van Vliet and Cris L. Luengo Hendriks,
“Improving spatial resolution in exchange of temporal
resolution in aliased image sequences,” in proc. of 11th
Scandinavian Conf. On Image Analysis, Kaugerlussauaq,
Greenland, pp. 493-499, 1999.
[5] C. Srinivas, M. D. Srinath, “A Stochastic Model-
Based Approach for Simultaneous Restoration I-Multiple
miss-registered Images,” SPIE, vol. 1360, pp. 1416-1427,
1990.
[6] Marc J. Op De Beeck and Richard P. Kleihorst,
“Super-Resolution of Regions of Interest in a Hybrid
Video Encoder,” Philips conference on DSP, 1999.
[7] Gustavo M. Callicó, et al. “A Low-Cost
Implementation of Super-Resolution based on a Video
Encoder,”IEEE IECON ,Sevilla, Spain, Nov. 2002.
[8] R. Peset Llopis, et al, "A Low-Cost Low-Power H.263
Video Encoder for Mobile Applications,"Second
International Symposium on Mobile Multimedia Systems
& Applications, Delf, The Netherlands, Nov. 2000.
[9] R. Peset Llopis, et al, “HW-SW Codesign and
Verification of a Multi-Standard Video and Image
Codec,” IEEE ISQED, San Jose, California, March 2001,
pp. 393-398.

(a) (b) (c)

Figure 10. Enlarged detail of the original image (a) and the super-resolution image (b) and the bilinear
interpolation of the input image (c) for the KRANT sequence of 10 output frames.

PSNR Cr. Krant 75 input frames. SR vs Interpolation

49.7949.7249.79
50.06

50.21
49.9450.05

49.4049.53

48.90

45

46

47

48

49

50

51

3 4 5 6 7 8 9 10 11 12
Combined frames

P
S

N
R

 (
dB

)

PSNR' Cr w ithout borders SR PSNR' Cr w ithout borders nearest neighbour interpolation

PSNR' Cr w ithout borders bilineal interpolation PSNR Cr w ith borders SR

PSNR Cr w ith borders nearest neighbour interpolation PSNR Cr w ith borders bilinear interpolation

48.08

47.87

45.85

45.69

Figure 9. Red chrominance of the PSNR of the
super-resolved and the interpolated images for the
Krant sequence with 10 incremental output frames
with and without borders.

	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index

