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Abstract

This paper describes the use of integer equations for 

high level modeling digital circuits for application of 
formal verification properties at this level. Most 

formal verification methods use BDDs, as a low level 

representation of a design.  BDD operations require 
separation of data and control parts of a design and 

their implementation requires large CPU time and 
memory.  In our method, a behavioral state machine is 

represented by a list of integer equations, and RT level 

properties are directly applied to this representation.  
This reduces the need for large BDD data structures 

and uses far less memory.  Furthermore, this method 

is applied to circuits without having to separate their 
data and control sections.  Integer equations are 

solved recursively by replacement and simplification 

operations.  For this implementation, we use a 
canonical form of integer equations.  This paper 

compares our results with those of the VIS verification 

tool that is a BDD based program. 

1. Introduction 

As the size and functional complexity of digital 

designs increase, it has become important to verify the 

design at the early stages of design flow [8].  This 

means that the designer requires automated 

verification tools at higher levels of abstraction [9].  

Because of this, formal verification methods such as 

model checking have become important for RT or 

behavioral level verification.  Formal verification tools 

use deductive reasoning techniques borrowed from 

mathematics to compare the logic of the circuit being 

verified directly against the logic expressed in a 

specification or reference design [11].  Formal 

verification tries to verify the design independent of 

input values [2, 4, 6]. 

In theory, any digital system can be modeled as a 

finite state machine (FSM) and there is a well-

developed theory for analyzing such models [10, 12, 

13].  Most methods, such as symbolic model checking, 

use FSMs explicitly or implicitly to model the design 

[1, 3, 14].  On the other hand, most of methods use 

BDDs to represent Boolean functions [5, 7] and there 

are no other suitable representations to do model 

checking effectively.  Because of the low abstraction 

level BDDs, processing time of circuits represented as 

such becomes forbiddingly high for large circuits [7].  

If we can present our model at higher abstraction 

levels, we will be able to verify functionality easier 

than in BDDs. 

Instead of using FSMs, we present a high level 

model based on integer equations that is suitable for 

verifying CTL properties.  The integer equations are 

extracted from the design and are at a higher level of 

abstraction than FSMs.  Therefore we have to define 

some operations at a higher level than they were in 

BDD.

For this work, we use VHDL to describe a design 

and CTL format to describe properties [15, 17].  CTL 

is a temporal logic with wide acceptance as a property 

language.  This is largely due to its balance of 

expressive power and moderate decision procedure 

complexity.  We also consider properties as a general 

form of P => Q, in which the Q part can have 

sequential operators like X or G [16].   

Steps involved are extraction of a Data Flow Graph 

(DFG) of a design, converting the DFG to integer 

equations, Extracting the P part of the implication 

equation, and then proving the property.  Integer 

equations correspond to the next state and output 

signals.  

For evaluation of this work, we have developed a 

Visual C++ program that uses a VHDL front-end.  The 

program uses the CHIRE intermediate format. 

The main advantages of our technique are as 

follows.  First, our technique can be applied to 
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behavioral level and therefore we do not have to

separate datapath and controller when the design

becomes large.  Second, our technique uses a high

level model instead of FSM, so we are able to check 

CTL based properties very efficiently in terms of CPU

time and memory usage, as compared with the BDD 

based approaches.

This paper describes our work in five sections.

Section 2 presents how we extract Data Flow Graph

(DFG) as a model of the design and then in Section 3 

we show how to extract integer equations as a

canonical form. Section 4 presents algorithms to check 

properties in our model. Section 5 gives experimental

results for some examples. Last section presents a 

short conclusion of this work. 

2. DFG Extraction

The first task is the DFG extraction.  We consider a 

design as an array of elements shown in Figure 1.  The 

first three fields are pointers to graphs as shown in

Figure 2. These structures show list of graphs that

model the design.  One of advantages of this model is

its flexibility because it is possible to add other 

operators and statements to this model. A design in

represented in terms of multiplexers, since it more

efficient to extract integer equations from this format.

There is an one to one relation between DFG 

structures and VHDL statements which are not useful 

in our model of the design, will be shown in section 3,

so we have to convert them to other constructions to

do model checking algorithms efficiently.

Target Value Condition Other Flags

Figure 1.  General data structure

NOT

DFG Node

DFG SignalUnaryOperator BinaryOperator Mux FlipFlop

AND OR ADD SUB MUL Equal Less LessEqual

Figure 2.  DFG Node structure 

As an example of our DFG model, consider the

Greatest Common Divisor (GCD) example that is 

described in the following VHDL code.

ARCHITECTURE dataflow OF gcd IS 

signal nxtX, nxtY, X, Y : INTEGER;

signal nxtReset, Reset: std_logic; 

BEGIN

PROCESS (clk)  BEGIN 

   IF (clk='1' AND clk'EVENT) THEN 

      X <= nxtX;  Y <= nxtY;

      Reset <= nxtReset;

   END IF;

END PROCESS;

PROCESS (start, a, b, X, Y, Reset) BEGIN 

   o <= 0; 

   nxtX <= X;  nxtY <= Y;

   nxtReset <= '0'; 

   IF (start = '1') THEN 

      nxtX <= a;  nxtY <= b;

   ELSE

      IF (Reset = '1') THEN 

         nxtX <= a;  nxtY <= b;

         o <= X;

      ELSE

         IF (X = Y) THEN 

            nxtReset <= '1';

         ELSIF (X > Y) THEN 

            nxtX <= X - Y;

         ELSIF (Y > X) THEN 

            nxtY <= Y - X;

         END IF;

      END IF;

   END IF;

END PROCESS;

END dataflow;

Figure 3 shows DFG nodes which are extracted for

the nxtY and Y signals. As illustrated in this figure, the

value field of nxtY was constructed by a multiplexer

based structure. This will be useful in extracting

integer equations.  Also value field of Y shows a flip-

flop node that is constructed by the nxtY signal as 

input.

3. Integer Equations

After DFG extraction, we are ready to translate it to 

integer equations. However, these equations must be

viewed as a canonical form to enable us to handle

arithmetic operations.

In our method, the design to be analyzed is

represented as a polynomial system D = (I, PS, NS, O, 

PF) with a set of inputs I, a set of present states PS =

( v ), a set of next states NS =

( v ), a set of outputs O = ( ),

and a set of polynomial functions which are related to

next state and output functions and are shown in the

following.
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On the other hand, we consider property as a

general form of P => Q. First of all, we specify which

next state or output functions were used in Q part.

After that, we apply P part to those equations as a 

constraint and do replacement and simplification

operations repeatedly.
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Figure 3.  DFG Structure of nxtY and Y

3.1. Extracting Integer Equations 

One advantage of transforming all expressions to

integer equations is that we will not have to have two

solver engines [19].  In this manner basic Boolean

operators such as AND, OR and NOT are converted to

integer as illustrated in the following. Other operators,

like XOR, are converted to these basic operators [18].

T_29  <=  (X == Y)

T_35  <= (Y  <  X)

T_43  <= (X  <  Y)

T_47  <= (Y  –  X)

T_48  <= T_43  *  T_47 +  (1 - T_43)  *  Y 

T_49  <= T_35  *  Y  +  (1 - T_35)  *  T_48

T_52  <= T_29  *  Y  +  (1 - T_29)  *  T_49

T_25  <= Reset  *  b  +  (1 - Reset)  *  T_52

NxtY  <= Start  * b + (1 - Start)  *  T 25

a AND b;  a , b : Boolean  a * b;  a, b : Integer

a OR b;  a, b : Boolean  a + b – a * b;  a, b : Integer

NOT a;  a : Boolean  1 - a;  a : Integer

Notice that we will not convert a bit-vector if it is 

used as a condition because some of its bits may be 

used elsewhere.  However, if a bit-vector is used on

the right hand side of some expressions we convert it

to an integer.

For the GCD example presented by the VHDL code 

and graph of Figure 3, integer equations for the nxtY

signal are shown below.

As mentioned before, multiplexer based structures

make it easy to construct integer equations.  Also these

equations make tracing a behavioral design very

simple from its multiplexer based DFG. 

3.2. Canonical Form

An integer formula can be viewed as a sum of 

products with Add, Sub and Mul nodes.  This view will 

be translated to sum of products with just Add and Mul

nodes later.

More precisely, a general integer formula f is a sum

of products P where each p P consists of Mul nodes. 

At the top level of formula f we have Add and Sub
nodes.  All nodes consist of two terms Left-Child and

Right-Child, on the left hand side and the right hand 

side respectively. 

In order to be able to manipulate integer formulas,

we have to transform them to a canonical form.  For 

this, we first add or subtract same products and then

convert Sub nodes to Add nodes and coefficients are 

shifted to the edges.  For example y + y will be

converted to 2*y. After that, for a default ordering of 

propositions, we order propositions in Mul nodes 

because of comparison.  On the other hand, we

transform Add nodes to a unique form which only

includes another Add node on it’s Left-Child sub term,

and there will be a Mul or Constant node on it’s Right-

Child sub term.  We also order Mul nodes on the

Right-Child of each Add node according to the number

of propositions and order of their propositions.  This 

view is canonical because we consider all products as 

ordered.

4. CTL Property Checking in Design 

We consider property as a general form of P => Q by

the following grammer:

P ::= (P) | P  P | P | P  P | Variable | Integer Value 

Q ::= (Q) | Q  Q | Q | Q  Q | EX(Q) | EG(Q) |

Variable | Integer Value

An overall view of the CTL property checking is

shown in Figure 4.  First, we extract integer equations

from a synthesized design and then, to these equations,

we add the P part of properties the design is being

checked for.  On the other hand, we extract tree

structure of the Q part to specify what verification 

procedures need to be called at each level of the tree. 

We start satisfying a property set from propositions or

sub-formulas to the main formula.

As shown in Figure 4, three procedures,

CheckCombinational, CheckEX, and CheckEG
perform the task of verification this flowchart.
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Figure 4. Flowchart of our work

Figure 5 shows the CheckCombinational procedure 

in the flowchart of Figure 4. When the Q part of a 

property is combinational, i.e. without state operators,

we must convert the Q part to integer equations and

add it to the other equations.  These equations are

solved parametrically and at the end of the procedure,

equations that indicate conditions needed to satisfy the

property will be returned.

Figure 5. Combinational part 

Figure 6 shows the CheckEX procedure in the

flowchart of Figure 4. When the Q part of a property

only uses the next-state operator (X), correctness of the

property is checked in three major steps. These steps

are explained here:

1. Convert all state variables in Q to next state

variables and extract related integer equations.

2. Next state equations in the design replace next 

state variables in the equations.

3. Equations computed in previous step are

simplified.

Figure 6. Next State(X) operator 

At the end of the procedure, equations that show

conditions for satisfying a property will be returned.

Figure 7. All States (G) operator 

Figure 7 illustrates the CheckEG procedure in the

flowchart of Figure 4. When the Q part of a property

only uses all states operator (G) we should compute

the following equation.

QZZEXQZ ii 11 );(

In each iteration we will compute EX( )  in three

major steps as previously described, i.e. current state 

variables to next state variables converting, next state

variables replacing and simplifying. Completion of

the procedure is indicated by .  When this

happens, equations will be returned that indicate

conditions needed to satisfy the property being

verified. The Limitation parameter is number of states

of the design. Important point in this algorithm is that

new equations are computed by the product of Q and 

the computed equations. We can define the product of 

Q and the computed equations because they are both 

in terms of integer equations.

iZ
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5. Experimental Results

We will verify different properties on five examples

including the Traffic Light Control (TLC), Greatest

Common Divisor (GCD), Elevator(EL), 2-Client

Arbiter(2CA) and a Special Counter (SC) presented in

Figure 8. 

Two properties listed below are considered for the

TLC example.

1. start = 0 & yellow_expire = 0 & farm_light =

YELLOW & hwy_light = RED => EX(hwy_light =
GREEN).  This property means that if hwy_light is 

red, farm_light is yellow and the yellow timing has

been expired, then a path exists where hwy_light

will be green at the next state. 

2. start = 0 & farm_light = RED & hwy_light =
GREEN & car_present = 0 => EG(hwy_light = 

GREEN).  This means that if farm_light is red,

hwy_light is green and there is not any car on the

farm road, then a path exists where hwy_light

always stay green. 

We also verify two properties in the GCD example,

as shown below:

1. Reset = 0 & Start = 0 & X = Y => EX(Reset = 1).
This says that if Reset and Start are zero and X

equals to Y then a path exists where Reset will be 1

in the next state. 

2. Reset = 0 & Start = 0 & X = 15 & Y = 5 =>

EX2(X = Y).  This property indicates that if Reset

and Start are zero and X = 2Y then a path exists 

that X will becomes equal to Y after two states. 

000 001 010 011

100101110111

I=1

I=0

Figure 8. A Special counter example

We will verify two properties in the SC example, as

described here:

1. I = 1 & Count = 5 => EX2(Count = 5).  This says 

that that a path exists where Count will be greater

than 3 for all states. 

2. I = 1 & Count = 5 => EX(Count = 4).  This means

that a path exists that Count will become 5 at the

next state.

We also verify two properties in the EL example, as 

shown below:

1. Start = 0 & door = CLOSED => EG(door = 

CLOSED). This property indicates that if Start is 

zero and door is closed then a path exists where 

door always stay closed. Notice that correctness of 

this property depends on movement signal.

2. Start = 0 & door = CLOSED => EG(movement = 

MOVING). This says that if Start is zero and door
is closed then a path exists where the elevator is

infinitely moving. This property is not correct.

We will verify two properties in the 2CA example, as 

described here:

1. Start = 0 & (req1 or req2 = 1) => EG(clin = A).
This means that if Start is zero and client A or

client B has a request then a path exists where the

client A always has token. This property is not

correct.

2. Start = 0 & req1 = 1 => EG(pass_token1 = 0).
This property indicates that if Start is zero and 

client A has a request then a path exists where the

client A never pass token. This property is correct

if client A infinitely has request.

Table 1 compares our results with those of the VIS 

verification tool[20]. VIS tool has been developed by

Berkeley University as a BDD based model checking. 

As shown in the table, we have achieved less memory

usage and CPU time. In TLC example, Property1

consumed 31 second in comparison of 95 second by

VIS on a Pentium III system with 256MB Memory.

Also memory usage in our method is 3.2MB that is

less than 10.1MB used by VIS. Notice that CPU time

in VIS is just related to one part of VIS that calls EX 

or EG functions and is not CPU time of other parts of 

VIS. In order to compute these times, we have added

appropriate VIS functions to VIS source codes to

report execution time of EX or EG function calls.

6. Conclusions 

In order to overcome problems related to the use of 

BDDs, we use a high level of representation instead of

FSMs. As the result, we are able to manipulate

complex designs in much less time and memory than

FSM models using BBDs.  Unlike FSM models, our

representation treats data and control units together

and is not limited to controller circuits.

References

[1] M.C. McFarland, “Formal Verification of Sequential

Hardware”, IEEE Transactions  On Computer- Aided 

Design of Integrated circuits and systems Vol. 12, No.

5, pp. 633, May 1993. 

[2] P. Camurati and P. Prinetto, “Formal Verification of

Hardware Correctness”, IEEE Computer 1988, pp. 8. 

[3] C. Kern and M.R. Greenstreet, “Formal Verification In 

Hardware Design”, ACM Transactions on Design



Circuit TLC GCD SC EL 2CA

Cpu Time Property1 (second) 31 1 0.44 26 19

Cpu Time Property1 in VIS (second) 95 6 1.1 72 58

Cpu Time Property2 (second) 34 1.5 0.35 28 15

Cpu Time Property2 in VIS (second) 142 11 0.9 84 49

Number of DFG Nodes 2495 345 66 184 86

Number of BDD Nodes in VIS 252146 105764 113 20337 692

Memory Usage (MegaByte) 3.2 0.525 0.22 0.31 0.25

Memory Usage in VIS (MegaByte) 10.1 7.5 4.7 5.2 4.8

Table 1. Comparison with VIS  

Automation of Electronic Systems, Vol. 4, No. 2, 

April 1999, pp. 123. 

[4] A. Gupta, S. Malik and P. Ashar, “Toward 

Formalizing a Validation Methodology Using 

Simulation Coverage”, IEEE Design Automation 

Conference 1997, pp. 740. 

[5] J.R. Burch, E.M. Clarke and K.L. McMillan, 

“Sequential Circuit Verification Using Symbolic 

Model Checking”, 27th ACM/IEEE Design 

Automation Conference, paper 3.2. 

[6] R. Eastham and K. Thirunarayan, “Proof Strategies for 

Harware Verification”, IEEE Transactions on 

Computer 1996, pp. 451. 

[7] H. Touati, H. Savoj and B. Lin, “Implicit State 

Enumeration of Finite State Machines Using BDD’s”, 

IEEE Transactions on Computer 1990, pp. 130. 

[8] R.P. Kurshan, “Formal Verification In a Commercial 

Setting”, Design Automation Conference 1997, p.p 

258.

[9] S. Devadas, H.T. Ma and A.R. Newton, “On The 

Verification of sequential machines at differing levels 

of abstraction”, 24th ACM/IEEE Design Automation 

Conference 1987, pp. 271.

[10] G. Cabodi, P. Camurati and  F. Corno“Sequential 

Circuit Diagnosis based on Formal Verification 

Techniques”, International Test Conference 1992, pp. 

187.

[11] M. Yoeli, Formal Verification of Hardware Design, 

IEEE Computer Society Press, Los Alamos, NM, 

1990.

[12] K. McMillan, Symbolic Model Checking, Kluwer 

Academic Publishers, Boston, 1993.

[13] J. Burch, E. Clarke, K. McMillan, and D. Dill, 

"Symbolic Model Checking: 1020 States and Beyond," 

Proceedings of the Fifth Annual IEEE Symposium on 

Logic in Computer Science, June 1990, pp. 428-439.

[14] J. Burch, E. Clarke, D. Long, K. McMillan, and D. 

Dill, "Symbolic Model Checking for Sequential 

Circuit Verification," IEEE Trans. Computer Aided 

Design 13, No. 4, 401-424 (April 1994).

[15] E. Clarke and E. Emerson, "Design and Synthesis of 

Synchronization Skeletons using Branching Time 

Temporal Logic," Lecture Notes in Computer Science 

31, 52-71 (1981).

[16] I. Beer, S. Ben-David, C. Eisner, and A. Landver, 

"RuleBase: An Industry-Oriented Formal Verification 

Tool," Proceedings of the 33rd Design Automation 

Conference, Las Vegas, 1996, pp. 655-660.

[17] E. Clarke, R. Enders, and T. Filkorn, "Exploiting 

Symmetry in Temporal Logic Model Checking," 

Formal Methods in System Design 9, 77-104 (1996).  

[18] R. Drechsler, "Formal Verification of Circuits" Kluwer 

Academic Publishers, 2000.

[19] F. Fallah, S. Devadas and K. Keutzer, "Functional 

Vector Generation for HDL Models Using Linear 

Programming and 3-Satisfiability" In Proceedings of 

35th DAC-98, p.p 528. 

[20] Robert K Brayton, A. Sangiovanni, A. Aziz and et al, 

“VIS: A System for Verification and Synthesis” 

Proceedings of the Eighth International Conference on 

Computer Aided Verification, 1996. 


	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index




