
Using Integer Equations for High Level Formal Verification

Property Checking

Bijan Alizadeh

Electrical and Computer Engineering

University of Tehran

14399 Tehran, Iran
bijan@cad.ece.ut.ac.ir

Mohammad R. Kakoee

Electrical and Computer Engineering

University of Tehran

14399 Tehran, Iran

kakoee@cad.ece.ut.ac.ir

Abstract

This paper describes the use of integer equations for

high level modeling digital circuits for application of
formal verification properties at this level. Most

formal verification methods use BDDs, as a low level

representation of a design. BDD operations require
separation of data and control parts of a design and

their implementation requires large CPU time and
memory. In our method, a behavioral state machine is

represented by a list of integer equations, and RT level

properties are directly applied to this representation.
This reduces the need for large BDD data structures

and uses far less memory. Furthermore, this method

is applied to circuits without having to separate their
data and control sections. Integer equations are

solved recursively by replacement and simplification

operations. For this implementation, we use a
canonical form of integer equations. This paper

compares our results with those of the VIS verification

tool that is a BDD based program.

1. Introduction

As the size and functional complexity of digital

designs increase, it has become important to verify the

design at the early stages of design flow [8]. This

means that the designer requires automated

verification tools at higher levels of abstraction [9].

Because of this, formal verification methods such as

model checking have become important for RT or

behavioral level verification. Formal verification tools

use deductive reasoning techniques borrowed from

mathematics to compare the logic of the circuit being

verified directly against the logic expressed in a

specification or reference design [11]. Formal

verification tries to verify the design independent of

input values [2, 4, 6].

In theory, any digital system can be modeled as a

finite state machine (FSM) and there is a well-

developed theory for analyzing such models [10, 12,

13]. Most methods, such as symbolic model checking,

use FSMs explicitly or implicitly to model the design

[1, 3, 14]. On the other hand, most of methods use

BDDs to represent Boolean functions [5, 7] and there

are no other suitable representations to do model

checking effectively. Because of the low abstraction

level BDDs, processing time of circuits represented as

such becomes forbiddingly high for large circuits [7].

If we can present our model at higher abstraction

levels, we will be able to verify functionality easier

than in BDDs.

Instead of using FSMs, we present a high level

model based on integer equations that is suitable for

verifying CTL properties. The integer equations are

extracted from the design and are at a higher level of

abstraction than FSMs. Therefore we have to define

some operations at a higher level than they were in

BDD.

For this work, we use VHDL to describe a design

and CTL format to describe properties [15, 17]. CTL

is a temporal logic with wide acceptance as a property

language. This is largely due to its balance of

expressive power and moderate decision procedure

complexity. We also consider properties as a general

form of P => Q, in which the Q part can have

sequential operators like X or G [16].

Steps involved are extraction of a Data Flow Graph

(DFG) of a design, converting the DFG to integer

equations, Extracting the P part of the implication

equation, and then proving the property. Integer

equations correspond to the next state and output

signals.

For evaluation of this work, we have developed a

Visual C++ program that uses a VHDL front-end. The

program uses the CHIRE intermediate format.

The main advantages of our technique are as

follows. First, our technique can be applied to

0-7695-1881-8/03 $17.00  2003 IEEE

behavioral level and therefore we do not have to

separate datapath and controller when the design

becomes large. Second, our technique uses a high

level model instead of FSM, so we are able to check

CTL based properties very efficiently in terms of CPU

time and memory usage, as compared with the BDD

based approaches.

This paper describes our work in five sections.

Section 2 presents how we extract Data Flow Graph

(DFG) as a model of the design and then in Section 3

we show how to extract integer equations as a

canonical form. Section 4 presents algorithms to check

properties in our model. Section 5 gives experimental

results for some examples. Last section presents a

short conclusion of this work.

2. DFG Extraction

The first task is the DFG extraction. We consider a

design as an array of elements shown in Figure 1. The

first three fields are pointers to graphs as shown in

Figure 2. These structures show list of graphs that

model the design. One of advantages of this model is

its flexibility because it is possible to add other

operators and statements to this model. A design in

represented in terms of multiplexers, since it more

efficient to extract integer equations from this format.

There is an one to one relation between DFG

structures and VHDL statements which are not useful

in our model of the design, will be shown in section 3,

so we have to convert them to other constructions to

do model checking algorithms efficiently.

Target Value Condition Other Flags

Figure 1. General data structure

NOT

DFG Node

DFG SignalUnaryOperator BinaryOperator Mux FlipFlop

AND OR ADD SUB MUL Equal Less LessEqual

Figure 2. DFG Node structure

As an example of our DFG model, consider the

Greatest Common Divisor (GCD) example that is

described in the following VHDL code.

ARCHITECTURE dataflow OF gcd IS

signal nxtX, nxtY, X, Y : INTEGER;

signal nxtReset, Reset: std_logic;

BEGIN

PROCESS (clk) BEGIN

 IF (clk='1' AND clk'EVENT) THEN

 X <= nxtX; Y <= nxtY;

 Reset <= nxtReset;

 END IF;

END PROCESS;

PROCESS (start, a, b, X, Y, Reset) BEGIN

 o <= 0;

 nxtX <= X; nxtY <= Y;

 nxtReset <= '0';

 IF (start = '1') THEN

 nxtX <= a; nxtY <= b;

 ELSE

 IF (Reset = '1') THEN

 nxtX <= a; nxtY <= b;

 o <= X;

 ELSE

 IF (X = Y) THEN

 nxtReset <= '1';

 ELSIF (X > Y) THEN

 nxtX <= X - Y;

 ELSIF (Y > X) THEN

 nxtY <= Y - X;

 END IF;

 END IF;

 END IF;

END PROCESS;

END dataflow;

Figure 3 shows DFG nodes which are extracted for

the nxtY and Y signals. As illustrated in this figure, the

value field of nxtY was constructed by a multiplexer

based structure. This will be useful in extracting

integer equations. Also value field of Y shows a flip-

flop node that is constructed by the nxtY signal as

input.

3. Integer Equations

After DFG extraction, we are ready to translate it to

integer equations. However, these equations must be

viewed as a canonical form to enable us to handle

arithmetic operations.

In our method, the design to be analyzed is

represented as a polynomial system D = (I, PS, NS, O,

PF) with a set of inputs I, a set of present states PS =

(v), a set of next states NS =

(v), a set of outputs O = (),

and a set of polynomial functions which are related to

next state and output functions and are shown in the

following.

nvv ,...,, 21

vv '
2

'
1
' ,...,, n mooo ,...,, 21

),(),(

......

),(),(

),(),(

'

2222
'

1111
'

IPSfoIPSfv

IPSfoIPSfv

IPSfoIPSfv

ommnsnn

ons

ons

On the other hand, we consider property as a

general form of P => Q. First of all, we specify which

next state or output functions were used in Q part.

After that, we apply P part to those equations as a

constraint and do replacement and simplification

operations repeatedly.

nxtY

Target Value Condition Other Flags

NULL

NULL IfFlip = 1Y

Flip Flop

nxtY

clk

Mux

1

0

Start

b

Mux

0

1

Reset

Mux

0

Y

Mux

0

1

1

Equal

YX Less

Y X

SUB

XY

Figure 3. DFG Structure of nxtY and Y

3.1. Extracting Integer Equations

One advantage of transforming all expressions to

integer equations is that we will not have to have two

solver engines [19]. In this manner basic Boolean

operators such as AND, OR and NOT are converted to

integer as illustrated in the following. Other operators,

like XOR, are converted to these basic operators [18].

T_29 <= (X == Y)

T_35 <= (Y < X)

T_43 <= (X < Y)

T_47 <= (Y – X)

T_48 <= T_43 * T_47 + (1 - T_43) * Y

T_49 <= T_35 * Y + (1 - T_35) * T_48

T_52 <= T_29 * Y + (1 - T_29) * T_49

T_25 <= Reset * b + (1 - Reset) * T_52

NxtY <= Start * b + (1 - Start) * T 25

a AND b; a , b : Boolean a * b; a, b : Integer

a OR b; a, b : Boolean a + b – a * b; a, b : Integer

NOT a; a : Boolean 1 - a; a : Integer

Notice that we will not convert a bit-vector if it is

used as a condition because some of its bits may be

used elsewhere. However, if a bit-vector is used on

the right hand side of some expressions we convert it

to an integer.

For the GCD example presented by the VHDL code

and graph of Figure 3, integer equations for the nxtY

signal are shown below.

As mentioned before, multiplexer based structures

make it easy to construct integer equations. Also these

equations make tracing a behavioral design very

simple from its multiplexer based DFG.

3.2. Canonical Form

An integer formula can be viewed as a sum of

products with Add, Sub and Mul nodes. This view will

be translated to sum of products with just Add and Mul

nodes later.

More precisely, a general integer formula f is a sum

of products P where each p P consists of Mul nodes.

At the top level of formula f we have Add and Sub
nodes. All nodes consist of two terms Left-Child and

Right-Child, on the left hand side and the right hand

side respectively.

In order to be able to manipulate integer formulas,

we have to transform them to a canonical form. For

this, we first add or subtract same products and then

convert Sub nodes to Add nodes and coefficients are

shifted to the edges. For example y + y will be

converted to 2*y. After that, for a default ordering of

propositions, we order propositions in Mul nodes

because of comparison. On the other hand, we

transform Add nodes to a unique form which only

includes another Add node on it’s Left-Child sub term,

and there will be a Mul or Constant node on it’s Right-

Child sub term. We also order Mul nodes on the

Right-Child of each Add node according to the number

of propositions and order of their propositions. This

view is canonical because we consider all products as

ordered.

4. CTL Property Checking in Design

We consider property as a general form of P => Q by

the following grammer:

P ::= (P) | P P | P | P P | Variable | Integer Value

Q ::= (Q) | Q Q | Q | Q Q | EX(Q) | EG(Q) |

Variable | Integer Value

An overall view of the CTL property checking is

shown in Figure 4. First, we extract integer equations

from a synthesized design and then, to these equations,

we add the P part of properties the design is being

checked for. On the other hand, we extract tree

structure of the Q part to specify what verification

procedures need to be called at each level of the tree.

We start satisfying a property set from propositions or

sub-formulas to the main formula.

As shown in Figure 4, three procedures,

CheckCombinational, CheckEX, and CheckEG
perform the task of verification this flowchart.

CheckCombinational (Q)

Convert Q to Integer Equations

Add them to other Equations

Simplify them

If there is an invalid Equation

Verification Fail!

Else Verification O.K.

CheckEG (Q, Limitation)

= Q (i = 1) 1Z
 Step I: OldEquations =

 Converted to Integer EquationsiZ

 Convert current state to next state variables in iZ
 Add them to the previous equations

 Simplify them

 Convert Computed Equations to boolean signal

 NewEquations = (Computed Equations) * Q

 IF NewEquations == OldEquations

 Verification O.K.

 RETURN NewEquations

 IF i < Limitation

 i = i + 1

= NewEquationsiZ
GOTO step I

 ELSE

 Verification Fail!

CheckEX(Q)

Convert state variables to next state

 variables in Q (V --->V’)

Convert them to Integer Equations

Add them to other Equations

Simplify them

Return Computed Equations

VHDL Code CTL Property

(P=>Q)

Boolean Equations To

Integer Equations

Convertion

Add P to Equations

as Constraints

Extract Parse Tree

of Q

Is Q Combinational

Completely?

CheckCombinational

Procedure Call

CheckEX Procedure

Call

CheckEG Procedure

Call

Is Operator X?

Is Operator G?

YESNO

NOYES

NOYES

Verification O.K. Verification Fail!

Is There Any

Equations?

Sequential

Operator Error!

YES NO

These Equations are

u s e d i n b e l o w

procedures

DFG Extraction

Figure 4. Flowchart of our work

Figure 5 shows the CheckCombinational procedure

in the flowchart of Figure 4. When the Q part of a

property is combinational, i.e. without state operators,

we must convert the Q part to integer equations and

add it to the other equations. These equations are

solved parametrically and at the end of the procedure,

equations that indicate conditions needed to satisfy the

property will be returned.

Figure 5. Combinational part

Figure 6 shows the CheckEX procedure in the

flowchart of Figure 4. When the Q part of a property

only uses the next-state operator (X), correctness of the

property is checked in three major steps. These steps

are explained here:

1. Convert all state variables in Q to next state

variables and extract related integer equations.

2. Next state equations in the design replace next

state variables in the equations.

3. Equations computed in previous step are

simplified.

Figure 6. Next State(X) operator

At the end of the procedure, equations that show

conditions for satisfying a property will be returned.

Figure 7. All States (G) operator

Figure 7 illustrates the CheckEG procedure in the

flowchart of Figure 4. When the Q part of a property

only uses all states operator (G) we should compute

the following equation.

QZZEXQZ ii 11);(

In each iteration we will compute EX() in three

major steps as previously described, i.e. current state

variables to next state variables converting, next state

variables replacing and simplifying. Completion of

the procedure is indicated by . When this

happens, equations will be returned that indicate

conditions needed to satisfy the property being

verified. The Limitation parameter is number of states

of the design. Important point in this algorithm is that

new equations are computed by the product of Q and

the computed equations. We can define the product of

Q and the computed equations because they are both

in terms of integer equations.

iZ

1ii ZZ

5. Experimental Results

We will verify different properties on five examples

including the Traffic Light Control (TLC), Greatest

Common Divisor (GCD), Elevator(EL), 2-Client

Arbiter(2CA) and a Special Counter (SC) presented in

Figure 8.

Two properties listed below are considered for the

TLC example.

1. start = 0 & yellow_expire = 0 & farm_light =

YELLOW & hwy_light = RED => EX(hwy_light =
GREEN). This property means that if hwy_light is

red, farm_light is yellow and the yellow timing has

been expired, then a path exists where hwy_light

will be green at the next state.

2. start = 0 & farm_light = RED & hwy_light =
GREEN & car_present = 0 => EG(hwy_light =

GREEN). This means that if farm_light is red,

hwy_light is green and there is not any car on the

farm road, then a path exists where hwy_light

always stay green.

We also verify two properties in the GCD example,

as shown below:

1. Reset = 0 & Start = 0 & X = Y => EX(Reset = 1).
This says that if Reset and Start are zero and X

equals to Y then a path exists where Reset will be 1

in the next state.

2. Reset = 0 & Start = 0 & X = 15 & Y = 5 =>

EX2(X = Y). This property indicates that if Reset

and Start are zero and X = 2Y then a path exists

that X will becomes equal to Y after two states.

000 001 010 011

100101110111

I=1

I=0

Figure 8. A Special counter example

We will verify two properties in the SC example, as

described here:

1. I = 1 & Count = 5 => EX2(Count = 5). This says

that that a path exists where Count will be greater

than 3 for all states.

2. I = 1 & Count = 5 => EX(Count = 4). This means

that a path exists that Count will become 5 at the

next state.

We also verify two properties in the EL example, as

shown below:

1. Start = 0 & door = CLOSED => EG(door =

CLOSED). This property indicates that if Start is

zero and door is closed then a path exists where

door always stay closed. Notice that correctness of

this property depends on movement signal.

2. Start = 0 & door = CLOSED => EG(movement =

MOVING). This says that if Start is zero and door
is closed then a path exists where the elevator is

infinitely moving. This property is not correct.

We will verify two properties in the 2CA example, as

described here:

1. Start = 0 & (req1 or req2 = 1) => EG(clin = A).
This means that if Start is zero and client A or

client B has a request then a path exists where the

client A always has token. This property is not

correct.

2. Start = 0 & req1 = 1 => EG(pass_token1 = 0).
This property indicates that if Start is zero and

client A has a request then a path exists where the

client A never pass token. This property is correct

if client A infinitely has request.

Table 1 compares our results with those of the VIS

verification tool[20]. VIS tool has been developed by

Berkeley University as a BDD based model checking.

As shown in the table, we have achieved less memory

usage and CPU time. In TLC example, Property1

consumed 31 second in comparison of 95 second by

VIS on a Pentium III system with 256MB Memory.

Also memory usage in our method is 3.2MB that is

less than 10.1MB used by VIS. Notice that CPU time

in VIS is just related to one part of VIS that calls EX

or EG functions and is not CPU time of other parts of

VIS. In order to compute these times, we have added

appropriate VIS functions to VIS source codes to

report execution time of EX or EG function calls.

6. Conclusions

In order to overcome problems related to the use of

BDDs, we use a high level of representation instead of

FSMs. As the result, we are able to manipulate

complex designs in much less time and memory than

FSM models using BBDs. Unlike FSM models, our

representation treats data and control units together

and is not limited to controller circuits.

References

[1] M.C. McFarland, “Formal Verification of Sequential

Hardware”, IEEE Transactions On Computer- Aided

Design of Integrated circuits and systems Vol. 12, No.

5, pp. 633, May 1993.

[2] P. Camurati and P. Prinetto, “Formal Verification of

Hardware Correctness”, IEEE Computer 1988, pp. 8.

[3] C. Kern and M.R. Greenstreet, “Formal Verification In

Hardware Design”, ACM Transactions on Design

Circuit TLC GCD SC EL 2CA

Cpu Time Property1 (second) 31 1 0.44 26 19

Cpu Time Property1 in VIS (second) 95 6 1.1 72 58

Cpu Time Property2 (second) 34 1.5 0.35 28 15

Cpu Time Property2 in VIS (second) 142 11 0.9 84 49

Number of DFG Nodes 2495 345 66 184 86

Number of BDD Nodes in VIS 252146 105764 113 20337 692

Memory Usage (MegaByte) 3.2 0.525 0.22 0.31 0.25

Memory Usage in VIS (MegaByte) 10.1 7.5 4.7 5.2 4.8

Table 1. Comparison with VIS

Automation of Electronic Systems, Vol. 4, No. 2,

April 1999, pp. 123.

[4] A. Gupta, S. Malik and P. Ashar, “Toward

Formalizing a Validation Methodology Using

Simulation Coverage”, IEEE Design Automation

Conference 1997, pp. 740.

[5] J.R. Burch, E.M. Clarke and K.L. McMillan,

“Sequential Circuit Verification Using Symbolic

Model Checking”, 27th ACM/IEEE Design

Automation Conference, paper 3.2.

[6] R. Eastham and K. Thirunarayan, “Proof Strategies for

Harware Verification”, IEEE Transactions on

Computer 1996, pp. 451.

[7] H. Touati, H. Savoj and B. Lin, “Implicit State

Enumeration of Finite State Machines Using BDD’s”,

IEEE Transactions on Computer 1990, pp. 130.

[8] R.P. Kurshan, “Formal Verification In a Commercial

Setting”, Design Automation Conference 1997, p.p

258.

[9] S. Devadas, H.T. Ma and A.R. Newton, “On The

Verification of sequential machines at differing levels

of abstraction”, 24th ACM/IEEE Design Automation

Conference 1987, pp. 271.

[10] G. Cabodi, P. Camurati and F. Corno“Sequential

Circuit Diagnosis based on Formal Verification

Techniques”, International Test Conference 1992, pp.

187.

[11] M. Yoeli, Formal Verification of Hardware Design,

IEEE Computer Society Press, Los Alamos, NM,

1990.

[12] K. McMillan, Symbolic Model Checking, Kluwer

Academic Publishers, Boston, 1993.

[13] J. Burch, E. Clarke, K. McMillan, and D. Dill,

"Symbolic Model Checking: 1020 States and Beyond,"

Proceedings of the Fifth Annual IEEE Symposium on

Logic in Computer Science, June 1990, pp. 428-439.

[14] J. Burch, E. Clarke, D. Long, K. McMillan, and D.

Dill, "Symbolic Model Checking for Sequential

Circuit Verification," IEEE Trans. Computer Aided

Design 13, No. 4, 401-424 (April 1994).

[15] E. Clarke and E. Emerson, "Design and Synthesis of

Synchronization Skeletons using Branching Time

Temporal Logic," Lecture Notes in Computer Science

31, 52-71 (1981).

[16] I. Beer, S. Ben-David, C. Eisner, and A. Landver,

"RuleBase: An Industry-Oriented Formal Verification

Tool," Proceedings of the 33rd Design Automation

Conference, Las Vegas, 1996, pp. 655-660.

[17] E. Clarke, R. Enders, and T. Filkorn, "Exploiting

Symmetry in Temporal Logic Model Checking,"

Formal Methods in System Design 9, 77-104 (1996).

[18] R. Drechsler, "Formal Verification of Circuits" Kluwer

Academic Publishers, 2000.

[19] F. Fallah, S. Devadas and K. Keutzer, "Functional

Vector Generation for HDL Models Using Linear

Programming and 3-Satisfiability" In Proceedings of

35th DAC-98, p.p 528.

[20] Robert K Brayton, A. Sangiovanni, A. Aziz and et al,

“VIS: A System for Verification and Synthesis”

Proceedings of the Eighth International Conference on

Computer Aided Verification, 1996.

	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index

