

An Architectural Exploration of Via Patterned Gate Arrays

Chetan Patel, Anthony Cozzie, Herman Schmit, Larry Pileggi
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

{cpatel, cozzie, herman, pileggi}@ece.cmu.edu

ABSTRACT
In this work we investigate the architecture of a Via Patterned
Gate Array (VPGA) [1], focusing primarily on: 1) the optimal
lookup table (LUT) size; and 2) a comparison the crossbar and
switch block routing architectures. Unlike FPGAs, the routing
architectures in a VPGA do not dominate the total area of the
circuit. Therefore our results suggest that using smaller LUTs
results in a much faster and smaller design. In the routing
architecture comparison, our results also show that the switch
block architecture is inferior to the crossbar architecture in terms
of area utilization. As the number of routing tracks grows, the
switch block architecture begins to dominate the total area of the
design as in the case of the FPGAs.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – gate
array, VLSI.

General Terms
Performance, Design, Experimentation.

Keywords
VPGA, interconnect architectures, Lookup Table, gate array.

1. INTRODUCTION
Cell-based ASIC designs are becoming more difficult to produce
affordably as the technologies go below 100 nm [2]. The
problems initially begin with the ever increasing mask cost. The
manufacturing process is becoming so complicated that it is
difficult to construct a set of simple, local design rules that would
guarantee manufacturability. Parasitic extraction, as well as clock
and power distribution are also challenging in a cell-based ASIC.
All of these challenges are compounded further by shrinking
design and product life cycles.

Regular, user-programmable devices, such as FPGAs, avoid many
of these problems. Because silicon designs have high volume,
mask costs and complex design optimization for manufacturability

is amortized. Because an FPGA is a highly regular device, clock
and power distribution can be done in a highly symmetrical
manner. Unfortunately, FPGAs require more power and silicon
area than a logically equivalent cell-based ASIC.

A Via Patterned Gate Array, or VPGA, is a device where all
transistor and metal layers are generic. Customization to a
particular application-specific function is done by defining
whether the set of “potential via” locations is occupied by an
actual via. This device leverages the regularity and design cost
amortization benefits of an FPGA, while having the silicon area
and power consumption of a cell-based ASIC. VPGAs use well-
characterized, regular logic blocks and regular, fixed interconnect
structures to combat manufacturability and parasitic extraction
problems. Thus by this approach, VPGA offers new forms of
regularity to increase the predictability for top-down designs,
analogous to what is possible for FPGAs.

Our initial VPGA architecture has a structure that closely
resembles an FPGA in that it consists of repetitive logic blocks
with a fixed interconnect structure. There are, however, some key
differences between an FPGA and our VPGA, with the biggest
difference being the way the routing and logic is programmed. In
an FPGA, programming of the logic cells and routing tracks are
done by using SRAM cells. In the VPGA, however, the
“programming” is done by configuring custom via masks during
BEOL (back end of line) manufacturing. With the lack of SRAM
cells, the routing architectures are placed above the CLB, thus not
occupying any silicon as in the case of the FPGA.

The via configurability allows the VPGA wafer to be pre-
fabricated up to the metal 2 layer. We chose metal 2 as the
boundary between fully regular and via-customized because both
metal and via masks below metal 2 are very complex and
expensive to manufacture. Because the VPGA has a regular
interconnect architecture, the masks for the upper metal layer are
also pre-fabricated. One needs to only manufacture the via masks
above metal 2 to personalize the VPGA. The question that
remains to be answered is what should comprise the logic blocks
and interconnect architecture of a VPGA. Since the VPGA
closely resembles an FPGA, reconstructing certain experiments
may shed some light on this question.

In an FPGA architecture, the choice of the logic cell employed
can affect the area and speed of circuits that are mapped onto it.
Using a small logic cell may require too many routing tracks [3].
Further, most of the delay and area is associated with the routing
architecture, thus increasing the number of tracks would lead to a
larger and slower FPGA [4]. Using a very large logic cell may
also have the same affect. Many resources could potentially go
unused and the resulting FPGA would not be very area-efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD ’03, April 6-9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004…$5.00.

184

[3]. Therefore choosing the appropriate size of the logic cell is
very crucial to an FPGA.

Besides choosing the size of the logic cell, one must also choose
an appropriate routing architecture. As we have already stated,
the routing architecture is one of the most important factors in
determining the area, delay, and routability of the FPGA. Thus,
one needs to choose the routing architecture, which enables
designs to be mapped to an FPGA with the best area and
performance possible.

These two arguments are very important to a design for a FPGA
that is very area-efficient as well as one that that minimizes the
overall delay. We believe these two arguments apply for our
VPGA because it closely resembles an FPGA. In our VPGA, we
also have clusters of logic cells that perform any programmed
boolean operation. We also have a fixed routing architecture that
routes the signals between the various logic cells.

2. EXPERIMENTAL METHODOLOGY
In order to decide upon which architecture would best suite our
VPGA, this paper considers the issue of the size of the logic cell
as well as what routing architecture to use. As for the size of the
logic cell, we are most interested in what size of a look-up table
should be use because this will affect the size of the CLB. As for
the routing architecture, we are interested in comparing two
distinct architectures, the crossbar and the switch point
architectures. The details of these architectures will be discussed
when we outline the area model for the architectures.

We explore the LUT sizes by implementing MCNC benchmark
circuits. For the LUT size experiment, we first used SIS and
FlowMap [5] to optimize and map each of the circuits. We then
used T-Vpack [6] to group the circuits into logic blocks that
contained varying LUT sizes. To place and route the circuits, we
used the Versatile Place and Route tool (VPR) [6]. VPR places
each of the circuits and then determines the minimum number of
tracks needed to route the circuit. Using our area models and
VPR’s placement and routing information, we have the
information to compare different LUT sizes.

To compare the different routing architectures, we first outline the
area models for each architecture in Section 4. These area models
give us an understanding of how the routing architectures grow as
the number of tracks increases. By analyzing the area models, we
can obtain an understanding about which architecture offers the
most flexibility in routing as well as with routing architecture is
the most area efficient.

3. ARCHITECTURE AREA MODEL
3.1 Look up Table Area Model
In order to calculate the area model for the CLB, we have to
characterize the area for different LUT sizes. In our VPGA cell,
the LUT is a k – 1 level tree with a complimentary pull up and
pull down network as seen in Figure 1 [7]. Each of the leaf nodes
in the look-up table can contain directly to VDD, ground, or
another kth input or its compliment. One approach would be to
calculate the area of a single transistor and multiply by the total
number of transistors needed to implement the LUT. In [8] and
[9], the area model of a LUT is shown to be proportional to the
number of transistors. Though this metric is simple and easy to

calculate, it is at best a lower bound and may not be entirely
accurate for a fair comparison. When designing the layout of the
LUT, one also has to consider how the LUT is configured. In our
VPGA architecture, CLB configuration is done by specifying via
locations between the metal 2 and metal 3 layers. Therefore all
local routing internal to the CLB must be done on the metal 1
layer. The local routing would include the power and ground rails
as well as the wiring required to directly connect components
together in the cell. We must consider the local routing because
this would add significant area as the CLB grows in size.

A more accurate approach would be to build the LUT out of 2:1
muxes as shown in Figure 2. Using this approach, we could
figure out the actual area of a minimum sized mux with the power
and ground rails included. To compensate for the internal
routing, we could add into the mux enough physical space to
account for these routing wires. For instance, a 2 input LUT
would require a single 2:1 mux and would require no internal
routing as in Figure 2. A 3 input LUT, however, would require 3
2:1 muxes. Therefore, we would need to add enough area to the
mux to allow for an additional metal wire as in Figure 2.
Building upon this approach, the total area for a given LUT of k
inputs would be

() ()()pitchwirekmux
k AreaArea _2

1 12 −+
− −=

Table 1 shows the comparison of the area of the different LUT
sizes. As in the previous case, this approach is not entirely
accurate because custom designed layouts might differ in size.
However, by adding in these factors, this model tries to closely
depict the actual layout area, which leads to a more accurate

Figure 1. Schematic for a 3-input Lookup Table.

Figure 2. The layout of a 2:1 mux and a 3-input
Lookup Table with the additional area highlighted.

185

comparison of area for different LUT sizes.

3.2 Look-Up Table Delay Model
To justify our choice for the correct LUT size, we must also have
a way to characterize the delay of a given LUT. As seen in Figure
1, we constructed the SPICE file for LUT sizes ranging from 2 to
5 inputs. To keep our model consistent with the area model and
to avoid making the experiment too complex, we kept all the
transistors minimum sized. Using HSPICE, we simulated the
LUTS using the ST 0.13 µm technology library with an output
load comparable to an output buffer. Each LUT tested was
configured to perform the NAND function because of ease of
testing. The results in Table 1 show the delay of each different
LUT size averaged across all inputs. They delay values are not
entirely accurate because each LUT is not optimally sized.
However this approach is still fair because we tested each LUT
rather than create a model to estimate the delay for the LUTs.

3.3 CLB Area
To complete the area model for the CLB, we have to include all
the components in our CLB. For our experiment, each CLB
would include a Look-Up Table, a DFF, and a mux to select the
desired output. What also have to include in the area model the
inverters needed to generate the complemented signals for the
LUT. To give a fair comparison for each LUT, we could use a
model similar to the one used in calculating the area of the LUT.
As in the layout, one would try to keep components the same size
to create a more compact layout. Therefore, one choice would be
to make the inverter and buffer the same height as the mux. By
using this approach, which is similar to a standard cell approach,

the power and ground rails would align and allow for a compact
layout. Using the same data for the area model for the LUT,
Table 1 shows the estimated CLB area for different LUT sizes.

4. ROUTING ARCHITECTURE
4.1 CLB Connectivity
Figure 3 shows the connectivity of our CLB without a routing
architecture above. The local connectivity of the CLB consists of
a crossbar of metal 3 and metal 2 wires. The primary input pins
sit atop the CLB on metal 3. Each input to the different
components within the CLB are connected to metal 2 wires. To
connect a primary input to either the LUT or the DFF, a via must
be inserted to connect the appropriate metal 2 and metal 3 line.
Therefore the configuration of the CLB occurs by specifying the
via locations between the metal 2 and metal 3 layers. This
approach allows the area of the CLB to be as small as possible
and also allows the interconnect to connect easily to the inputs of
the CLB. We have investigated two interconnect architectures,
the crossbar and switch block architectures, which would both be
able to connect to the CLB in this manner.

4.2 Crossbar Architecture
The crossbar architecture includes vertical and horizontal routing
tracks, on two adjacent metal layers, that span the entire CLB as
in Figure 4. Each horizontal track can connect directly to any
vertical track by simply having a via inserted at the appropriate
location. Each vertical track can also connect to any horizontal
track by the same means. Figure 5 shows a close-up of the
crossbar architecture showing the possible locations of vias and
how the metal tracks connect to each other. The simplicity of this
architecture allows us to easily calculate the area regardless of the
size of the architecture. Since the tracks are just metal lines and
we are assuming the there are the same number of horizontal
tracks as there are vertical tracks, the area for the crossbar would
simply be

()2nwAreacrossbar =

where n is the number of tracks and w is the minimum width plus
the minimum pitch of a metal line.

Since our routing architecture sits directly atop the CLB in our
VPGA, we include “jumpers” to allow connections between
neighboring CLBs. Because all of our programming is done by
introducing a via in the appropriate location, the jumper consists

3 LUT 4 LUT 5 LUT
LUT Area (µm2) 45.02 113.36 260.70
LUT delay (ps) 88.70 118.60 152.60
CLB area (µm2) 125.18 207.04 369.45

Table 1. LUT size vs. area, delay, and CLB area.

Figure 4. The layout of the crossbar routing
i

x3

u1x2

x1

f(x1...xn)

Q

Q
SET

CLR

D

Figure 3. Depiction of the CLB showing local connectivity.

186

of a metal wire with two possible via locations. When a
connection is to be made from one track to the same track in the
neighboring routing block, the two vias are inserted to allow the
two tracks to connect to each other, as shown in Figure 6. The
jumpers are included in all sides of the cell to allow connections
to each of the neighboring cells.

4.3 Switch block Architecture
The switch block architecture we are employing is similar to the
island style switch block used in FPGAs. Each tracks requires a
switch point to connect to the same track in a neighboring switch
block. Figure 7 shows an example of a 16x16 VPGA switch
block [10]. The difference, however, is that there are no pass
transistors used to determine the connectivity of the switch points.
As in the case of the crossbar, we use vias to designate a
connection. As seen in Figure 8, the subset switch block is a 3x3
arrangement of metal lines with the vias inserted to show the
possible connectivity points. Using this approach, each track can
connect to any of the 3 other tracks in the neighboring channels.
The calculation of the area of the switch block, however, is much
more complicated than the crossbar architecture. For a given

number of tracks, n, a switch block contains n switch points. The
area of the switch point, however, grows as n increases because
there are more tracks to route. Using a very simplistic model, the
switch point requires 3 metal wires in the horizontal and vertical
directions and n horizontal and vertical metal wires as seen if
Figure 8. Therefore, the total area for the switch block would be

()[]2
3 wnnArea kswitchbloc +=

where w is the minimum width plus minimum pitch of a metal
line. Unlike the crossbar architecture, each switch point connects
directly to the same switch point in its neighboring cells. Hence
there is no need for jumpers in the switch block architecture to
connect neighboring routing cells.

5. EXPERIMENTAL RESULTS
Using VPR we placed and routed some of the MCNC benchmarks
using the switch block architecture. Table 2 shows the results of
our simulations. Using VPR, we were able to obtain the critical
path delay and the number of CLBs used to place each
benchmark. Using our area models discussed above, we were
then able to compare which LUT size is best suited for our
VPGA. Since our routing architecture sits atop our CLB, for each
benchmark, we computed the area as the max of the switch block
area and the CLB area.

From Table 2, one can see that the most area efficient LUT size is
4. Using a LUT size of 3 does not incur much of an area penalty
but using sizes larger than 4 are not very area efficient. A 4 LUT
is more area efficient than a 3 input LUT because the 4 LUT does
a good job of decreasing the depth of the nets, hence requiring
less CLBs for any design. At the same time, the area for larger
LUT sizes becomes too large and destroys this benefit.

One can also see from Table 2 that using the 4 LUT also produces
the fastest design. Again this results from decreasing the depth of
the nets. Larger LUT sizes would also accomplish the same task,
however. The difference however is that the area of the larger
LUTs causes the routing tracks to be much longer, hence more
resistive and capacitive.

In the comparison of the routing architectures, we first tried to
analyze which architecture would possess more flexibility in
routing. Given a certain area, the crossbar architecture would
always possess many more routing tracks than the switch block

Figure 7. The layout of the switch block architecture.

Figure 8. VPGA switch point derived from FPGA
pass-transistor switch point.

Figure 5. Possible via locations in the crossbar architecture.

Figure 6. Jumpers connecting tracks of neighboring CLBs.

187

3lut 4lut 5lut
benchmark crit.path (ns) crit. Path (ns) crit. Path (ns)
alu4 13.71 8.11 10.55
apex2 12.50 10.33 11.00
apex4 15.42 10.96 14.17
bigkey 29.86 29.81 22.72
des 26.04 34.07 20.00
diffeq 16.85 8.30 9.56
dsip 23.29 18.18 21.12
elliptic 28.74 17.27 34.72
ex1010 54.83 21.42 50.84
ex5p 12.43 8.15 12.17
misex3 10.82 7.53 9.21
s298 26.32 28.01 17.38
seq 14.60 9.64 14.75
spla 48.76 30.28 45.15
tseng 16.00 6.76 8.69

geo mean 20.60 14.12 17.05

benchmark Total area (µm2) Total area (µm2) Total area (µm2)

alu4 349878.10 332920.32 563041.80
apex2 420855.16 438510.72 780278.40
apex4 264503.33 267288.64 527205.15
bigkey 554422.22 607662.40 585947.70
des 753458.42 449690.88 932122.35
diffeq 431620.64 400208.32 670551.75
dsip 368404.74 335197.76 672029.55
elliptic 983163.72 866462.40 1670283.45
ex1010 1606572.88 1188127.17 1889693.56
ex5p 352006.16 249069.12 477329.40
misex3 331476.64 310767.04 556391.70
s298 870515.61 527537.92 706388.40
seq 404706.94 404349.12 740008.35
spla 1490400.84 815116.48 1512528.30
tseng 352006.16 268944.96 458487.45

geo mean 536628.66 445090.54 763087.35

Table 2. Critical path delay and Total area for LUT size vs.
benchmark.

architecture. We felt the increase in the number of available
tracks would make the crossbar architecture a more flexible
routing architecture.

In these benchmarks tested, only a few cases occurred when the
routing area was larger than the size of the CLB. Most of the
benchmarks were logic dominated, meaning that the switch block
architecture fit directly over the CLB. Because the benchmarks
were logic dominated, preliminary results showed very little
benefit from using the crossbar architecture for any area gain.

It is also important to note that given the fact that these
benchmarks are mostly logic dominated and not routing

dominated, timing results for the crossbar architecture would be
slower than the switch block architecture. The reason we account
for the extra delay lies in the dangling capacitance. In the switch
block architecture, a signal can go in any direction at very little
cost because it would always have to travel though a either 1 or 2
vias as seen in Figure 8. In the crossbar architecture, switching
between some tracks might incur a greater penalty. The increase
in penalty occurs when a signal changes direction. As seen in
Figure 4, switching between one of the middle horizontal tracks
and one of the middle vertical tracks would add some dangling
capacitance. Though this may not be a significant problem for
small nets, as the nets become larger, the dangling capacitance
severely affects the delay for the net. Preliminary results show
that the critical path for the crossbar architecture is much slower
than that of the switch block architecture. Therefore when the
routing resource is not heavily occupied and the area is mostly
logic dominated, the switch block serves as the better interconnect
structure.

6. CONCLUSIONS
In this paper, we have investigated two important questions for
our VPGA architecture. First we showed that the optimal LUT
size is 4. In most cases, circuits mapped to a 4 LUT are faster as
well as more area efficient. Using a 3 LUT would not incur much
of an area penalty but would affect the performance of circuits
that are mapped to it. A LUT size of 5 is inferior in both terms of
area and delay.

We have also compared the crossbar architecture to the switch
block architecture. The crossbar architecture is more area
efficient than the switch block architecture. The crossbar
architecture also has to deal with the dangling capacitance issue
while the switch block does not. More work needs to be done to
see if there is any gain with the use of the crossbar architecture
when the VPGA is not logic dominated, but routing dominated.

Though we have gained an understanding of how these factors
would affect our design for VPGA, many questions still remain to
be answered. Firstly, how would introducing heterogeneity affect
which LUT size is better. Prior work in [11] has shown that
introducing NAND gates in combination of LUTs produces
designs that are much faster. More work also needs to be done
with the interconnect structures to weigh their routability, their
area, and most importantly, their delay.

7. ACKNOWLEDGMENTS
We would like to thank Aneesh Koorapty and Vikas Chandra for
their help with the VPR simulations. We would also like to thank
ST Microelectronics for allowing us to use their 0.13 µm
technology. This project was supported by the Microelectronic
Advanced Research Corporation (MARCO) and the Gigascale
Silicon Research Center (GSRC).

8. REFERENCES
[1] L. Pileggi, H. Schmit, J. Shah, Y. Tong, C. Patel, V.

Chandra, “Via Patterned Gate Array (VPGA),” Technical
Reports Series of the CMU Center for Silicon System
Implementation, No. CSSI 02-15, March 2002.

[2] W. Maly, “IC design in high-cost nanometer-technologies
era,” IEEE Proc. of DAC, June 2001, pp. 9-14.

188

[3] Marquardt, V. Betz and J. Rose, “Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA Speed
and Density,” ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Monterey, CA, February
1999, pp. 37 – 46.

[4] V. Betz and J. Rose, “FPGA Routing Architecture:
Segmentation and Buffering to Optimize Speed and
Density,” ACM/SIGDA International Symposium of Field
Programmable Gate Arrays, Monterey, CA, February 1999,
pp. 59 – 68.

[5] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs,” IEEE Trans. on CAD, Jan. 1994, pp
1 – 12.

[6] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” Int. Workshop on Field
Programmable Logic and Applications, 1997, pp. 213 – 222.

[7] K. Y. Tong, C. Patel, P. Gopalakrishnan, L. Pileggi, H.
Schmit, R. Puri, “Lookup Tables for a Via Patterned Gate

Array (VPGA),” Technical Reports Series of the CMU
Center for Silicon System Implementation, No. CSSI 03-002,
January 2002.

[8] J. Rose, R. J. Francis, P. Chow, D. Lewis, “The Effect of
Logic Block Complexity on Area of Programmable Gate
Arrays,” IEEE Custom Integrated Circuit Conference, May
1989, pp. 5.3.1 – 5.3.5.

[9] J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architecture of
Field-programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency,” IEEE Journal of Solid-
State Circuits, Volume: 25 Issue: 5, Oct. 1990, pp. 1217 –
1225.

[10] H. Schmit and V. Chandra, “FPGA Switch Block Layout and
Evaluation,” IEEE/ACM International Symposium on Field
Programmable Gate Arrays (FPGA – 02), February 2002.

[11] A. Koorapty, V. Chandra, K. Y. Tong, C. Patel, L. Pileggi,
H. Schmit, “Heterogeneous Programmable Logic Block
Architectures,” Proceedings of Design Automation and Test
in Europe, March 2

189

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

