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ABSTRACT 
In this work we investigate the architecture of a Via Patterned 
Gate Array (VPGA) [1], focusing primarily on: 1) the optimal 
lookup table (LUT) size; and 2) a comparison the crossbar and 
switch block routing architectures.  Unlike FPGAs, the routing 
architectures in a VPGA do not dominate the total area of the 
circuit.  Therefore our results suggest that using smaller LUTs 
results in a much faster and smaller design.  In the routing 
architecture comparison, our results also show that the switch 
block architecture is inferior to the crossbar architecture in terms 
of area utilization.  As the number of routing tracks grows, the 
switch block architecture begins to dominate the total area of the 
design as in the case of the FPGAs.  

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – gate 
array, VLSI. 

General Terms 
Performance, Design, Experimentation. 

Keywords 
VPGA, interconnect architectures, Lookup Table, gate array. 

1. INTRODUCTION 
Cell-based ASIC designs are becoming more difficult to produce 
affordably as the technologies go below 100 nm [2].  The 
problems initially begin with the ever increasing mask cost.  The 
manufacturing process is becoming so complicated that it is 
difficult to construct a set of simple, local design rules that would 
guarantee manufacturability.  Parasitic extraction, as well as clock 
and power distribution are also challenging in a cell-based ASIC.  
All of these challenges are compounded further by shrinking 
design and product life cycles. 

Regular, user-programmable devices, such as FPGAs, avoid many 
of these problems.  Because silicon designs have high volume, 
mask costs and complex design optimization for manufacturability 

is amortized.  Because an FPGA is a highly regular device, clock 
and power distribution can be done in a highly symmetrical 
manner.  Unfortunately, FPGAs require more power and silicon 
area than a logically equivalent cell-based ASIC. 

A Via Patterned Gate Array, or VPGA, is a device where all 
transistor and metal layers are generic.  Customization to a 
particular application-specific function is done by defining 
whether the set of “potential via” locations is occupied by an 
actual via.  This device leverages the regularity and design cost 
amortization benefits of an FPGA, while having the silicon area 
and power consumption of a cell-based ASIC.  VPGAs use well-
characterized, regular logic blocks and regular, fixed interconnect 
structures to combat manufacturability and parasitic extraction 
problems.  Thus by this approach, VPGA offers new forms of 
regularity to increase the predictability for top-down designs, 
analogous to what is possible for FPGAs. 

Our initial VPGA architecture has a structure that closely 
resembles an FPGA in that it consists of repetitive logic blocks 
with a fixed interconnect structure.  There are, however, some key 
differences between an FPGA and our VPGA, with the biggest 
difference being the way the routing and logic is programmed.  In 
an FPGA, programming of the logic cells and routing tracks are 
done by using SRAM cells.  In the VPGA, however, the 
“programming” is done by configuring custom via masks during 
BEOL (back end of line) manufacturing.  With the lack of SRAM 
cells, the routing architectures are placed above the CLB, thus not 
occupying any silicon as in the case of the FPGA.   

The via configurability allows the VPGA wafer to be pre-
fabricated up to the metal 2 layer.  We chose metal 2 as the 
boundary between fully regular and via-customized because both 
metal and via masks below metal 2 are very complex and 
expensive to manufacture.  Because the VPGA has a regular 
interconnect architecture, the masks for the upper metal layer are 
also pre-fabricated.  One needs to only manufacture the via masks 
above metal 2 to personalize the VPGA.  The question that 
remains to be answered is what should comprise the logic blocks 
and interconnect architecture of a VPGA.  Since the VPGA 
closely resembles an FPGA, reconstructing certain experiments 
may shed some light on this question. 

In an FPGA architecture, the choice of the logic cell employed 
can affect the area and speed of circuits that are mapped onto it.  
Using a small logic cell may require too many routing tracks [3].  
Further, most of the delay and area is associated with the routing 
architecture, thus increasing the number of tracks would lead to a 
larger and slower FPGA [4].  Using a very large logic cell may 
also have the same affect.  Many resources could potentially go 
unused and the resulting FPGA would not be very area-efficient 
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[3].  Therefore choosing the appropriate size of the logic cell is 
very crucial to an FPGA.   

Besides choosing the size of the logic cell, one must also choose 
an appropriate routing architecture.  As we have already stated, 
the routing architecture is one of the most important factors in 
determining the area, delay, and routability of the FPGA.  Thus, 
one needs to choose the routing architecture, which enables 
designs to be mapped to an FPGA with the best area and 
performance possible.   

These two arguments are very important to a design for a FPGA 
that is very area-efficient as well as one that that minimizes the 
overall delay.  We believe these two arguments apply for our 
VPGA because it closely resembles an FPGA.  In our VPGA, we 
also have clusters of logic cells that perform any programmed 
boolean operation.  We also have a fixed routing architecture that 
routes the signals between the various logic cells.   

2. EXPERIMENTAL METHODOLOGY 
In order to decide upon which architecture would best suite our 
VPGA, this paper considers the issue of the size of the logic cell 
as well as what routing architecture to use.  As for the size of the 
logic cell, we are most interested in what size of a look-up table 
should be use because this will affect the size of the CLB. As for 
the routing architecture, we are interested in comparing two 
distinct architectures, the crossbar and the switch point 
architectures.  The details of these architectures will be discussed 
when we outline the area model for the architectures. 

We explore the LUT sizes by implementing MCNC benchmark 
circuits.  For the LUT size experiment, we first used SIS and 
FlowMap [5] to optimize and map each of the circuits.  We then 
used T-Vpack [6] to group the circuits into logic blocks that 
contained varying LUT sizes.  To place and route the circuits, we 
used the Versatile Place and Route tool (VPR) [6].  VPR places 
each of the circuits and then determines the minimum number of 
tracks needed to route the circuit.  Using our area models and 
VPR’s placement and routing information, we have the 
information to compare different LUT sizes. 

To compare the different routing architectures, we first outline the 
area models for each architecture in Section 4.  These area models 
give us an understanding of how the routing architectures grow as 
the number of tracks increases.  By analyzing the area models, we 
can obtain an understanding about which architecture offers the 
most flexibility in routing as well as with routing architecture is 
the most area efficient. 

3. ARCHITECTURE AREA MODEL 
3.1 Look up Table Area Model 
In order to calculate the area model for the CLB, we have to 
characterize the area for different LUT sizes.  In our VPGA cell, 
the LUT is a k – 1 level tree with a complimentary pull up and 
pull down network as seen in Figure 1 [7].  Each of the leaf nodes 
in the look-up table can contain directly to VDD, ground, or 
another kth input or its compliment.  One approach would be to 
calculate the area of a single transistor and multiply by the total 
number of transistors needed to implement the LUT.  In [8] and 
[9], the area model of a LUT is shown to be proportional to the 
number of transistors.  Though this metric is simple and easy to 

calculate, it is at best a lower bound and may not be entirely 
accurate for a fair comparison.  When designing the layout of the 
LUT, one also has to consider how the LUT is configured.  In our 
VPGA architecture, CLB configuration is done by specifying via 
locations between the metal 2 and metal 3 layers.  Therefore all 
local routing internal to the CLB must be done on the metal 1 
layer.  The local routing would include the power and ground rails 
as well as the wiring required to directly connect components 
together in the cell.  We must consider the local routing because 
this would add significant area as the CLB grows in size. 

A more accurate approach would be to build the LUT out of 2:1 
muxes as shown in Figure 2.  Using this approach, we could 
figure out the actual area of a minimum sized mux with the power 
and ground rails included.  To compensate for the internal 
routing, we could add into the mux enough physical space to 
account for these routing wires.  For instance, a 2 input LUT 
would require a single 2:1 mux and would require no internal 
routing as in Figure 2.  A 3 input LUT, however, would require 3 
2:1 muxes.   Therefore, we would need to add enough area to the 
mux to allow for an additional metal wire as in Figure 2.   
Building upon this approach, the total area for a given LUT of k 
inputs would be  

( ) ( )( )pitchwirekmux
k AreaArea _2

1 12 −+
− −=  

Table 1 shows the comparison of the area of the different LUT 
sizes.  As in the previous case, this approach is not entirely 
accurate because custom designed layouts might differ in size.  
However, by adding in these factors, this model tries to closely 
depict the actual layout area, which leads to a more accurate 

Figure 1. Schematic for a 3-input Lookup Table. 

Figure 2. The layout of a 2:1 mux and a 3-input 
Lookup Table with the additional area highlighted.
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comparison of area for different LUT sizes. 

3.2 Look-Up Table Delay Model 
To justify our choice for the correct LUT size, we must also have 
a way to characterize the delay of a given LUT.  As seen in Figure 
1, we constructed the SPICE file for LUT sizes ranging from 2 to 
5 inputs.  To keep our model consistent with the area model and 
to avoid making the experiment too complex, we kept all the 
transistors minimum sized.  Using HSPICE, we simulated the         
LUTS using the ST 0.13 µm technology library with an output 
load comparable to an output buffer.  Each LUT tested was 
configured to perform the NAND function because of ease of 
testing.  The results in Table 1 show the delay of each different 
LUT size averaged across all inputs.  They delay values are not 
entirely accurate because each LUT is not optimally sized.  
However this approach is still fair because we tested each LUT 
rather than create a model to estimate the delay for the LUTs.  

3.3 CLB Area 
To complete the area model for the CLB, we have to include all 
the components in our CLB.  For our experiment, each CLB 
would include a Look-Up Table, a DFF, and a mux to select the 
desired output.  What also have to include in the area model the 
inverters needed to generate the complemented signals for the 
LUT.  To give a fair comparison for each LUT, we could use a 
model similar to the one used in calculating the area of the LUT.  
As in the layout, one would try to keep components the same size 
to create a more compact layout.  Therefore, one choice would be 
to make the inverter and buffer the same height as the mux.  By 
using this approach, which is similar to a standard cell approach, 

the power and ground rails would align and allow for a compact 
layout.  Using the same data for the area model for the LUT, 
Table 1 shows the estimated CLB area for different LUT sizes. 

4. ROUTING ARCHITECTURE 
4.1 CLB Connectivity 
Figure 3 shows the connectivity of our CLB without a routing 
architecture above.  The local connectivity of the CLB consists of 
a crossbar of metal 3 and metal 2 wires.  The primary input pins 
sit atop the CLB on metal 3.  Each input to the different 
components within the CLB are connected to metal 2 wires.  To 
connect a primary input to either the LUT or the DFF, a via must 
be inserted to connect the appropriate metal 2 and metal 3 line.  
Therefore the configuration of the CLB occurs by specifying the 
via locations between the metal 2 and metal 3 layers.  This 
approach allows the area of the CLB to be as small as possible 
and also allows the interconnect to connect easily to the inputs of 
the CLB.  We have investigated two interconnect architectures, 
the crossbar and switch block architectures, which would both be 
able to connect to the CLB in this manner. 

4.2 Crossbar Architecture 
The crossbar architecture includes vertical and horizontal routing 
tracks, on two adjacent metal layers, that span the entire CLB as 
in Figure 4.  Each horizontal track can connect directly to any 
vertical track by simply having a via inserted at the appropriate 
location.  Each vertical track can also connect to any horizontal 
track by the same means.  Figure 5 shows a close-up of the 
crossbar architecture showing the possible locations of vias and 
how the metal tracks connect to each other.   The simplicity of this 
architecture allows us to easily calculate the area regardless of the 
size of the architecture.  Since the tracks are just metal lines and 
we are assuming the there are the same number of horizontal 
tracks as there are vertical tracks, the area for the crossbar would 
simply be 

( )2nwAreacrossbar =  

where n is the number of tracks and w is the minimum width plus 
the minimum pitch of a metal line. 

Since our routing architecture sits directly atop the CLB in our 
VPGA, we include “jumpers” to allow connections between 
neighboring CLBs.  Because all of our programming is done by 
introducing a via in the appropriate location, the jumper consists 

3 LUT 4 LUT 5 LUT
LUT Area (µm2) 45.02 113.36 260.70
LUT delay (ps) 88.70 118.60 152.60
CLB area (µm2) 125.18 207.04 369.45

Table 1. LUT size vs. area, delay, and CLB area. 

Figure 4. The layout of the crossbar routing 
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Figure 3. Depiction of the CLB showing local connectivity. 
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of a metal wire with two possible via locations.  When a 
connection is to be made from one track to the same track in the 
neighboring routing block, the two vias are inserted to allow the 
two tracks to connect to each other, as shown in Figure 6.  The 
jumpers are included in all sides of the cell to allow connections 
to each of the neighboring cells. 

4.3 Switch block Architecture 
The switch block architecture we are employing is similar to the 
island style switch block used in FPGAs.  Each tracks requires a 
switch point to connect to the same track in a neighboring switch 
block.  Figure 7 shows an example of a 16x16 VPGA switch 
block [10].  The difference, however, is that there are no pass 
transistors used to determine the connectivity of the switch points.  
As in the case of the crossbar, we use vias to designate a 
connection.  As seen in Figure 8, the subset switch block is a 3x3 
arrangement of metal lines with the vias inserted to show the 
possible connectivity points.  Using this approach, each track can 
connect to any of the 3 other tracks in the neighboring channels.  
The calculation of the area of the switch block, however, is much 
more complicated than the crossbar architecture.  For a given 

number of tracks, n, a switch block contains n switch points.  The 
area of the switch point, however, grows as n increases because 
there are more tracks to route.  Using a very simplistic model, the 
switch point requires 3 metal wires in the horizontal and vertical 
directions and n  horizontal and vertical metal wires as seen if 
Figure 8.  Therefore, the total area for the switch block would be 

( )[ ]2
3 wnnArea kswitchbloc +=  

where w is the minimum width plus minimum pitch of a metal 
line.  Unlike the crossbar architecture, each switch point connects 
directly to the same switch point in its neighboring cells.  Hence 
there is no need for jumpers in the switch block architecture to 
connect neighboring routing cells. 

5. EXPERIMENTAL RESULTS 
Using VPR we placed and routed some of the MCNC benchmarks 
using the switch block architecture.  Table 2 shows the results of 
our simulations.  Using VPR, we were able to obtain the critical 
path delay and the number of CLBs used to place each 
benchmark.  Using our area models discussed above, we were 
then able to compare which LUT size is best suited for our 
VPGA.  Since our routing architecture sits atop our CLB, for each 
benchmark, we computed the area as the max of the switch block 
area and the CLB area. 

From Table 2, one can see that the most area efficient LUT size is 
4.  Using a LUT size of 3 does not incur much of an area penalty 
but using sizes larger than 4 are not very area efficient.  A 4 LUT 
is more area efficient than a 3 input LUT because the 4 LUT does 
a good job of decreasing the depth of the nets, hence requiring 
less CLBs for any design.  At the same time, the area for larger 
LUT sizes becomes too large and destroys this benefit.  

One can also see from Table 2 that using the 4 LUT also produces 
the fastest design.  Again this results from decreasing the depth of 
the nets.  Larger LUT sizes would also accomplish the same task, 
however.  The difference however is that the area of the larger 
LUTs causes the routing tracks to be much longer, hence more 
resistive and capacitive. 

In the comparison of the routing architectures, we first tried to 
analyze which architecture would possess more flexibility in 
routing.  Given a certain area, the crossbar architecture would 
always possess many more routing tracks than the switch block 

 

Figure 7. The layout of the switch block architecture. 

Figure 8. VPGA switch point derived from FPGA 
pass-transistor switch point. 

Figure 5. Possible via locations in the crossbar architecture.

Figure 6. Jumpers connecting tracks of neighboring CLBs.
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3lut 4lut 5lut
benchmark crit.path (ns) crit. Path (ns) crit. Path (ns)
alu4 13.71 8.11 10.55
apex2 12.50 10.33 11.00
apex4 15.42 10.96 14.17
bigkey 29.86 29.81 22.72
des 26.04 34.07 20.00
diffeq 16.85 8.30 9.56
dsip 23.29 18.18 21.12
elliptic 28.74 17.27 34.72
ex1010 54.83 21.42 50.84
ex5p 12.43 8.15 12.17
misex3 10.82 7.53 9.21
s298 26.32 28.01 17.38
seq 14.60 9.64 14.75
spla 48.76 30.28 45.15
tseng 16.00 6.76 8.69

geo mean 20.60 14.12 17.05

benchmark Total area (µm2) Total area (µm2) Total area (µm2)

alu4 349878.10 332920.32 563041.80
apex2 420855.16 438510.72 780278.40
apex4 264503.33 267288.64 527205.15
bigkey 554422.22 607662.40 585947.70
des 753458.42 449690.88 932122.35
diffeq 431620.64 400208.32 670551.75
dsip 368404.74 335197.76 672029.55
elliptic 983163.72 866462.40 1670283.45
ex1010 1606572.88 1188127.17 1889693.56
ex5p 352006.16 249069.12 477329.40
misex3 331476.64 310767.04 556391.70
s298 870515.61 527537.92 706388.40
seq 404706.94 404349.12 740008.35
spla 1490400.84 815116.48 1512528.30
tseng 352006.16 268944.96 458487.45

geo mean 536628.66 445090.54 763087.35

Table 2. Critical path delay and Total area for LUT size vs. 
benchmark. 

architecture.  We felt the increase in the number of available 
tracks would make the crossbar architecture a more flexible 
routing architecture.  

In these benchmarks tested, only a few cases occurred when the 
routing area was larger than the size of the CLB.  Most of the 
benchmarks were logic dominated, meaning that the switch block 
architecture fit directly over the CLB.  Because the benchmarks 
were logic dominated, preliminary results showed very little 
benefit from using the crossbar architecture for any area gain. 

It is also important to note that given the fact that these 
benchmarks are mostly logic dominated and not routing 

dominated, timing results for the crossbar architecture would be 
slower than the switch block architecture.  The reason we account 
for the extra delay lies in the dangling capacitance.  In the switch 
block architecture, a signal can go in any direction at very little 
cost because it would always have to travel though a either 1 or 2 
vias as seen in Figure 8.   In the crossbar architecture, switching 
between some tracks might incur a greater penalty.  The increase 
in penalty occurs when a signal changes direction.  As seen in 
Figure 4, switching between one of the middle horizontal tracks 
and one of the middle vertical tracks would add some dangling 
capacitance.  Though this may not be a significant problem for 
small nets, as the nets become larger, the dangling capacitance 
severely affects the delay for the net.  Preliminary results show 
that the critical path for the crossbar architecture is much slower 
than that of the switch block architecture.  Therefore when the 
routing resource is not heavily occupied and the area is mostly 
logic dominated, the switch block serves as the better interconnect 
structure. 

6. CONCLUSIONS 
In this paper, we have investigated two important questions for 
our VPGA architecture.  First we showed that the optimal LUT 
size is 4.  In most cases, circuits mapped to a 4 LUT are faster as 
well as more area efficient.  Using a 3 LUT would not incur much 
of an area penalty but would affect the performance of circuits 
that are mapped to it.  A LUT size of 5 is inferior in both terms of 
area and delay. 

We have also compared the crossbar architecture to the switch 
block architecture.  The crossbar architecture is more area 
efficient than the switch block architecture.  The crossbar 
architecture also has to deal with the dangling capacitance issue 
while the switch block does not.  More work needs to be done to 
see if there is any gain with the use of the crossbar architecture 
when the VPGA is not logic dominated, but routing dominated.  

Though we have gained an understanding of how these factors 
would affect our design for VPGA, many questions still remain to 
be answered.  Firstly, how would introducing heterogeneity affect 
which LUT size is better.  Prior work in [11] has shown that 
introducing NAND gates in combination of LUTs produces 
designs that are much faster.  More work also needs to be done 
with the interconnect structures to weigh their routability, their 
area, and most importantly, their delay. 
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