Efficient Steiner Tree Construction Based on Spanning Graphs

Hai Zhou
Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208

ABSTRACT
Steiner Minimal Tree (SMT) problem is a very important problem in VLSI CAD. Given \(n \) points on a plane, a Steiner minimal tree connects these points through some extra points (called Steiner points) to achieve a minimal total length. Even though there exist many heuristic algorithms for this problem, they have either poor performances or expensive running times. This paper records an implementation of an efficient Steiner minimal tree algorithm that has a worst case running time of \(O(n \log n) \) and a similar performance as the Iterated 1-Steiner algorithm. The algorithm efficiently combines Borah et al.’s edge substitute concept with Zhou et al.’s spanning graph. Extensive experimental studies are conducted to compare it with other programs.

Categories & subject descriptors
B.7.2 Design Aids: Placement and routing

General terms
Algorithms, Design, Experimentation

Keywords
Steiner tree, Minimal spanning tree, Routing

1. INTRODUCTION
Steiner Minimal Tree (SMT) problem has wide applications in VLSI CAD. Given \(n \) points on a plane, a Steiner minimal tree connects these points through some extra points (called Steiner points) to achieve a minimal total length. A SMT is generally used in initial net topology creation for global router and incremental net topology creation in physical synthesis. Therefore, it is often used as an accurate estimation for congestion and wire length during floorplan and placement. Since it is a problem that will be computed hundreds of thousands times and many of them will have very large input sizes, the Steiner minimal tree problem definitely deserves good performances and highly efficient solutions.

Because of its importance, there is much previous work to solve the SMT problem. These algorithms can be grouped into two classes: exact algorithms and heuristic algorithms. Since SMT is NP-hard, any exact algorithm is expected to have an exponential worst-case running time. However, two prominent achievements must be noted in this direction. One is the GeoSteiner algorithm and implementation by Warme, Winter, and Zacharisen [13, 12], which is the current fastest exact solution to the problem. The other is a Polynomial Time Approximation Scheme (PTAS) by Arora [1], which is mainly of theoretical importance. Since exact algorithms have long running time, especially on large input sizes, much more previous efforts were put on heuristic algorithms. Many of them generate a Steiner tree by improving on a minimal spanning tree topology [6], since it was proved that a minimal spanning tree is a \(3/2 \) approximation of a SMT [7]. However, since the backbones are restricted to the minimal spanning tree topology in these approaches, there is a reported limit on the improvement ratios over the minimal spanning trees. The iterated 1-Steiner algorithm by Kahng and Robins [9] is an early approach to deviate from that restriction and an improved implementation [4] is a champion among such programs in public domain. However, the implementation in [9] has a running time of \(O(n^4 \log n) \) and the implementation in [4] has a running time of \(O(n^3) \). A much more efficient approach was later proposed by Borah et al. [2]. In their approach, a spanning tree is iteratively improved by connecting a point to an edge and deleting the longest edge on the created circuit. Their algorithm and implementation had a worst-case running time of \(\Theta(n^3) \), even though an alternative \(O(n \log n) \) implementation was also proposed. Since the backbone is no longer restricted to the minimal spanning tree topology, its performance was reported to be similar to the iterated 1-Steiner algorithm [2]. A recent effort in this direction is a new heuristic by Mandoiu et al. [10] which is based on a \(3/2 \) approximation algorithm of the metric Steiner tree problem on quasi-bipartite graphs [11]. It performs slightly better than the iterated 1-Steiner algorithm, but its running times is also slightly longer than the iterated 1-Steiner algorithm (with the empty rectangle test [10] used).

Our objective in this paper is to implement a Steiner minimal tree heuristic that is much faster than the iterated 1-Steiner algorithm and has similar performance. To achieve that goal, we select the edge substitution approach of Bo-
rah et al. [2] as the basis, and enhance it with the spanning graph of Zhou et al. [15] and other improvements. The implemented algorithm runs in $O(n \log n)$ time and takes $O(n)$ storage, without large hidden constant. Another advantage of the algorithm is that it is easy to be implemented. Extensive experimental studies are conducted to compare it with other public available SMT programs and its advantages are demonstrated. Even though we only focus on rectilinear Steiner minimal tree (where distances are measured with rectilinear metric), the same idea can also be used in Euclidean Steiner tree.

The rest of the paper is organized as follows. In Section 2, the edge substitution approach of Borah et al. [2] and the spanning graph of Zhou et al. [15] will be reviewed as the basis of our program. Then in Section 3, we will show how the spanning graph can be used both to generate the initial spanning tree and to find the point-edge pairs for edge substitution. Section 4 will discuss a problem in Borah et al.’s approach and prove the correctness of our algorithm. Section 5 will give experimental results.

2. BACKGROUNDS

2.1 Borah et al.’s edge substitution approach

As illustrated by the example in Figure 1, Borah et al.’s algorithm [2] for the rectilinear Steiner minimal tree works as follows. It starts with a minimal spanning tree and then iteratively considers connecting a point (for example p in Figure 1) to a nearby edge (for example (a,b)) and deleting the longest edge $((b,c))$ on the circuit thus formed.

![Figure 1: Edge substitution by Borah et al.](image)

A straight-forward implementation by Borah et al. [2] used Prim’s algorithm [3] to generate the initial minimal spanning tree in $O(n^2)$ time, and considered all possible point-edge pairs in the given tree, whose number is n^2. To find the longest edge on the circuit formed by connecting each point-edge pair, a depth-first search was conducted starting from every edge. The longest edge on the path from the starting edge to the current point is thus the longest edge on the circuit formed by connecting the current point to the starting edge. Since each depth-first search from one edge takes $O(n)$ time, the total time for all edges is $O(n^2)$. To keep the running time within $O(n^2)$, only one point-edge pair with the maximal gain was kept for each edge, and the $O(n)$ pairs were sorted according to non-increasing gains. Each point-edge pair was then connected (with proper deletion of the longest edge in the circuit) if the two involved edges had not been changed. As will be discussed in Section 4, when there are edges of equal length, errors may exist in the algorithm.

Besides the above implementation, they also discussed a possible way to make an algorithm of $O(n \log n)$ running time. This was based on an observation that not every point needs to be considered with every edge. For example, in Figure 1, point d does not need to be considered with edge (a,b) since they are blocked by edge (c,e). Using the geometrical blockage information, a point needs only to be considered with visible edges from its position. The number of point-edge pairs is thus reduced to $O(n)$. Unfortunately, this requires a geometrical sweepline algorithm to generate visible point-edge pairs. Tarjan’s off-line least common ancestor algorithm [3] must be used to compute the longest edges on created circuits by point-edge connections. To keep the initial minimal spanning tree generation within $O(n \log n)$ time, Hwang’s algorithm for minimal spanning tree construction [8] was suggested. As we can see, since each stage of this suggested approach involves a separate algorithm and some of them are very complicated, it is much more complicated than the straight-forward implementation and was never implemented.

2.2 Zhou et al.’s spanning graph

Zhou et al. [15] introduced the spanning graph as an intermediate step in minimal spanning tree construction. Given a set of points on the plane, a spanning graph is a graph over the points that contains a minimal spanning tree. The number of edges in the graph is called the cardinality of the graph and they presented an efficient $O(n \log n)$ algorithm to construct a spanning graph of cardinality $O(n)$.

From each point p, the plane can be divided into eight octal regions as shown in Figure 2. It can be proved that if rectilinear distance (that is, the distance between two points (x_1,y_1) and (x_2,y_2) is given by $|x_1 - x_2| + |y_1 - y_2|$) is used then the distance between any two points in one region is always smaller than the maximal distance from them to p. Based on the cycle property of a minimal spanning tree, that is, the longest edge on any circuit should not be included in any minimal spanning tree, this means that only the closest point to p in each region needs to be connected to p. Considering all given points, the connections will form a spanning graph of cardinality $O(n)$. Similar idea was developed by Yao [14] and further improved by Guibas and Stolfi [5].

![Figure 2: Point p needs to be connected to at most one point in each region.](image)
closest point in that region. To keep the swept points wait-
ing for closest points in R_1 and R_2 regions, two active sets A_1 and A_2 are used. When a new point is swept, we need
to search A_1 to find points with the new point in their R_1
region, and to search A_2 to find points with the new point in
their R_2 region. Then edges are added from the new point
to these points. After the found points are deleted from A_1
and A_2, the new point is added to them, since now the new
point is swept and is waiting for the closest points. The con-
nections for all points to their closest points in R_1 and R_2
regions are computed in the exact same fashion, except that
now points are swept in non-decreasing order of $x-y$. There
is no need to consider connections in regions R_2+1 through R_8
since they have been implied by connections in regions R_1
through R_4.

To achieve $O(n \log n)$ running time, the active sets A_1
and A_2 must be efficiently maintained so that searching,
deletion, and insertion each can be done in $O(\log n)$ time.
It can be shown that when an active set is used for region
R_i, it cannot have two points such that one is in the other’s
R_i region. This property guarantees that the points in each
active set be linearly ordered. Therefore, a balanced search
tree could be used to efficiently implement an active set.

3. STEINER TREE ALGORITHM BASED ON SPANNING GRAPH

Since the edge substitution of Borah et al. [2] is a sim-
ple yet effective approach for Steiner minimal tree construc-
tion, our algorithm is based on it. Compared with Hwang’s
$O(n \log n)$ time algorithm [8] they suggested for the initial
minimal spanning tree, Zhou et al.’s minimal spanning tree
algorithm [15] based on spanning graph is much more effi-
cient and simpler to implement. Furthermore, in their sug-
gestion, a computational geometry algorithm needs to be
used to generated the visible relations between points and
edges in the tree. However, we find that if a spanning graph
is generated, then the geometrical proximity information be-
tween points and edges is already embedded in the spanning
graph. Therefore, no sweepline routine is needed to compute
the edge blockage for point-edge pair generation if the span-
ning graph is leveraged. This makes the spanning graph a
backbone of the whole algorithm: it is first used to gener-
ate the initial minimal spanning tree, and then to generate
point-edge pairs for tree improvements. This kind of unifi-
cation happens also in the spanning tree computation and
the longest edge computation for each point-edge pair: us-
ing Kruskal’s algorithm with disjoint set operations (instead
of Prim’s algorithm) [3] will unify these two computations.

In order to reduce the number of point-edge pair candi-
dates from $O(n^2)$ to $O(n)$, Borah et al. suggested to use the
visibility of a point from an edge, that is, only a point visi-
ble from an edge can be considered to connect to that edge.
But this requires a sweepline algorithm to find visibility re-
lations between points and edges. A crucial observation is
that if a point is visible to an edge then the point is usu-
ally connected to at least one end point of the edge in the
spanning graph. An illustrating example is shown in Fig-
ure 4. Therefore, in our algorithm, the spanning graph is
used to generate point-edge pair candidates. For each edge
in the current tree, all points that are neighbors of either of
the end points will be considered to form point-edge pairs
with the edge. Since the cardinality of the spanning graph
is $O(n)$, the number of possible point-edge pairs generated
in this way is also $O(n)$.

Figure 3: The rectilinear spanning graph algorithm

```
Algorithm Rectilinear Spanning Graph (RSG)
for (i = 0; i < 2; i++)
    if (i == 0) sort points according to \( x + y \);
    else sort points according to \( x - y \);
for each point \( p \) in the order
    find points in \( A[1], A[2] \) such that \( p \) is in their
    \( R_{2i+1} \) and \( R_{2i+2} \) regions, respectively;
    connect \( p \) with points in each subset;
    delete the subsets from \( A[1], A[2] \), respectively;
```

Figure 4: A point visible to an edge is usually connected to one end point in the spanning graph.

When connecting a point to an edge, the longest edge
on the formed circuit needs to be deleted. In order to find
the corresponding longest edge for each point-edge pair ef-
iciently, we should look at how the spanning tree is formed
through Kruskal’s algorithm. This algorithm first sorts the
edges into non-decreasing lengths and each edge is consid-
ered in turn. If the end points of the edge have been con-
ected, then the edge will be excluded from the spanning
tree, otherwise, it will be included. The structure of these
connecting operations can be represented by a binary tree,
where the leaves represent the points and the internal nodes
represent the edges. When an edge is included in the span-
ning tree, a node is created for the edge and has as its
two children the trees representing the two components con-
connected by this edge. To illustrate this, a spanning tree with its representing binary tree are shown in Figure 5. As we can see, the longest edge between two points is the least common ancestor of the two points in the binary tree. For example, the longest edge between p and b in Figure 5 is (b, c), which is the least common ancestor of p and b in the binary tree. To find the longest edge on the circuit formed by connecting a point to an edge, we need to find the longest edge between the point and one end point of the edge that are in the same component before connecting the edge. For example, consider the pair p and (a, b), since p and b are in the same component before connecting (a, b), the edge needs to be deleted is the longest between p and b.

Figure 5: A minimal spanning tree and its merging binary tree.

Based on the above discussion, the pseudo-code of the algorithm can be described in Figure 6. At the beginning of the algorithm, Zhou et al.’s rectilinear spanning graph algorithm [15] is used to generate the spanning graph G for the given set of points. Then Kruskal’s algorithm is used on the graph to generate a minimal spanning tree. The data structure of disjoint sets [3] is used to merge components and check whether two points are in the same component (the first for loop). During this process, the merging binary tree and the queries for least common ancestors of all point-edge pairs are also generated. Here s1 and s2 represent disjoint sets and each keeps track of the root of the component in the merging binary tree. For each edge (u, v) adding to T, each neighbor w of either u or v will be considered to connect to (u, v). The longest edge for this pair is the least common ancestor of w, u or w, v depending on which point is in the same component as w. The procedure lca_add_query is used to add this query. Connecting the two components by (u, v) will also be recorded in the merging binary tree by the procedure lca_tree_edge. After generating the minimal spanning tree, we also have the corresponding merging binary tree and the least common ancestor queries ready. Using Tarjan’s off-line least common ancestor algorithm [3] (represented by lca_answer_queries), we can generate all longest edges for the pairs. With the longest edge for each point-edge pair, the gain of connecting the point to the edge can be calculated. Then each of the point to edge connections will be realized in a non-increasing order of their gains. A connection can only be realized if both the connection edge and deletion edge have not been deleted yet.

The running time of the algorithm is dominated by the spanning graph generation and edge sorting, which take $O(n \log n)$ time. Since the number of edges in the spanning graph is $O(n)$, both Kruskal’s algorithm and Tarjan’s off-line least common ancestor algorithm take $O(n \alpha(n))$ time, where $\alpha(n)$ is the inverse of Ackermann’s function, which grows extremely slow.

4. DISCUSSIONS

As pointed out by one referee, the straight-forward implementation by Borah et al.—as described in [2]—was not totally correct. The problem came from the way they found the longest edge for a point-edge pair. To see how that happened, consider an example shown in Figure 7. As stated in Section 2.1, from each edge in the tree, a depth-first search will be used to find the longest edge on the path to any point. Thus, when starting from edge (a, b) in Figure 7, the longest edge to c could be (d, e) or (f, g). Suppose we pick the closest to the point, it is (f, g). Then when we start from edge (a', b'), similarly, the longest edge to c' could be (d, e) or (f, g). Using the same criteria will give us (d, c). Therefore, when c is connected to (a, b), edge (f, g) will be deleted. Then when c' is connected to (a', b'), edge (d, e) will be deleted. This will give a dangling edge (c, f) and a loop from a to a'.

Figure 7: A problem in the straight-forward implementation of Borah et al.

However, we can prove that this problem does not exist in our algorithm.

Theorem 1. The RST algorithm only generates a Steiner tree on a given set of points.

Proof. We fulfill the proof by showing the following invariant in the last for loop in the algorithm:

For any point-edge pair $(p, (a, b), (c, d))$, if neither (a, b) nor (c, d) is touched (i.e. deleted), then there must be a path between p and (a, b) that goes through (c, d).

This invariant is true at the beginning of the for loop. Suppose it is violated, it must be violated by committing a pair (x, e_1, e_2). And the only possible way is that the deletion edge e_2 is on the path between p and (a, b) and is not (a, b) or (c, d). We claim that the circuit formed by connecting x to e_1 cannot include (c, d). Otherwise, both e_2 and (c, d) are on the path from x to e_1. Since we know (c, d) is an ancestor of e_2 in the binary tree, there is no way for e_2 to be the least common ancestor. Based on the claim, committing (x, e_1, e_2) only changes a part of the path between p and (a, b) that does not include (c, d). Therefore, after the merging, the path between p and (a, b) still includes (c, d).

Based on the above invariant, the tree property will be kept by each edge substitution.

5. EXPERIMENTAL RESULTS

We implemented the Rectilinear Steiner Tree (RST) algorithm in C language, following exactly the pseudo-code in
Algorithm Rectilinear Steiner Tree (RST)

\[T = \emptyset; \]

Generate the spanning graph \(G \) by RSG algorithm;

for (each edge \((u, v) \in G\) in non-decreasing length) {
\(s1 = \text{find_set}(u); \ s2 = \text{find_set}(v); \)
if \((s1 \neq s2)\) {
add \((u, v)\) in tree \(T \);
for (each neighbor \(w \) of \(u, v \) in \(G \))
if \((s1 == \text{find_set}(w))\)
\(\text{lca_add_query}(w, u, (u, v)); \)
\(\text{else \ lca_add_query}(w, v, (u, v)); \)
\(\text{lca_tree_edge}((u, v), s1.\text{edge}); \)
\(\text{lca_tree_edge}((u, v), s2.\text{edge}); \)
\(s = \text{union_set}(s1, s2); \ s.\text{edge} = (u, v); \)
}
generate point-edge pairs by \(\text{lca_answer_queries} \);
for (each pair \((p, (a, b), (c, d))\) in non-increasing positive gains)
if \(((a, b), (c, d))\) has not been deleted from \(T \) {
connect \(p \) to \((a, b)\) by adding three edges to \(T \);
delete \((a, b), (c, d)\) from \(T \);
}

Figure 6: The rectilinear Steiner tree algorithm.

Figure 6, with the exception that the program starting from the first for loop is repeated on the Steiner tree if there are improvements in the previous iteration.

We compared our program (denoted as RST) with other public available programs: the exact algorithm GeoSteiner (version 3.1) by Warme, Winter, and Zacharisen [12]; the Batched Iterated 1-Steiner (BI1S) by Robins; and the Borah et al.’s algorithm implemented by Madden (BOI)\(^1\). All the programs can be found at GSRC’s Achievable Design Bookshelf. We plan to put our RST program there when it is ready.

In Table 1, we reported the comparisons between our program and the three programs: GeoSteiner, BI1S, and BOI. For fair comparisons, we compile and run all programs on the same machine—a Dell PowerEdge 1400SC running Linux operating system. For each input size ranging from 100 to 5000, 30 different test cases are randomly generated through the rand_points program in GeoSteiner. Each test case is run on the four programs and the improvement ratios of the Steiner tree (St) over the minimal spanning tree (MST)—that is, \((\text{MST-St})/\text{MST}\)—are calculated. For each input size, we report the average improvement ratio (in percentage) and average running time (in seconds) on each of the programs. As we can see, RST always gives better improvements than BOI with less running times. This confirms our belief that there is no large hidden constant in the running time of RST. The fact that RST does not show \(n \log n \) growth comes from the factor that it is repeated until there is no improvement.

For better understanding of the use of spanning graphs in Steiner tree construction, and the quality of Steiner trees generated by RST, we also plotted the spanning graph, the minimal spanning tree, and the Steiner tree, computed by RST for a randomly generated 500 points, in Figures 8, 9, and 10.

Figure 8: The spanning graph over 500 points

6. CONCLUSIONS

In summary, we developed an efficient Steiner tree algorithm which is based on Borah et al.’s edge substitution approach and Zhou et al.’s spanning graph algorithm. The implementation has a running time of \(O(n \log n) \) and a storage requirement of \(O(n) \), without large hidden constant. Experimental results showed the efficiency of this algorithm.

Acknowledgments

The author wants to thank Mr. Chuan Lin for help running the experiments.
Table 1: Experimental Results

<table>
<thead>
<tr>
<th>input size</th>
<th>GeoSteiner</th>
<th>BI1S</th>
<th>BOI</th>
<th>RST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>improve</td>
<td>time</td>
<td>improve</td>
<td>time</td>
</tr>
<tr>
<td>100</td>
<td>11.440</td>
<td>0.4870</td>
<td>10.907</td>
<td>0.6325</td>
</tr>
<tr>
<td>200</td>
<td>11.492</td>
<td>3.5567</td>
<td>10.897</td>
<td>4.8103</td>
</tr>
<tr>
<td>300</td>
<td>11.492</td>
<td>12.6853</td>
<td>10.931</td>
<td>18.7704</td>
</tr>
<tr>
<td>500</td>
<td>11.525</td>
<td>72.1919</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>11.343</td>
<td>536.1733</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 9: The minimal spanning tree over 500 points

Figure 10: The Steiner tree by RST over 500 points

7. REFERENCES

