
Floorplanning of Pipelined Array Modules
using Sequence Pairs

Matthew Moe Herman Schmit
Carnegie Mellon University Department of Electrical and Computer Engineering

5000 Forbes Ave.

Pittsburgh, PA 15213

{moe,herman}@ece.cmu.edu
ABSTRACT
Floorplanning individual pipelined array modules of a larger
overall die can yield beneficial results. Critical paths in every
pipeline stage of a pipelined design are roughly equivalent after
synthesis. The inability of synthesis tools to predict without full
placement both wire congestion and the distance traveled by a wire
or wires between consecutive registers are the greatest causes of
additional delay and area during place and route. This paper will
detail a floorplanning methodology for pipelined arrays that is
used to regulate wire congestion and the shortest/longest distances
travelled by wire(s) between consecutive registers. A new wire
length metric for pipelined arrays will be discussed that attempts to
measure the distance travelled by wire(s) between registers. A new
move set for floorplanning pipelined arrays using sequence pairs
will also be introduced that significantly reduces the annealing
design space from previous work. These two contributions when
used together have produced up to 10% faster clock periods, 12%
smaller designs, and 85% less area used to fix hold time violations
in a placed and routed 0.18 µm design.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Layout, Placement
and Routing

General Terms
Algorithms, Design

Keywords
Floorplan, Pipelined Array, Sequence Pair

1. INTRODUCTION
In digital systems on a chip, where available die area for
hardware accelerators is increasing, soft cores are being
increasingly used to implement domain specific datapaths.
Most of these systems on a chip use many of the same hard
cores, i.e. microprocessors, DSPs or memories. What
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’03, April 6-9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004…$5.00.

143
differentiates the various systems are the specialized soft cores
which are used to perform or accelerate tasks that are unable to
be handled efficiently by other resources on the die. Heavy use
of pipelining will be required in order to enable the necessary
fast clock speeds in these soft cores.

Pipelined designs send and receive pieces of data at regular
intervals. In the general case, registered data can be passed to
any pipeline stage from any other pipeline stage while the
overall flow of data is from the input to the output. In this
work we will restrict the flow of data so that communication is
limited to either the previous or next pipeline stage in a strictly
systolic data flow. We call this pipelined architecture, which is
depicted in Figure 1, a pipelined array. Feedback or
feedforward paths may be as long as necessary but must be
registered in every pipeline stage. Pipelined arrays are
commonly used to perform many signal processing tasks.

Areas and clock speeds achievable during synthesis can be
unattainable during placement and routing. The greatest causes
of additional delay and area during placement and routing are
wire congestion and incorrect wire length assumptions during
synthesis. In order to alleviate congestion, either wires need to
be routed around the congestion or the congested region needs
to be expanded. If wires are routed around congested areas,
then the delay along that path has been increased, possibly
increasing or creating a new critical path in the system. If the
wire congested area is expanded then the overall required area
for the design will increase.

Synthesis without simultaneous placement and routing relies
on the use of stochastic wire length modeling, which can vary
significantly from the measured wire length found after place
and route. Longer than expected wires may either create setup

Figure 1. A pipelined array consists of a linear arrangement
of logic and registers. One pipeline stage consists of one block

of datapath logic and one block of pipeline registers.

datapath logic

pipeline register(s)

one pipeline stagearray
adjacent
pipeline
stages

time violations or make a goal clock cycle time unreachable.
Shorter than expected wires may create hold time violations.
Hold time violations are caused by paths between consecutive
registers that are shorter than the clock skew between the two
registers plus the hold time of the destination register. One
commonly used method to fix this problem is to insert buffers
between registers to ensure a minimum delay between registers
at the cost of extra area and power. Floorplanning tools should
therefore be used to both minimize the longest wire lengths
and maximize the shortest wire lengths in order to reduce area
usage and increase performance.

This paper will discuss a method of constructing floorplans for
pipeline stages of pipelined arrays. These pipelined arrays will
only be a portion of the full place and route problem of a chip.
A higher level floorplanning tool will still be used to place the
entire pipelined array as one module along with other modules.

This work attempts to solve some of the wire length and wire
congestion uncertainty of a pipeline array at a high level by
focusing on the limited and regular interconnect between
pipeline stages. This will reduce the design space explored by
a simulated annealing based floorplanning tool to a set where
array adjacent pipeline stages, which are depicted in Figure 1
as pipeline stages that are adjacent in a pipelined array, are
likely to be adjacent in the floorplan. This paper will also
introduce a new wire length metric for pipelined arrays that
measures the length a single wire or set of wires must traverse
between logically consecutive registers in different pipeline
stages using what we introduce as the wire path length.

2. PREVIOUS WORK
2.1 Data Path Floorplanning
In previous works [1][2] that have attempted data path
floorplanning (with simultaneous high-level synthesis), wire
delay models were based purely on the center to center
distance of modules or the half-perimeter bounding box
containing the source and destination modules. Predicting wire
length (and thereby delay) can only be accurate when full
placement and routing has occurred. Both models will be
plagued by inaccurate wire length models because of overly
optimistic (center to center) or pessimistic (half-perimeter
bounding box) wire predictions.

The work presented in this paper separates the two tasks of
synthesis and floorplanning. If the synthesis models and
methods are well understood, then a floorplanning tool can be
created that understands the shortfalls and strengths of the
synthesis and place and route tools. To that end, this
floorplanning methodology attempts to limit wire congestion
and wire lengths simultaneously.

2.2 Sequence Pairs
Sequence pairs were introduced in [3] as an efficient means of
representing every possible nonoverlapping block packing. A
sequence pair is composed of two strings (sequences) that
together specify directional constraints between every possible
pair of blocks. A horizontal constraint is created between two
blocks when the order of the two blocks is the same in both
sequences. A vertical constraint is created between two blocks
when the order of the two blocks in the two sequences differs.
Figure 2 graphically depicts these two types of constraints.

The structure created from a sequence pair is apparent when
viewed on an oblique constraint graph like the one found in

Figure 3. The first sequence is displayed diagonally in the
lower left and the second sequence in the lower right. Nodes,
which represent floorplan blocks, are located on the constraint
graph where matching elements of the two sequences cross.
Directional constraints exist between every possible pair of
blocks, but only nonredundant edges are drawn on the oblique
constraint graph for simplification. A possible floorplan of this
graph is also shown in Figure 3.

Directional constraints can be determined from the positioning
of nodes alone on the constraint graph. There are four
quadrants around every node. The boundaries of the quadrants
are the four grid lines that emanate from the node on the graph.
Every node that is in the quadrant above the original node is
above the block in the floorplan. Therefore constraint edges on
an oblique constraint graph show only redundant information.
Every block in the shaded quadrants of Figure 4 is above B in
the floorplan.

One sequence pair can lead to an infinite number of floorplans
because there are infinitely many possible aspect ratios for
every block. Finding the optimal area floorplan while keeping

..A..B.. , ..A..B..

A is left of B

A B

..A..B.. , ..B..A..

A is above B

A

B

Figure 2. The above figures depict a horizontal constraint
(left) and a vertical constraint (right). Dots in the sequence

pairs represent possible locations of other blocks.

A B

A

B

Figure 3. Oblique constraint graph (left) and possible
floorplan (right) for the sequence pair CDAB,DBAC.

Dashed/Solid lines represent horizontal/vertical constraints.

 C

 D

 A
B

D

 B

A

C

C

D

A

B
B

C

D

A

Figure 4. The shaded areas in both oblique graphs denote the
area where blocks that are above B are found.

C

D

A

B

C

D

B

A

144

the aspect ratio of the blocks within a given range is a
constrained optimization problem and is NP-Complete [4]. The
solver used throughout this work can be found at [9]. Many
other works have shown possible solutions to this problem. [5]
uses a branch and bound algorithm which becomes impractical
as the number of blocks increases. [6] uses constrained
optimization [7] to create a block placement. A faster solver
using Lagrangian Relaxation can be found in [8].

Simulated annealing of hard block floorplans with sequence
pairs was first described in the original paper on sequence
pairs [3]. The move set consisted of randomly swapping
elements in either the first or second sequence or rotating one
of the elements. Later work [6] added soft and preplaced
blocks to this methodology. The simulated annealing cost
functions for both methodologies were based on total area and
a wirelength metric. The location of input and output ports are
known when using hard blocks which enables more accurate
modelling of wire lengths. When using soft blocks, wire length
models are only estimations.

3. FOPA - FLOORPLANNING OF
PIPELINED ARRAY MODULES

Unlike previous work on sequence pairs, this work targets only
a small portion of the overall chip floorplanning problem -
floorplanning of pipelined array modules. Specialization
allows for a number of changes to the general sequence pair
framework that significantly reduces the design space and
improves the quality of results from a more general
floorplanning optimization tool. The following sections
describe our additions to the general simulated annealing
algorithms for sequence pairs.

3.1 Block Partitioning
Pipeline registers are heavily used in a pipelined design to
reduce the critical path delay within a single pipeline stage and
thereby increase data throughput. While logically placing
registers, a designer faces the dual goals of balancing delay
between pipeline stages and minimizing the number of
registers in order to minimize area. Pipelined registers are
therefore placed, whenever possible, where the fewest number
of data bits need to be registered. Partitioning a floorplan after
pipeline registers will also limit the number of connections that
pass between floorplanning blocks. In this work, blocks are
partitioned immediately after the pipeline registers - one
floorplanning block is composed of one pipeline stage.

It is possible to generalize our approach by allowing a
floorplanning block to consist of N pipeline stages. This would
reduce the total number of blocks during floorplanning and
reduce the complexity and runtime of the floorplanning tool.
Place and route results are likely to worsen as the granularity
of the floorplanning blocks decreases.

3.2 Oblique Connectivity Graph
An oblique connectivity graph is a representation that depicts
both wire connectivity and block placement simultaneously.
The graph consists of an oblique graph with edges that
represent wires between array adjacent blocks instead of
directional constraints. Figure 5 shows two such graphs.

Edges on an oblique connectivity graph for a pipelined array
can represent many wires. Routing multiple connections
between blocks over other blocks will probably create routing

congestion which will ultimately cause extra area usage or
decreased performance. These problems can be ameliorated by
constraining the simulated annealing design space to a set
where array adjacent stages are adjacent in the floorplan. In a
sequence pair this can be accomplished by not allowing the
same block between any two array adjacent blocks (stages) in
both sequences. In an oblique connectivity graph, array illegal
sequence pairs have nodes that can be found inside a tilted
rectangle bounded by array adjacent blocks at the corners. In
Figure 5, the graph on the left has a shaded rectangle
demarcated by the blocks B and C. This is an array illegal
representation because block A is inside this rectangle. The
representation on the right is array legal because there are no
blocks inside the rectangle bounded by blocks B and C or any
other pair of array adjacent blocks. Figure 6 has psuedo-code
for determining array legality.

It is still possible for an array legal representation to have
wires that need to be routed over other blocks. The number of
reachable positions with this characteristic has been severely
reduced by only allowing array legal representations as can be
seen in Table 1. Every array illegal position will have wires
that must be routed over another block. The least wire
congested floorplans can therefore be found within the array

Figure 5. Edges on an oblique connectivity graph denote
connections between blocks. The graph on the left is array
illegal because block A lies in a box bounded by B and C.

The right graph is array legal.

C

D

A

B

C

D

B

A

graph_is_legal = TRUE;

for(i=1;i<n;i++){ // n = number of pipeline stages

start_index_1 = position of i in sequence 1

end_index_1 = position of (i+1) in sequence 1

start_index_2 = position of i in sequence 2

end_index_2 = position of (i+1) in sequence 2

for(j=start_index_1+1;j<end_index_1;j++(or j--)){

for(k=start_index_2+1;k<end_index_2;k++(or k--)){

if (if block at position j in sequence 1 ==

block at position k in sequence 2){

graph_is_legal = FALSE; }}}}
Figure 6. Psuedo-code for determining array legality.

Table 1. Assuming n blocks, there are n! * n! sequence
pairs. There are fewer array legal sequence pairs.

n n! * n! legal sequence pairs
3 36 28
4 576 284
5 14,400 3,860
6 518,400 66,892
7 25,401,600 1,422,348
145

legal design space. Wire congestion is one of the greatest
causes of increased delay during placement due to longer than
expected wire routes. Reducing wire congestion can also
reduce the total area required for the design during placement
and routing.

3.3 Wire Path Length Model
Every wire length within or even between blocks cannot be
accurately measured during soft block floorplanning. Classic
wirelength models are well suited for measuring individual
wires in random logic designs. Wire path length more
accurately reflects the wiring situation of a pipelined array.
This model measures the likely distance a wire or set of wires
must travel from one register to the next while also reaching all
points within the destination register’s block.

Using the longest wire path length as a metric allows a
component of total delay (wire length) to be considered during
simulated annealing but not as a measurable quantity. After
synthesis, the delay across all pipeline stages is roughly
equivalent. During placement and routing, unforeseen
additional wire capacitance and congestion are the greatest
causes of additional delay. The wire path length model
attempts to proportionally model to first order the capacitance
likely to be seen on wire paths between logically consecutive
registers. The only way to accurately model every wire in a
placement is by placing every hard block whether that be a
microprocessor or a standard cell and routing the design.

Ideally, a placement tool will place the registers within a
pipeline stage closest to the block that contains the next
pipeline stage. In our model, all the registers for a block are
assumed to be located on the block edge closest to the next
block in the pipelined array. The wire path length model
measures the likely distance traveled by a wire or set of wires
between the worst case possible placement of registers.

Figure 7 contains psuedo-code for the measurement of wire
path length. Figure 8 demonstrates the measurement of wire
path length for block B in two examples. The hatched region
depicts the mostly likely location of registers within a block. If
the registers are located on the side of the block adjacent to the
hatched region, then the wire path length for block B is
width(B) + height(B) for the floorplan on the left and (2 *

width(B)) + height(B) for the floorplan on the right. This
added width will discourage the use of this arrangement during
simulated annealing which is more likely to have wire
congestion and longer wire lengths (and wire delay) than the
floorplan on the left. Previous wire length metrics would not
have discouraged this arrangement as much. Finding the
longest wire path length in a floorplan is an O(n) operation.

3.4 Annealing Cost Metric
The cost function used for our simulated annealing algorithm

is:

This measures the sum of ratios difference the current
floorplan is from an ideal floorplan. Area is the total area used
by a floorplan including dead space. MinArea is the
synthesized area. MaxWPL is the length of the longest wire
path length found in a floorplan. MinWPL is the ideal length of
the shortest possible maximum wire path length for a
floorplan. AR is the aspect ratio of the current floorplan. TarAR
is the target aspect ratio of the final floorplan. MinArea,
MinWPL, and TarAR are constants for a particular design.
Area, MaxWPL, and AR are the metrics determined from the
design during annealing.

The ideal length of the shortest possible maximum wire path
length for a floorplan is twice the square root of the area of the
largest block. This can be found in practice when the largest
block is square, the previous pipeline stage is adjacent to the
largest block and the next block is not on the same side of the
largest block as the previous block.

3.5 Move Set
The movement of elements within our modified sequence pair
framework consists of the removal of one element in one of the
sequence pairs and the reinsertion of that element into an array
legal location in the same sequence pair. The element to be
moved and the sequence pair to be modified are both randomly
chosen. The span of array legal destination locations are all
contiguous and are bounded by either the ends of the sequence
pair or an array illegal destination. An array illegal destination
is one where the moved element would be placed between two
array adjacent elements in the pipelined array. Moving the
element past one of these array illegal destinations will always
create array illegal positions. One such position which is
difficult to find (and is not found with our psuedo-code) is
when two sets of array adjacent blocks have wires that cross
each other. This position will never be reached if starting from
a legal position because it requires movement of an element

max_wpl = 0; // maximum wire path length

for(every set of array adjacent blocks (a,b,c)){

if()

current_wpl = x[b]+w[b]-(x[a]+w[a])

 +max(y[a]+h[a]-y[b],y[b]+h[b]-y[a]);

if()

current_wpl += w[b];

if()

current_wpl+=max(0,y[b]+h[b]-(y[c]+h[c]));

max_wpl = max(max_wpl,current_wpl);

}

a b a
b

c
a

b

a
b

c
ca b

a

b

c

Figure 7. Pseudo-code for calculating Wire Path Length.
Other cases are necessary but are flipped or rotated

versions of the above cases.

Figure 8. Measurement of wire path length for block B in
two different floorplans. The hatched regions denote the

most likely location of registers.

C

A
B

 A B C

w(B)

h(B)

w(B)

w(B)

h(B)

w(B) + h(B)

w(B) + h(B) + w(B)

worst case intermediate point

worst case register placement

Area
MinArea
----------------------- MaxWPL

MinWPL
------------------------ max

TarAR
AR

----------------- AR
TarAR
-----------------,

 + +
146

past an array illegal destination. Figure 9 shows some array
legal and array illegal moves. Every array legal move is
reversible.

3.6 Move Set Completeness
In order for a search algorithm like simulated annealing to
work, it is necessary to show that the restricted move set
previously introduced is complete - that every array legal
design point in the design space is reachable from any other
array legal design point. Due to space limitations, this proof is
not contained in this paper.

4. EXPERIMENTS AND RESULTS
This section will discuss experiments and results using
different simulated annealing floorplanners with our new wire
path length metric and other wire length metrics. The
floorplanners will differ in the move set used and the initial
starting position. Floorplanning results with our new restricted
move set will be shown to be better than an unrestricted move
set. More importantly, place and route results will show that
our new restricted move set creates designs up to 10% faster,
12% smaller, or use 85% less area to fix hold time violations in
a placed and routed 0.18 µm design compared to an
unfloorplanned design. The results will also show that the
FoPA move set is better than previous floorplan methodologies
for floorplanning pipelined array modules. Because this work
concentrates on module floorplanning rather than chip
floorplanning, ultimately the methodologies are compared
using complete and full place and route results.

Floorplanning tools are currently used to break down a large
place and route task into many smaller tasks. Individual
modules are then placed and routed separately. In the FoPA
methodology and for all the results in this paper, the
floorplanners were used to create placement constraints in the
place and route tool. All pipeline stages were placed and
routed simultaneously in one tool.

4.1 Methodology
There are five different simulated annealing module
floorplanners used throughout the rest of this paper. Classic is
used to denote a simulated annealing floorplanner with an
unrestricted swap move set and a random initial placement.
Classic+LSP denotes a simulated annealing floorplanner with
an unrestricted swapping move set and an array legal starting
position. FoPA denotes a simulated annealing floorplanner
with our new restricted deletion/insertion array legal move set
and an array legal starting placement. All three of these
floorplanners use wire path length as their wire length metric.

FoPA+BB and FoPA+Center are both identical to FoPA
except for the use of the half perimeter bounding box or center
to center wire length metric. All five floorplanners were built
upon a simulated annealer using sequence pairs found at [9].

The array legal initial placement used for the Classic+LSP and
FoPA simulated annealers is a straight line arrangement of the
pipeline stages in the floorplan. This poor but legal starting
position was chosen because randomly generating an array
legal starting position is increasingly difficult as the number of
blocks increases. The FoPA floorplanners are the only
floorplanners that maintain array legality at all times during
annealing. The Classic floorplanners allow array illegal moves
without penalty.

Constraints on aspect ratios for blocks within a floorplan are
set to ensure that the longest possible wire path length through
the blocks is identical if all of the blocks are arranged in a line.
This means that the smaller blocks are given the widest latitude
of aspect ratio ranges and vice versa. In order to allow some
aspect ratio range in even the largest block, the largest possible
block contribution to wire path length is allowed to be at most
10% more than twice the square root of the largest block. Other
factors, such as the distance between blocks, can still lengthen
the wire path length beyond 10%. Allowing 10% aspect ratio
flexibility lets the largest block have an aspect ratio range of
between 0.642 and 1.56 while changing the maximum
contribution of the block to wire path length by less than 10%.
The wider the aspect ratio ranges are, the more likely that a
dense floorplan will be found.

The initial temperature of all the annealers is set to be the
initial cost. This ensures an initial acceptance rate of
approximately 95% or higher. At each temperature, 100 * (the
number of blocks) moves are attempted. The cooling schedule
is T(i) = 0.9 * T(i-1). The placement is considered cold when
the cost is unchanged for 3 consecutive temperatures.

All placed and routed designs are in a 0.18µm design process.

4.2 Wire Path Length Design Space
Three designs were annealed 50 times to create the three
design space plots of Figure 10. Two of the designs, a 43 block
design and a 60 block design, implement one round of IDEA
encryption [10]. The final design is composed of the first 20
blocks of the 43 block design. The three designs have block
sizes that differ by as much as 4x. The 20 block design space
shows that the FoPA floorplanner performs as well as the
Classic floorplanner in terms of area while outperforming the
Classic floorplanner in terms of wire path length. The 43 block
design space and the 60 block design space show that as the
number of blocks increases, the FoPA floorplanner well

Figure 9. All array legal and bounding array illegal moves for the sequence pair CDBA DABC. To the left of each sequence pair is
the element that was moved to produce the new sequence pair. Moving an element past an array illegal move is disallowed because
either the resulting move is illegal or the resulting floorplan will have crossing wire paths. The cause of the positions being illegal

are showcased in bold. Elements in italics denote the element that is between two connecting elements of a pipelined array.

Legal Sequence 1 Moves

A,B - CDAB DABC

C,D - DCBA DABC

Illegal Sequence 2 Moves

B - CDBA BDAC

C - CDBA CDAB

D - CDBA ABDC

CDBA DABC
Legal Sequence 2 Moves

A,D - CDBA ADBC

A,B - CDBA DBAC

A - CDBA DBCA

B,C - CDBA DACB

C - CDBA DCAB

Illegal Sequence 1 Moves

A - CADB DABC

B,D - CBDA DABC

C - DBCA DABC
147

outperforms the two Classic floorplanners in terms of wire
path length while performing as well as the two Classic
floorplanners in terms of area. Runtime for the FoPA
floorplanner was on average about half the runtime of the two
Classic floorplanners.

4.3 Synthesis to Full Place and Route
Five designs have been synthesized using Synopsys’ Design
Compiler [12] and placed and routed using Monterey Design
Systems’ Dolphin [13] using the best floorplans returned from
10 simulated annealing runs of the five different annealing
floorplanners, as well as an unfloorplanned design. The five
implemented designs are a 1-D DCT (composed of 12 blocks),
a 2-D DCT (32 blocks), a 43 pipeline stage IDEA round (43
blocks), a 60 pipeline stage IDEA round (60 blocks), and a
small Low Density Parity Check decoder [11] (27 blocks).

Synthesized area of the various designs can be found in
Table 2. Results from the simulated annealing runs can be
found in Figure 11. Floorplan utilization measures how much
of the total area is used by floorplan blocks. As can be seen
from these results, the FoPA floorplanner outperforms the
Classic floorplanners in terms of wire path length while
performing as well as the Classic floorplanners in terms of

60 Block Design

0.00%

50.00%

100.00%

150.00%

200.00%

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%
Area Greater than Minimum

W
ir

e
P

at
h

 L
en

g
th

 L
o

n
g

er

th
an

 M
in

im
u

m

Classic
Classic + LSP
FoPA

Figure 10. The FoPA move set produces better wire path lengths
than the classic methodologies as the number of blocks increases.

20 Block Design

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00%
Area Greater than Minimum

W
ir

e
P

at
h

 L
en

g
th

 L
o

n
g

er

th
an

 M
in

im
u

m

Classic
Classic + LSP
FoPA

43 Block Design

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

0.00% 5.00% 10.00% 15.00%
Area Greater than Minimum

W
ir

e
P

at
h

 L
en

g
th

 L
o

n
g

er

th
an

 M
in

im
u

m

Classic
Classic + LSP
FoPA

Table 2. Area achievable during synthesis

Application Synthesized Area (µm2)

1-D DCT 668,323

IDEA(short) 948,461

IDEA(long) 1,082,773

2-D DCT 1,505,284

LDPC 4,508,761

0

2

4

6

8

10

12

14

16

18

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPC

W
ir

e
L

en
g

th
 (

0.
1

m
ic

ro
n

s)

Classic (WPL)
Classic+LSP (WPL)
FoPA (WPL)
FoPA+Center
FoPA+BB

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPC

F
lo

o
rp

la
n

 U
ti

liz
at

io
n

Classic
Classic+LSP
FoPA
FoPA+Center
FoPA+BB

Figure 11. Best Wire Length and Floorplan Utilization found after 10 runs of each annealer.
148

utilization. Two floorplans for the 1-DCT found using the
Classic and FoPA floorplanners can be found in Figure 12.
The three floorplanners that use wire path length created 1-
DCT designs that are very similar in wire path length due to
the small number of blocks (12) and small design space to be
explored. The wire lengths of the floorplanners that do not use
wire path length are included for completeness in Figure 11,
but these results are not directly comparable to each other or to
the floorplanners that use wire path length.

All of the designs were unable to be placed and routed with
their initial floorplans without Design Rule Errors. The
floorplan sizes were increased in increments of 1% until a
design without Design Rule Errors was found.

Figure 13 shows the total area required for a placed and routed
design compared to the FoPA methodology. Figure 14 shows

both the difference in dead space between the pre-placed and
post-placed dead spaces and the area that is used to fix hold
time violations as a percentage of synthesized area. The
difference in dead space is caused by the addition of buffers to
fix hold time violations and the resizing of gates to meet clock
cycle constraints. Between 7% and 9% of the synthesized area
added during place and route is due to resizing. The rest of the
increase in area can be attributed to fixing hold time violations.
As can been seen from the results for most of the applications,
required hold time area is much higher in the unfloorplanned
than the floorplanned designs. This is probably caused by the
fact that the place and route tool attempts to have logically
connected registers as close together as possible. Taken to an
extreme, this can easily create shorter and thus faster paths
than the clock skew plus hold time on registers in the design.
Floorplanned designs tend to both limit the minimum as well
as the maximum separation between logically connected
registers. Hold time violation fixing area not only increases the
area used on a chip but also increases the power consumption.

LDPC has virtually no area used to fix hold time violations.
There are very few direct register to register connections in
this application. Most of the paths between registers have logic
between them thereby reducing the possibility of hold time
violations. 1-D DCT and 2-D DCT are virtually the same
application. If purely placed back to back then the hold time
area percentages would probably be identical. In between the
two 1-D DCT designs in the 2-D DCT is a set of transposition
registers. These are all purely register to register connections
thereby raising the possibility of hold time violations. The two
IDEA encryption applications also require numerous register
to register connections. These results show that if there are
many register to register connections, then the FoPA

Figure 12. Best floorplans for 1-DCT using Classic (left) and FoPA (right) methodology. Notice that
wire congestion will probably be caused around blocks 6, 7, 8, and 9 in the Classic floorplan.

2

1

0

3

6

9

7

8

4

5

11

10

2

1

0

3

6

9

7

8

4

5

11

10

9 8 7

10 11 6

3

2

4 5

01

9 8 7

10 11 6

3

2

4 5

01

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPCT
o

ta
l A

re
a

co
m

p
ar

ed
 t

o
 F

o
P

A

Unfloorplanned

Classic

Classic+LSP

FoPA

FoPA+BB

FoPA+Center

Figure 13. Total area used by designs after place and route
compared to the FoPA methodology.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPC

A
d

d
ed

 P
la

ce
 a

n
d

 R
o

u
te

 A
re

a

Unfloorplanned
Classic
Classic+LSP
FoPA
FoPA+BB
FoPA+Center

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPC

A
d

d
ed

 A
re

a
to

 F
ix

 H
o

ld
 V

io
la

ti
o

n
s

Unfloorplanned
Classic
Classic+LSP
FoPA
FoPA+BB
FoPA+Center

Figure 14. Difference in pre- and post-place and route dead space as a percentage of synthesized area and the
Hold Area used to fix hold time violations during place and route as a percentage of synthesized area.
149

methodology will use less area than an unfloorplanned design
or other floorplan methodologies.

Table 3 shows the achievable clock periods of the various
designs after synthesis. Figure 15 shows the percentage by
which the clock periods are missed after place and route. As
can be seen from the results, the FoPA methodology is always
the fastest or very close to the fastest design. The FoPA
floorplanner creates as fast or, as is usually the case, faster
placed and routed designs than the unfloorplanned design. The
maximum wire path length found during simulated annealing
predicts quite accurately which of the floorplan methodologies
will produce the fastest result. When the maximum wire path
lengths are nearly identical after annealing as can be found in
the 1-DCT results, the achievable clock speeds are nearly
identical also, with the shortest wire path length being the
fastest design and vice versa.

Maximum wire path length is not a perfect or proportional
predictor of performance. Wire delay is still just a fraction of
total delay. Attempting to decrease or limit wire delay can only
improve the performance by as much as wire delay limits the
performance of the design.

5. CONCLUSIONS

Currently, blocks of the size used in this paper are
unfloorplanned. We have shown that a floorplanned design
uses less area to fix hold time violations than an
unfloorplanned design.

A new floorplanning move set has been shown that reduces the
simulated annealing design space to a set where array adjacent
elements are adjacent in the floorplan. This produces designs
that are faster and require less total area than previous
floorplanning methodologies due to reduced wire congestion.

A new metric for wire path length has been shown that
attempts to measure the worst case distance a wire or set of
wires must travel between registers in consecutive pipeline
stages. This metric more accurately reflects the wiring of
pipelined arrays than previous wire length metrics for random
designs. Compared to previous wire length metrics, wire path
length has been shown to usually produce faster designs.

The restricted move set is used to reduce wire congestion while
the wire path length metric is used to reduce wire delay. These
two contributions when used together have been shown to
produce up to 10% faster clock periods, 12% smaller designs,
or use 85% less area to fix hold time violations than an
unfloorplanned design.

6. ACKNOWLEDGMENTS
This project was supported in part by the Microelectronic
Advanced Research Corporation (MARCO) under Contract
No. 98-DT-660. Professor Schmit was supported in part by a
CAREER grant from the National Science Foundation. The
authors wish to thank ST Microelectronics for their technical
support.

7. REFERENCES
[1]J. Crenshaw, M. Sarrafzadeh, P. Banerjee, P. Prabhakaran, “An
incremental floorplanner,” in Proc. Ninth Great Lakes Symposium
on VLSI, pp. 248-251, 1999.

[2]Y.M. Fang, D.F. Wong, “Simultaneous Functional-Unit Binding
and Floorplanning”, in Proc. ICCAD, pps. 317-321, 1994.

[3]H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “VLSI Mod-
ule Placement Based on Rectangle Packing by the Sequence Pair,”
IEEE Trans. on Computer Aided Design of Integrated Circuits and
Systems, vol. 15, no. 12, pp. 1518-1524, December 1996.

[4]L. Stockmeyer, “Optimal orientations of cells in slicing floor-
plan designs,” Inform. Contr., vol. 57, pp. 91-101, 1983.

[5]S. Wimer, I. Koren, I. Cederbai,. “Optimal Aspect Ratios of
Building Blocks in VLSI,” IEEE Trans. on Computer Aided
Design, vol. 8, no. 2, pp. 139-145, December 1996.

[6]H. Murata and E. S. Kuh, “Sequence-pair based placement
method for hard/soft/preplaced modules,” in Proc. Int. Symp.
Physical Design, Apr . 1998. pp. 167-172.

[7]P. M. Vaidya, “A New Algorithm for minimizing convex func-
tions over convex sets,” Mathematical Programming, 73:291-341,
1996.

[8]F. Y. Young, C. C. N. Chu, W.S. Luk, and Y. C. Wong, “Han-
dling Soft Modules in General Nonslicing Floorplan Using
Lagrangian Relaxation,” in IEEE Trans. on Computer Aided
Design of Integrated Circuits and Systems, vol. 20, no. 5, pp. 687-
692, May 2001.

[9]http://www.cse.ucsc.edu/research/surf/GSRC/progress.html#V

[10]Bruce Schneier, Applied Cryptography, Second Edition, John
Wiley & Sons, Inc., 1996, pp. 319-325.

[11]R. G. Gallager “Low Density Parity Check Nodes,” IRE Trans.
Inform. Theory, Jan. 1962, pp. 21-28.

[12]“Design Compiler Reference Manual”, Synopsys Inc., 1999.

[13]“Dolphin 2.0 Online Help”, Monterey Design Systems,
December 2000.

Table 3. Clock Periods achievable during synthesis

Application Synthesized Clock (ns.)
1-D DCT 2.13

IDEA(short) 1.88
IDEA(long) 1.90

2-D DCT 2.13
LDPC 3.55

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1-D DCT IDEA(short) IDEA(long) 2-D DCT LDPC

P
la

ce
 a

n
d

 R
o

u
te

 D
el

ay

Unfloorplanned
Classic
Classic+LSP
FoPA
FoPA+BB
FoPA+Center

Figure 15. Clock periods achievable during synthesis and
the extra delay added during Place and Route as a

percentage of synthesized clock period.
150

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

